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1  Introduction
LPI radar prevents the non-cooperative receiver from intercepting and detecting its sig-
nals by transmitting a special waveform[1, 2]. Due to the properties of low power, high 
resolution, large bandwidth, frequency changing, and so on [3, 4], it is tough for tra-
ditional electronic reconnaissance methods to estimate parameters of received signals 
exactly, which means different modulation types of LPI radar signals cannot be recog-
nized accurately. To improve the cognition ability of reconnaissance equipment, how to 
precisely identify LPI radar signals in a harsh electromagnetic environment becomes a 
hot spot in electronic warfare systems.

Most exiting methods about LPI radar signal modulation recognition involve two key 
processes, which are feature extraction and signal classification [5, 6]. From the per-
spective of features, most methods can be summarized into four classes: time-domain 
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methods [7], frequency-domain methods [8, 9], time-frequency domain methods [5, 10], 
and transform-domain methods [11]. And for the classifier, both traditional machine 
learning (ML) [12, 13] and prevalent deep learning (DL) [14, 15] are widely applied. 
Especially for the DL methods, more and more attentions have been paid to them 
recently, due to their superb performance. It has already been proved that compared 
with other models of DL, such as Stacked AutoEncoder (SAE) [16, 17] and Deep Belief 
Network (DBN) [18, 19], CNN has a better performance in many areas such as time 
series prediction [20], target detection [21], and object identification [22, 23]. Therefore, 
the method of combining TFIs and CNN stands out from all these approaches. Because 
compared with any single domain method mentioned above, the time-frequency tech-
nique performs well in the aspect of anti-noise [24]. Meanwhile, employing CNN as the 
encoder module means that manual intervention will not be needed anymore, which 
makes the recognition process more reasonable and reliable.

Existing recognition methods of LPI radar signal modulations are mostly based on 
time-frequency analysis and DL. Lunden and Koivunen [5] presented a large set of fea-
tures extracted from TFIs of radar signals, and fed them into a MLP classifier to perform 
the classification. However, the selections of these features need some prior information 
and human intervention. Zhang et al. [25] firstly explored an automatic recognition sys-
tem for radar waveforms based on Choi–Williams Distribution (CWD) and CNN. The 
system didn’t need any prior information and manual intervention to recognize radar 
waveforms. For 8 kinds of radar waveforms (LFM, BPSK, Costas, Frank, and T1–T4), 
the overall RSR was more than 93.7% when SNR was greater than −2 dB. In [26], the 
authors also chose CWD to process received radar signals. Features extracted from TFIs 
were fed into Elman neural network (ENN) for classification. Different from [25], they 
took P1, P2, P3, and P4 polyphase classes into account, expanding the types of recog-
nition waveforms. The overall RSR of 8 radar waveforms (LFM, BPSK, Costas, Frank 
code, P1–P4 code) was 94.7% at SNR of − 2 dB. However, the feature extraction pro-
cess in their research still required manual design and was cumbersome to handle. Guo 
and Chen [27] used an improved AlexNet to classify LPI radar signals. They successfully 
classified 10 types of radar signals at − 6 dB, including CW, NLFM, LFM, BPSK, Costas, 
Frank, and T1–T4. Their research not only expanded the types of identification, but also 
achieved a better result in a lower SNR. With the rise of transfer learning, more and 
more new methods have been explored in the area of radar waveforms recognition. Guo 
et al. [28] adopted a transferred CNN to recognize the TFIs of radar signals. By virtue of 
transfer learning, their system achieved the recognition of radar waveforms with a small 
number of training samples, providing a new method for the circumstance of insuffi-
cient training samples. In addition, Xiao et al. [29] took advantage of feature fusion algo-
rithm and transfer learning to achieve a good recognition results at − 4 dB. The above 
methods are gradually improving the ability of radar signal recognition. Their progresses 
encourage more and more methods of radar signal identification to be explored and 
applied in electronic reconnaissance.

To improve the classification accuracy in lower SNR cases, this paper proposes an 
automatic recognition approach to achieve accurate recognition of LPI radar signal 
modulations. The approach involves analyzing radar signals in time-frequency domain, 
designing a feature encoder named TCNN, and constructing a FCNN as the classifier. 
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For simplicity, TCNN-FCNN will be used to represent the proposed method in the fol-
lowing. The specific contribution of this paper can be summarized as follows:

•	 This paper proposes a TCNN-FCNN structure to address the problem of LPI radar 
signal modulations recognition in low SNR. As an end-to-end model, TCNN-FCNN 
can identify different modulation types accurately even when SNR is -10dB. It means 
that our method provides a solid basis for further research on modulation recogni-
tion in complicated electromagnetic environments.

•	 The proposed method employs triplet loss in the process of LPI radar modulation 
identification. By setting a margin between each positive pair and negative pair, tri-
plet loss minimizes the distance between samples with the same label and maximizes 
the distance between samples with different labels. Experiments show that the dis-
criminability of the model trained with triplet loss is effectively enhanced.

•	 Different from other existing approaches, the proposed method emphasizes the role 
of the objective function in the training process. To some extent, it can provide novel 
ideas for LPI radar signal modulations recognition.

The rest of this paper is organized as follows. The overall structure of our recognition 
system is proposed in Sect. 2. Section 3 briefly introduces the groundworks of the pro-
posed method including the signal model and SPWVD technique. Main methods of 
the system are introduced in Sect. 4, involving specific structure of models, triplet loss, 
t-Distributed Stochastic Neighbor Embedding (t-SNE) technique, etc. Section 5 shows 
and analyzes the performance of the proposed recognition system. Finally, the conclu-
sion of this paper is drawn in Sect. 6.

2 � System overview
In this section, an automatic recognition method of LPI radar signal modulations is 
described in detail. The specific structure of the system is shown in Fig. 1. At first, all 
received LPI radar signals are converted into TFIs by SPWVD. Since SPWVD describes 
the distribution of signal energy over time and frequency on a two-dimensional plane, 
TFIs can reflect the distinction between different modulation types of LPI radar signals, 
even at low SNR. Next, the signal dataset is separated into train dataset and test data-
set. Then, the CNN is designed as the feature encoder to extract features automatically. 
Note that triplet loss plays an important role in the iterative training process of CNN. In 
the high-dimensional space, the distribution of features extracted from the same class is 

Fig. 1  Framework of the proposed method
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more concentrated than those from different classes with the assistance of triplet loss. 
Finally, as the classifier, FCNN is tuned by cross-entropy loss to achieve multi-classes 
classification accurately. In particular, t-SNE technique is adopted to visualize the 2-D 
distribution of high-dimensional feature vectors obtained by the designed TCNN, ensur-
ing that triplet loss actually works in the identification process, and providing a visual 
proof for the classification results.

It is noteworthy that triplet loss is employed to optimize parameters of CNN encoder 
and cross-entropy loss is used to update parameters of FCNN classifier, separately. As 
a metric loss function, triplet loss aims to maximize the similarity of within-class and 
minimize the similarity of between-class. It works by narrowing the distance between 
intra-class samples and increasing the distance between inter-class samples in higher 
dimensional space. Accordingly, it is calculated in the embedding space basing on the 
feature vectors extracted by CNN encoder, while cross-entropy loss is a common classi-
fication loss function. It is calculated by comparing target labels and predicted outputs of 
the last dense layer. By minimizing cross-entropy loss, FCNN can tag each training sam-
ple with a corresponding label. Consequently, we choose triplet loss and cross-entropy 
loss to update the parameters of CNN encoder and FCNN classifier, separately. More 
details about triplet loss and cross-entropy loss are introduced in Sect. 4.2.

3 � Time‑frequency analysis of radar signals
3.1 � Signal model

In general, the filtered radar signal r(t) consists of radar modulated signal s(t) and 
additive Gaussian white noise (AGWN) n(t) [26]. Corresponding signal model can be 
expressed as

where A is the amplitude and ϕ represents the modulation phase. For the sake of simplic-
ity, we assume A = 1 . Different values of SNR are designed in the cause of mimicking the 
complexity of actual application environment. The definition of SNR in this paper is

where �·�2 is L2-norm. E
(

‖s(t)‖22
)

 and E
(

‖n(t)‖22
)

 denote the mean of ‖s(t)‖22 and ‖n(t)‖22 , 
respectively.

3.2 � Smooth pseudo‑Wigner–Ville distribution

As a kind of Cohen class time-frequency distribution, SPWVD adopts smoothing opera-
tions in both frequency and time domains. Therefore, it can eliminate the cross-term 
interference distributed both along the time axis and the frequency axis [30].

where ∗ denotes the complex conjugate. r(t) is the complex signal received by radar, 
which is shown in Eq.  1. t and f represent time and frequency variables, respectively. 

(1)r(t) = s(t)+ n(t) = Aejϕt + n(t)

(2)SNR = 10log10
E
(

�s(t)�22
)

E
(

�n(t)�22
)

(3)SPWVDr(t, f ) =

∫∫

r(t − v + τ/2)r∗(t − v − τ/2) · g(τ )h(v)e−j2π f τdvdτ
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φ(τ , v) = g(τ )h(v) is the kernel function of SPWVD. g(τ ) and h(v) are the independent 
low pass filters and work on the time delay τ and the frequency shift v, respectively.

For the TFI generated by SPWVD, cross-term interference is eliminated at the cost 
of decreasing the time-frequency concentration. Namely, the smoothing operation 
of SPWVD will reduce the time-frequency resolution, resulting in a loss of some use-
ful information. To increase the time-frequency concentration and improve the time-
frequency resolution of TFIs, a proper selection of window function is needed. In this 
paper, we choose the Gaussian window function as the smoothing filter, since the Gauss-
ian window function has no negative sidelobes and no sidelobes fluctuation, which 
means the spectral energy leakage can be suppressed to a certain extent.

Another critical parameter for SPWVD is the window length. Actually, there have 
been some related works [31–33] on parameters selection of time-frequency distri-
bution. Inspired by [31], we define three levels of window lengths: small, medium and 
large, and choose “33, 133, 233” as the concrete representations of them, respectively. 
Figure  2 shows different TFIs generated by SPWVD under different combinations of 
window lengths. Lg and Lh denote the length of Gaussian window g and h. As shown in 
Fig. 2, there is an issue about energy leakage in Fig. 2a, d, g. It demonstrates that severe 
energy leakage exists in TFIs when Lh is small, while as Lg increases, the time resolution 

Fig. 2  Different TFIs produced by SPWVD with different combinations of window lengths
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becomes worse, so that some useful information cannot be displayed in TFIs. This is 
verified by Fig. 2e–i. Likewise, Lh in Fig. 2c is larger than Fig. 2b, which results in a lower 
frequency resolution in Fig. 2c. Therefore, to make a trade-off between less energy leak-
age and high resolution, the combination of Lg = 33 and Lh = 133 is chosen in this 
paper. In fact, the selection of window length is not be strictly restricted in this paper. 
Parameters which can ensure that mutation features of signals are fully reflected and no 
severe spectrum energy leakage exists in TFIs will be included in the selection.

3.3 � Different TFIs of radar signals based on SPWVD

SPWVD transformation results of 10 LPI radar signals at 8dB are presented in Fig. 3, 
including Costas, Frank, LFM, NS, BPSK, NLFM, and T1-T4.

As shown in Fig. 3, each TFI describes the change of signal instantaneous frequency 
with time clearly. Different TFIs can intuitively reflect different signal modulation types. 
Therefore, it is feasible and dependable to recognize different modulation types by TFIs.

4 � Classification method based on proposed TCNN‑FCNN
4.1 � Structure of designed models

In this section, the architecture of the encoder module TCNN presented in Fig. 4a and 
the classifier FCNN shown in Fig. 4b will be introduced in detail.

As shown in Fig. 4a, the encoder module has 2 convolutional blocks. Each of them is 
comprised of a convolutional layer, a batch normalization layer, an activating function, 
and a pooling layer. The convolutional layer in Conv Block 1 has 128 kernels with the 
kernel size of 3× 3 , aiming to extract feature maps from TFIs. In particular, to reduce 
internal covariate shift, avoid vanishing gradient and accelerate the convergence speed 
of the model, a batch normalization layer [34] is added, since it can ensure that input 
data of the activation units will obey Gaussian distribution. Rectified linear unit (ReLU) 
is adopted as the nonlinear activating function to provide nonlinearity for the model and 
alleviate overfitting. To retain major features and reduce the complexity of the network, a 
max-pooling layer with the kernel size of 2× 2 is employed. The structure of Conv Block 
2 is the same as Conv Block 1, except that the number of kernels is 64 in the convolu-
tional layer. A dense layer with ReLU activating function is used to integrate the learned 
“distributed features.” Eventually, after the forward propagation, a 128-dimensional 

Fig. 3  TFIs of different modulation types
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feature vector of input TFI is obtained; especially, triplet loss is employed as the objec-
tive function during the back propagation and is detailed explained in Sect.  4.2. We 
choose Adam [35] as the optimization algorithm to minimize triplet loss instead of tra-
ditional stochastic gradient descent (SGD), because it only needs first-order gradients 
with high computational efficiency and little memory requirements.

As illustrated in Fig. 4b, the FCNN model is composed of dense layers, completely. The 
number of neurons in dense 1 and dense 2 is 128 and 10, respectively. Dense 1 still uses 
ReLU as the nonlinear activating function. Dense 2 utilizes softmax function to achieve 
multi-objective classification. FCNN model uses Adam to optimize as well, except that 
cross-entropy loss is employed as the objective function during the back propagation.

4.2 � Triplet loss

Two different objective functions are mentioned in Sect. 4.1. Both triplet loss [36–39] 
and cross-entropy loss are widely used in deep neural networks. Cross-entropy loss is 
usually employed in multi-classification missions [40]. In high-dimensional embedding 
space, cross-entropy loss aims to project samples with the same label to the same place, 
and map the rest samples with different labels to other places. However, it doesn’t take 
account of the distance between different classes [41]. This may cause an unsatisfied cir-
cumstance that the distance between samples with the same label dinter is farther than 
the distance between samples of different classes dintra . The discrepancy between triplet 
loss and cross-entropy loss is shown in Fig. 5, where the same shape represents the same 
class, and different colors represent different samples of each class. Figure 5a illustrates 

Fig. 4  Architecture of the proposed TCNN-FCNN
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the spatial distribution of initial samples in embedding space. Figure 5b, c show distribu-
tions of samples trained by cross-entropy loss and triplet loss, respectively.

This  unsatisfied circumstance can be addressed by using triplet loss as the objective 
function to optimize models. The effect of triplet loss is displayed in Fig.  5c. Appar-
ently, triplet loss is designed to update the parameters of models by enforcing a margin 
between each sample from one class to all samples from other classes [36]. Not only can 
it minimize dinter , but it also can maximize dintra .

More specifically, as shown in Fig.  4a, TCNN maps initial TFIs into high dimen-
sional Euclidean space, and the embedding function can be represented by 
Mθ : RH×W×3 → R

D , where θ denotes the encoder module. Each TFI with size of 
H ×W  will be represented as a D-dimensional feature vector fi ∈ R

D, i = 1, 2, . . . ,m by 
the embedding module, where fi is the output of TCNN.

Among all these fi , an anchor feature vector f ai  is chosen randomly. Then, a posi-
tive feature vector f pi  which has the same label with f ai  and a negative feature vector f ni  
whose label differs from f ai  are needed to construct a valid triplet. For each given f ai  , 
triplet loss needs to ensure that f ai  is closer to all other f pi  . In the meanwhile, f ai  also 
should stay away from any other f ni  . The main purpose of triplet loss is to satisfy the fol-
lowing condition:

The objective function of triplet loss can be written as:

In summary, with the assistance of triplet loss, the discriminative ability of the encoder 
module will be efficiently enhanced during the process of training.

4.3 � Visualization by t‑SNE

To demonstrate the effect of triplet loss further and provide an intuitive explanation for 
the results of the classification in subsequent experiments, t-SNE technology is adopted 
as the visualization tool in this paper. The basic theory of t-SNE will be discussed in this 
section.
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Fig. 5  Discrepancy between triplet loss and cross-entropy loss
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t-SNE [42–44] is a variation in Stochastic Neighbor Embedding (SNE) technique 
[45, 46]. It can visualize high-dimensional data by providing a location in a two or 
three-dimensional space for each datapoint [42].

Compared with SNE, t-SNE employs a Student t-distribution in the low-dimen-
sional space, instead of Gaussian distribution. Since Student t-distribution is closely 
related to the Gaussian distribution and has much heavier tails than Gaussian, it can 
alleviate the crowding problem to some extent. The principle of t-SNE is as follows:

•	 For high-dimensional feature vectors f1, f2, . . . , fm , t-SNE converts Euclidean dis-
tance between fi and fj into a joint probability pij obeying Gaussian distribution. 
The formulation can be written as 

 where σ denotes the variance of Gaussian distribution.
•	 In low dimensional space, a similar probability qij is computed by using Student 

t-distribution with a single degree of freedom. 

 where mi and mj are the low-dimensional mapping points of high-dimensional fea-
ture vectors fi and fj.

•	 t-SNE tries to find an optimal low-dimensional data representation which will 
match pij and qij as well as possible. The objective function of t-SNE is shown in 
Eq. 8. 

 where KL(P‖Q ) denotes the Kullback–Leibler divergence between P which is the 
joint probability distribution over high-dimensional feature vectors and Q which rep-
resents the joint probability distribution over low-dimensional mapping points.

•	 By minimizing Eq. 8, t-SNE can find the optimal low-dimensional representation. 
The gradient of Eq. 8 is given by 

5 � Experiments and analysis
To evaluate the performance of the proposed TCNN-FCNN method, some experi-
ments and analyses are presented in this section.
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5.1 � Dataset

The dataset includes 10 different kinds of LPI radar signal modulations mentioned in 
Sect. 3.3. The parameters of simulation signals are set dynamic ranges so as to verify the 
generalization performance of the designed framework. Corresponding parameters are 
shown in Table 1.

For each class, there are 1000 samples in the dataset. We randomly choose 800 sam-
ples from each class as the training dataset Dtrain , and the rest of them as the testing 
dataset Dtest . Besides, 11 different values of SNR are designed to mimic different situ-
ations, which range from − 12 to 8 dB at interval in 2 dB. Actually, there are 110, 000 
simulation signals provided for the subsequent training and testing processes in total.

5.2 � Feasibility experiments

The feasibility and validity of the proposed TCNN-FCNN method will be verified by 
some experiments in this section. At first, to figure out whether the encoder module can 
extract representative features of input TFIs, we randomly choose a single TFI in each 
modulation type and correspondingly display several feature maps of them in Fig. 6. It 
illustrates that most intermediate feature maps generated by TCNN have high similarity 
to input TFIs. Therefore, using these features to identify different LPI radar signal modu-
lations is totally enough. In further, it demonstrates that the TCNN encoder module is 
effective and convictive as well.

In order to show the difference between triplet loss and cross-entropy loss more intui-
tively, we employ t-SNE technology to visualize the distribution of 128-D feature vec-
tors in 2-D space. The visualization of feature distribution is displayed in Fig. 7. In the 
condition of SNR = 8 dB , there are 200 samples of 10 LPI radar modulations shown in 
Fig. 7a, b, and each class has 20 samples. The parameters of t-SNE are set as follows: The 
perplexity is 30 and the number of iterations is 5000.

Table 1  Signal parameters and simulation conditions

Signal types Parameters Ranges

NS Carrier frequency fc (1/8 ∼ 1/4)fs

Number of samples N [512, 1024]

Costas Fundamental frequency fmin (1/24 ∼ 1/20)fs

Number changed Nc [3, 6]

Number of samples N [512, 1024]

Frank Carrier frequency fc (1/8 ∼ 1/4)fs

Cycles per phase code cpp [1, 5]

Samples of frequency stem M [4, 8]

LFM&NLFM Initial frequency f0 (1/16 ∼ 1/6)fs

Bandwidth B (1/14 ∼ 1/8)fs

Number of samples N [512, 1024]

BPSK Carrier frequency fc (1/14 ∼ 1/8)fs

Barker codes {7, 11, 13}

Cycles per phase code cpp [1, 5]

Number of code periods Np [100, 300]

TI–T4 Number of segments k [4, 6]

Overall code duration T [0.07, 1]
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Apparently, compared with Fig.  7a, the distribution of samples with the same label 
is highly aggregated and different labels are far from each other in Fig.  7b. It means 
that CNN trained with triplet loss is more discriminative than that trained with cross-
entropy loss. It proves that triplet loss is feasible in the recognition of LPI radar signal 
modulations as well.

5.3 � Results and discussions

For discussing the performance of the proposed approach, several methods are com-
pared in the following experiments. Figure 8 presents the relation curves between RSR 
and SNR of these methods. In the legend, TCNN-FCNN (red curve) represents our 
proposed method. CNN-FCNN (blue curve) has the same structure as TCNN-FCNN, 
except that cross-entropy loss is the only loss function adopted to update parameters of 
the CNN encoder and FCNN classifier. In addition, the other three different methods 
Lunden (dashed magenta curve) proposed in [5], Zhang (dotted green curve) proposed 
in [25], Guo (dash-dot cyan curve) proposed in [28] are involved.

Figure 8 delivers some important messages. Firstly, compared with Lunden, TCNN-
FCNN has strikingly advantage, meaning that those features designed in Lunten’s 
method are not applicable to all signal classes. Namely, using TCNN encoder to 
extract features automatically is more reliable. Secondly, both TCNN-FCNN and 
CNN-FCNN are superior to Zhang. Considering TCNN-FCNN and CNN-FCNN 

Fig. 6  Visualization of feature maps in different CNN layers. a The input TFIs with the size of 100× 100 . b, c 
The output features of Conv Block 1 and Conv Block 2. The size of feature maps in b is 50× 50 and 25× 25 in 
c 

Fig. 7  Visualization of feature distribution
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have the same net structure, it implies that the structure of the model which we 
designed in this paper is proper and effective. Thirdly, Guo loses its advantage when 
SNR drops below − 4 dB, which means that the transferred net cannot perform well 
in lower SNR. Lastly, the gap between CNN-FCNN and TCNN-FCNN becomes wider 
and wider with the decrease in SNR from − 2 to − 10 dB, meaning that the strength 
of triplet loss is highlighted at lower SNR. To sum up, compared with other methods, 
the proposed TCNN-FCNN has better performance, especially in lower SNR.

Besides, some extra experiments are provided to make an in-depth analysis of the 
overall RSR shown in Fig.  8. Since Zhang and Lunten have poor performance, they 
are omitted in the following experiments. Table 2 adopts macro F1-score to evaluate 
the performance of TCNN-FCNN, CNN-FCNN and Guo. On the basis of Fig. 8, we 
focus on cases that SNR drops below 0 dB, because these three methods have almost 
same effect when SNR is higher than 0 dB. According to Table  2, the result of Guo 
becomes worse and worse from − 4 to − 12 dB. Therefore, considering the RSR and 
macro F1-score, method Guo is more suitable for the situation that SNR is higher than 
− 4 dB. While, the macro F1-score of TCNN-FCNN is over 0.9 when SNR is higher 
than − 10 dB. The gap grows wider between TCNN-FCNN and CNN-FCNN, espe-
cially at − 8 dB and − 10 dB. Concerning with this phenomenon, confusion matrices 
are displayed in Fig.  9 to investigate the classification details of TCNN-FCNN and 
CNN-FCNN.

Fig. 8  Recognition accuracy of LPI radar signals under different SNR

Table 2  Macro F1-score

Models − 12 dB − 10 dB − 8 dB − 6 dB − 4 dB − 2 dB 0 dB

TCNN-FCNN 0.6461 0.9396 0.9935 0.9975 0.9995 0.9929 0.9995

CNN-FCNN 0.5751 0.7801 0.9243 0.9542 0.9638 0.9990 0.9995

Guo 0.5835 0.7243 0.7901 0.8451 0.9455 0.9761 0.9846
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Figure 9 shows the confusion matrices of TCNN-FCNN and CNN-FCNN at − 8 dB 
and − 10 dB. Since the discussed SNR is out of Guo’s best range of application, we don’t 
analyze it in the following experiments. In the light of Fig. 9, CNN-FCNN doesn’t per-
form well on the recognition of BPSK at − 8 dB and − 10 dB. Moreover, it is completely 
invalid to T1 at − 10 dB. Most samples of T1 are treated as T3 and other classes, while 
for TCNN-FCNN, although the RSR is reduced in − 8 dB and − 10 dB, most signals can 
still be identified correctly. It means that TCNN-FCNN is effective for all classes, even 
when SNR is − 10 dB. It will be demonstrated more clearly by visualizing feature vectors 
with t-SNE technique in Fig. 10.

Figure 10 not only explains the classification results in a more intuitive way, but also 
emphasizes the effectiveness of the triplet loss by the comparison between TCNN-
FCNN and CNN-FCNN at −  -10  dB. It depicts that most samples of T1 and T3 are 
mixed and difficult to distinguish in Fig. 10a, just like the result in Fig. 9c. Some samples 
of NS and BPSK are considered as a new cluster, which increases the probability of mis-
judgment. In contrast, boundaries between every two classes are clear in Fig. 10b, which 
means that most testing samples will be recognized correctly. It is acceptable that a few 
samples are in the wrong place considering the value of SNR. A little aliasing between 
LFM and Frank, T1 and T3 also verifies the recognition effect of themselves in Fig. 9d. 

Fig. 9  Confusion matrix of cross-entropy loss and triplet loss at − 8 dB and − 10 dB
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On the other hand, features extracted by TCNN (Fig. 10b) have more within-class sim-
ilarity and lesser between-class similarity, verifying that compared with cross-entropy 
loss, triplet loss performs better on optimizing parameters of the encoder module.

To sum up, TCNN-FCNN proposed in this paper has a strong discriminative ability 
even in a harsh environment with low SNR. Not only can it be proved by RSR and macro 
F1-score from the data perspective, but it is also verified in an intuitive way such as con-
fusion matrix and t-SNE visualization.

6 � Conclusion
An automatic recognition method named TCNN-FCNN is proposed to recognize 10 
different modulations of LPI radar signals in this literature. Different from other exist-
ing related methods, more attentions are paid to the objective function of the optimiza-
tion in the proposed method, which provides a new way for the recognition of LPI radar 
signal modulations. Simulation results show that the RSR is 0.94 at − 10 dB and almost 
always 1 when the SNR is greater than − 4 dB. It means the presented TCNN-FCNN 
method has remarkable performance in the recognition process, especially in the situa-
tion with low SNR. And it also proves that triplet loss has a better discriminative ability 
than cross-entropy loss, which can improve the classification performance in the recog-
nition process of different LPI radar modulations, specifically in terrible circumstances. 
The success of LPI radar signal modulation recognition will make a better preparation 
for the following tracking, locating and interference. Therefore, the proposed method 
has vital application value in the electronic reconnaissance system.
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