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Abstract

State estimation in middle- (MV) and low-voltage (LV) electrical grids poses a number of challenges for the estimation
method employed. A significant difference to high-voltage grids is the lack of measurements as the instrumentation
with measurement equipment in MV and LV grids is very sparse due to economical reasons. Typically,
pseudo-measurements are used as a replacement for actual measurements to this end. A recently proposed
disturbance observer based on the extended Kalman filter uses a simplified dynamic model for the errors in the
pseudo-measurements of bus power. The aim is then to estimate the errors in the pseudo-measurements and
thereby improving the overall estimation result. Despite initial promising results of this so-called nodal load observer
(NLO), the main disadvantage of this method is the need for a suitable dynamic model for the error of the
pseudo-measurements. Therefore, we here propose a versatile dynamic model for the disturbance observer based on
autoregressive processes (AR). We consider a recently proposed online learning algorithm for the prediction of the AR
model parameters together with the extended Kalman filter disturbance observer. We demonstrate that this approach
results in an efficient method for the dynamic state estimation for MV and LV grids than the original NLO method.

Keywords: Kalman filter, Dynamic state estimation, Nodal load observer, AR processes

1 Introduction
Static state estimation is a standard procedure in power
network analysis to obtain information at all system buses
at a given time point [1]. That is, a single set of measure-
ments is used to estimate the system state at one snapshot
in time, traditionally by using the weighted least squares
method [2]. However, with such an approach, the infor-
mation contained in the evolution of the system state over
consecutive time instants is not taken into account. To this
end, [3] and others proposed following the changes of the
system by means of quasi-dynamic state estimation. Since
this method utilizes forecasting of future values, it is also
known as forecasting-aided state estimation (FASE) [4–6].
A typical assumption in this setting is that the system has
slowly changing states and that measurement errors can
be modeled as Gaussian noise with zero mean and known
covariance.
Many state estimation methods developed for the trans-

mission level cannot be implemented at the distribution
level without essential changes mainly due to the sparsely
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instrumented middle- (MV) and low-voltage (LV) grids
[7, 8]. Consequently, to ensure observability of the system,
the so-called pseudo-measurements are required. These
pseudo-measurements are usually based on historical data
or knowledge about controller set points in the grid and
can therefore differ from the real values significantly
[9, 10]. Hence, large uncertainties are associated with their
values, which affects the overall state estimation quality.
To this end, the so-called nodal load observer (NLO) has
been proposed recently [11]. This method is a disturbance
observer based on an extended Kalman filter as a dynamic
state estimation technique. The NLO aims to correct pos-
sibly incorrect pseudo-measurements of bus power and
then determines the grid state based on reconstructed
and corrected values of nodal power and voltage. That is,
the NLO proposes not to use directly the possibly incor-
rect pseudo-measurements, but rather to make use of all
available measurement information. Recent work done
on improving pseudo-measurements based on delayed
AMI/smart meter data can be found in [12, 13].
As part of the European research project GridSens1,

the NLO was investigated regarding its applicability
to LV and MV grids. Initial investigations using a
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simplified dynamic model and simulated middle-voltage
grids showed promising results regarding reconstructed
voltage values [14]. However, these studies also concluded
that observability and estimation performance could
be improved by the implementation of more advanced
dynamicmodels. Thus, we here consider a dynamicmodel
based on autoregressive processes (AR). As for the original
simple model, the challenge in its application is the deter-
mination of suitable model parameters. Therefore, we
consider a recently proposed online estimation method
for AR processes based on a recursive maximum likeli-
hood method [15]. We extend the NLO method with an
online learning method for the dynamic model param-
eters, which enables to incorporate the proposed online
learning technique to the extended Kalman filter, which
results in fast andmore reliable estimation results for state
estimation in middle- and low-voltage electrical grids.
Using a realistic network model and simulated measure-
ment data, we demonstrate the performance of this new
method for state estimation inMV and LV electrical grids.
The example clearly illustrates that the NLO with adap-
tive AR model outperforms the NLO estimation with a
fixed AR model irrespective of the choice of the initial
AR parameter estimates. Hence, the NLO with adaptive
AR model is a powerful quasi-dynamic state estimation
method for MV and LV electrical grids.
The next two sections are dedicated to themathematical

background of state estimation with some fundamental
definitions given in the next section. In Section 3, the AR
approach for the NLO is discussed and the online learning
technique for its parameters is presented in Sections 3.1
and 3.2. An example of the AR parameter learning inte-
grated within the extended Kalman filter NLO is pre-
sented in Section 4. A comparison of the augmented NLO
approach to other methods is a topic of future work. For
an assessment of the performance of the original NLO, we
refer the interested reader to [11] and [14]. For readers
interested in an overview of existing power system state
estimation methods, we refer to [4].

2 Background
A generic system model for quasi-dynamic state estima-
tion is given by

x(k + 1) = F(k)x(k) + g(k) + w(k) (1)
z(k) = h(x(k)) + v(k) (2)

where x(k) is the state vector, F(k) is the transition matrix,
g(k) is the modeling trend behavior, z(k) is the mea-
surement vector, and h(�) is the load-flow function. The
errors w(k) and v(k) are assumed to be independent
Gaussian with known covariance matrices Q(k) and R(k),
respectively. The extended Kalman filter for this model is
then given by [16–18]

x̂(k, k − 1) = F(k)x̂(k − 1, k − 1) + g(k) (3)
P(k, k − 1) = F(k)P(k − 1, k − 1)FT (k)+

+ Q(k) (4)
K(k) = P(k, k − 1)HT (k)× (5)

× (H(k)P(k, k − 1)HT (k) + R(k))−1

P(k, k) = (I − K(k)H(k))P(k, k − 1) (6)
x̂(k, k) = x̂(k, k − 1)+

+ K(k)(z(k) − h(x̂(k, k − 1))) (7)

with Jacobian matrix H(k) = ∂h(x(k))
∂x(k) |x(k)=x̂(k,k−1). Here,

Eqs. 3 and 4 denote the Kalman filter prediction step,
Eq. 5 the Kalman gain matrix, and Eqs. 6 and 7 the cor-
rection step. One advantage of the Kalman filter approach
is that estimates of the system states x(k) are obtained
together with an estimate of the error covariance P(k, k),
which can be interpreted as the uncertainty associated
with the system state estimate [19]. The covariance matri-
ces Q and R mainly influence the behavior of the Kalman
filter as they model the confidence in the measured val-
ues z(k) and the dynamic model values x(k). Here, the
entries of the diagonal matrix Q are assumed to be rela-
tively high compared to that of thematrix R, which implies
that the measurements have a larger impact on the esti-
mation result than the predictions. This also reflects the
fact that missing measurement information is replaced by
pseudo-measurements.
It is assumed that nodal active and reactive power is

either measured or forecasted. Therefore, the vector of
bus powers S(k) consists of measured Smeas(k) values
and true but unknown Strue(k) values. For a more effi-
cient numerical implementation, this can be expressed as
the sum:

S(k) = DmSmeas(k) + DnmStrue(k),

where Dn and Dnm are possibly non-square matrices with
at most one entry equal to 1 in every row, and zeros else.
Denoting with Spm(k) pseudo-measurements at buses
without a power measurement, the here considered nodal
load observer utilizes then as states x(k) in the dynamic
model equation (1) the difference �S(k) = Strue(k) −
Spm(k) [14].
The vector of bus power S(k) is then obtained as a

combination of measured bus powers Sm and (improved)
pseudo-measurements Spm

S(k) = Dnm
(
Spm(k) + �S(k)

) + DmSm(k). (8)

The matrices Dm and Dnm contain only zeros and ones
and are used to construct the vector of all bus powers by
mapping themeasurements and pseudo-measurements to
the respective bus indices.
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The advantage of this approach is the possible improve-
ment of the pseudo-measurements, whereas the challenge
lies in the determination of a suitable dynamic model
for the application of the Kalman filter. For the original
state-space model in the NLO, the general system 1–2 for
quasi-dynamic state estimation is given by [11]:

�S(k + 1) = γ�S(k) + w(k) (9)
V (k) = h(�S(k), S(k)) + v(k), (10)

with γ ∈ (0, 1), and the function h(�) in the observation
Eq. 10 is obtained by solving

S = diag(V )YV (11)

with respect to V, where V := (
Re

(
V̄

)
, Im

(
V̄

))T with
V̄ denoting a complex nodal voltage and diag(V ) a diag-
onal matrix with entries containing the nodal voltages.
The parameter γ has a significant impact on the estima-
tion result as it models how fast systematic errors in the
pseudo-measurements are assumed to become solely ran-
dom noise. For an assessment of the performance of the
NLO with this dynamic model, see [11, 14].
State estimation for MV and LV networks requires

dealing with three-phase measurements and unbalanced
loads. Thus, it is worth noting that the NLO can also be
applied for three-phase networks under unbalanced load
conditions by replacing Eq. 11 with the corresponding
three-phase formulation.

3 Methods
In its original definition, the nodal load observer is con-
sidered with a simple dynamic model for the deviations of
the pseudo-measurements [14]:

�S(k + 1) = γ�S(k), (12)

with γ ∈ (0, 1). However, as already mentioned in [11],
more flexible models are required in order to improve the
estimation quality of the nodal load observer. Autoregres-
sive moving average models (ARMA) provide a versatile
representation of stochastic processes in a sequential way,
which is ideal for the use with a Kalman-like filter method.
Thus, we here propose their application with the NLO as
a means to model the errors in the pseudo-measurements.
The benefits of this approach are the possible incorpo-
rating of correlation between buses and the improved
flexibility for the state estimator.
An ARMA(p, q) model of order (p, q) consists of two

parts, an autoregressive (AR) part of order p and a
moving-average (MA) part of order q:

x(k) = μ +
p∑

i=1
ϕix(k − i) +

q∑

i=1
θiw(k − i) + w(k), (13)

wherew(k) is a white noise stochastic process with known
variance E[w2(k)]= σ 2(k),μ is the expected value of x(t),

and ϕi, θi are the parameters of the AR and MA models,
respectively. The original dynamical model Eq. 12 is thus
an ARMA (1,0) type model, which can also be written as
AR(1).
Integration of an AR model with the NLO is possible in

a straightforward way as part of the state-space model. For
instance, considering an AR(2) model in state space for
the disturbance �S(k) and substituting it into the system
model Eqs. 9 and 10 with an appropriate replacement, the
following system equations are obtained:

(
�S(k + 1)

�S(k)

)
=

(
ϕ1 ϕ2
1 0

) (
�S(k)

�S(k − 1)

)
+

+
(
const
0

)
+

(
w(k)
0

)
(14)

V (k) = h(�S(k), S(k)) + v(k).

It is well known that for linear state-space models, the
Kalman filter produces optimal estimates for AR-like state
evolution models [20]. In principle, the extended Kalman
filter can be applied in the same way for non-linear mea-
surements with AR-like state evolutions. However, care
has to be taken regarding the convergence of the resulting
Kalman filter estimation, e.g., bymeans of carefully choos-
ing suitable AR coefficients. That is, for certain sets of AR
coefficients, the state estimation result can diverge indefi-
nitely. In practice, this may require a repeated application
of the extended Kalman filter with different choices for
the AR coefficients. However, only significant deviations
from an optimal choice of coefficient could be determined
in such a way as the true value remains unknown. This
would make the practical application of the NLO with
AR dynamic model almost impossible. Therefore, we here
propose the incorporation of recently developed online
learning algorithms for AR processes with the extended
Kalman filter of the NLO.

3.1 Online parameter learning
Online or recursive estimation methods for parametric
stochastic processes appeared in the middle of the 20th
century to replace the so-called offline methods in which
first all data is collected and then the model parameters
are estimated. Offline estimation approaches are less effi-
cient due to expensive computation time costs, power, and
memory. This is why algorithms which allow estimating
the model parameters when new data is available during
the operation are applied in different areas of engineer-
ing (see for example [21, 22]). These methods are typically
called online.
An investigation of various recursive estimation meth-

ods available from the literature showed the recursive
maximum likelihood (RML) method originally presented
by [23] to be most suitable for an application with the
NLO. Several modifications of this method can be found
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in the literature [15, 24]. Our analysis is based on the
algorithms introduced in [15], where also a proof of con-
vergence is given.
Consider real-valued observations {xt ; t = 1, · · · ,N}

of an ARMA(p, q) process as defined in Eq. 13 and let
β = (ϕ1, · · · ,ϕp, θ1, · · · , θq)T be the vector of sought coef-
ficients with the corresponding estimate at time t being:
βt = (ϕ̂1,t , · · · , ϕ̂p,t , θ̂1,t , · · · , θ̂q,t)T . For a given βt , the
forecast x̂t(βt) can be computed from the ARMA model
definition by using the residuals εt−1 = xt−1 − x̂t−1(βt−1)
as the driving noise wt .
Let denote the opposite of the derivative of the resid-

uals εt(βt) with respect to βt by the vector ψt(βt) =
−

[
∂εt(βt)
∂βtT

]T
. The elements of this vector can be calculated

analytically from the definition of ε and βt [15].
Adopting the algorithms from [15], we derive the algo-

rithm for the estimation of β as follows:

1. With φT
t = (xt , · · · , xt−p+1,−wt , · · · ,wt−q+1)

update the gradient by

ψt =
q∑

k=1
θ̂k,t−1ψt−k + φt−1; (15)

2. Calculate the forecasting error as

εt = xt − βt−1
Tφt−1; (16)

3. Update the estimate of βt using the quasi-Newton
step

βt = βt−1 + γtσ̂
−2
t Iψtεt , (17)

with I denoting the identity matrix.
4. Update the estimate of the ARMA noise process

variance σ 2 by

σ̂ 2
t+1 = σ̂ 2

t + γt(ε
2
t − σ̂ 2

t ). (18)

Figure 1 illustrates the application of the above estima-
tion algorithm for an AR(2) process with true parameters
being ϕ1 = 1.15, ϕ2 = −0.15, and σ 2 = 0.01. For
this result, we used the following initial values: ϕ̂1,0 =
1.5, ϕ̂2,0 = −0.5, and σ̂ 2

0 = 10. We generated 10,000
realizations of length t = 100 and computed estimates
of ϕ with γt = 1

t for each realization. The obtained
results clearly illustrate the convergence of the method to
the true value, which empirically confirms the proof of
convergence from [15].

3.2 NLO with online learning technique
In this section, we present the final algorithm, which
is obtained by combining the basic procedure of the
extended Kalman filter, the nodal load observer for power
distribution grids, and the considered online learning
technique for AR process parameters.

Initial values x̂(0), P(0), V̂ (0), β(0), and σ(0) are cho-
sen, and the matrix Cm set up with one entry equal to 1 in
every row such thatVm = CmV , withV as the vector of all
nodal voltages in rectangular coordinates and Vm as the
corresponding measured values. The NLO algorithm [14]
with adaptive dynamic model [15] can then be written as
follows.
The Kalman prediction step is given by

x̂(k, k − 1) =
(

ϕ1 ϕ2
1 0

) (
x̂(k − 1)
x̂(k − 2)

)

P(k, k − 1) =
(

ϕ1 ϕ2
1 0

)
P(k − 1)

(
ϕ1 1
ϕ2 0

)
+

+ Q(k, σ).

With initial values η(0) = x̂(k, k − 1), ν(0) = V̂ (k − 1),
and j = 0 for the measurement update iteration, an esti-
mate of nodal voltages is then obtained from the power
flow (PF) calculation:

ν(j+1) = PF(DmSm(k)+Dnm(Spm(k)+η(j)),V (k), ν(j)).

With H(k, j)

H(k, j) = Cm

(
∂

∂v
diag(v)Yv|v=ν(j+1)

)−1
Dnm

the Kalman gain is calculated as

K(k, j) = P(k, k − 1)HT (k, j)×
× (H(k, j)P(k, k − 1)HT (k, j) + R(k))−1,

which yields the updated estimate of the errors in the
pseudo-measurements as

x̂(k) = x̂(k, k − 1) + K(k, j)×
×[Vm(k)−Cmν(j + 1)−H(k, j)(x̂(k, k − 1)−η(j))] ,

with updated covariance matrix given by

P(k) = (I − K(k, j − 1)H(k, j − 1))P(k, k − 1).

The updated estimates of bus power and nodal voltage
are then calculated as

Ŝ(k) = DmSm(k) + Dnm(x̂(k) + Spm(k))
V̂ (k) = ν(k).

Utilizing the updated state estimates, the AR model
parameters are then updated as follows:

ψ(k) = (x̂(k − 1), x̂(k − 2))T

ε(k) = x̂(k) − β̂(k − 1)T
[
x̂(k − 1), x̂(k − 2)

]T ,
β̂(k) = β̂(k − 1) + γ (k)σ̂−2(k)I2ψ(k)ε(k),

σ̂ 2(k + 1) = σ̂ 2(k) + γ (k)(ε2(k) − σ̂ 2(k)),

with damping sequence γ (k) = 1
k .

The selection of initial values for the online learning
of AR parameters is an important aspect in the estima-
tion algorithm. For example, the initial value for the noise
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Fig. 1 Estimation results of ARMA(2,0) process with parameters ϕ =[ 1.15,−0.15] and σ 2 = 0.01 for initial value parameters ϕ =[ 1.5,−0.5] and
σ 2 = 10 with 10,000 realizations and length of the data t = 100. With yellow color, the area of standard deviation is shown

variance σ 2
t is preferable to be taken bigger than needed

with expectation to convert to the innovation variance
1
t
∑t

k=1 ε2t (β). The second significant issue is the choice
of γ . Theoretically, it is recommended to choose γt = 1

t ,
although in practice, it should be selected such in a way to
improve the convergence. The authors in [15] proposed to
define γt through the “forgetting” factor λt as follows:

γt = γt−1
λt + γt−1

(19)

with

λt = λ0λt−1 + (1 − λ0), (20)

while different values of λ0 can be chosen. In the example
shown in Section 4, γ0 = 1.0 and λ0 = 1.0 with λ0 = 0.99
were identified as good choice based on validation tests
made for different ϕ values.
In order to obtain initial estimates of suitable AR param-

eters, we fitted an AR(2) process to the difference�S(k) =
Strue(k) − Spm(k) at a bus with measured bus power
available.

4 Results and discussion
To illustrate the proposed adaptive dynamic state estima-
tion method, we consider a grid model developed by a
consortium of UK universities specifically for testing pur-
poses (UKGDS). The grid presented in Fig. 2 is a 11-kV
urban network fed from a 33-kV supply point and has 12
buses, 11 branches with a generator at bus number 5, and
the slack bus has number 0. This grid is a part of the orig-
inal 77 buses grid, which due to the radial topology can
be examined independently [14]. This grid was chosen,
because it has been studied for the original NLO before to
demonstrate its performance [14].

Measurements in this network have been simulated
based on realistic load profiles. Therefore, a time-
dependent generator output was assumed, and volt-
ages calculated at every time step with the open-source
software PyPower for optimal power flow estimation. The

Fig. 2 UK generic distribution system (UKGDS) grid used for testing
the NLO with the proposed ARMA model
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pseudo-measurements were then constructed by combin-
ing simulated data and load data.
In the scenario studied here, measurement of active and

reactive power is simulated for buses 1, 5, and 8; mea-
sured voltage is simulated at buses 2, 3, 9, and 11, shown in
Fig. 2 with blue squares and red circles, respectively. The
data set represents the course of one day with measure-
ments taken every 15min, resulting in 96 data points. This
small number of consecutive measurements is typical for
such networks, but problematic for many online learning
techniques due to the required speed of convergence.
The results of the application of the proposed extended

Kalman filter with online learning for the estimation of
the parameters of an AR(2) dynamic model are shown
in Fig. 3 for bus 6. As initial parameters for the AR(2)
dynamic model, we chose ϕ =[ 1.45,−0.5] and σ =
0.001. Compared to the pseudo-measurements, the esti-
mated power obtained by the NLO with online learning
clearly performs better than the original NLO with fixed
parameters. Moreover, as shown in Fig. 3, the estimation
results improve over time as the online learning technique
improves the estimate of the AR(2) process parameters.
On the right-hand side of Fig. 3, the estimation error for all
three estimation approaches is presented. This shows that
the online learning technique needs some time to train the
model parameters, but then outperforms the other two
approaches. The original NLO estimates the true value of
power very accurately at the beginning of the time series,
but shows less efficiency for the main part. In contrast,
the NLO with AR model with fixed parameters is almost
identical to the pseudo-measurements.
The results demonstrate two findings: (i) A simple exten-
sion of the NLO dynamic model to an AR model is not
sufficient, but requires a sensitive choice of model param-
eters. (ii) The online learning method for the AR model

parameters offers a very efficient solution to this task
and clearly outperforms the original NLO with its simple
dynamic model. In Fig. 4, the change of the model param-
eters in the application of the adaptive NLO method is
shown. The change from the original values is maxt |ϕ(t)−
ϕ̂(t)| = (0.00142, 0.00138) and thus fairly small. Nev-
ertheless, these changes play a significant role in the
improvement of the estimation results. Hence, a manual
selection of suitable parameters is hardly possible. The sit-
uation is similar at the other buses in the network and
for the estimation of reactive power. This is presented on
Fig. 5 for the node 4. With regard to the computational
costs, for both approaches, the approximate time of esti-
mation of 12 buses electrical grids was less than 5 s on a
standard desktop PC and thus sufficient for an application
in practice.
In order to emphasize the advantage of the online learn-

ing technique over the utilization of fixed parameters, we
carried out a simulation study for a wide range of AR
coefficients β = (ϕ1,ϕ2). We considered ϕ1 ∈[ 1.0, 1.9]
and ϕ2 ∈[−0.9,−0.1] with steps equal to 0.1 and com-
pared the root-mean-square (RMS) deviation between
estimated and true values of active power for the afore-
mentioned bus number 6 along the time. The results
are shown in Fig. 6. On the left-hand side of Fig. 6 are
shown the logarithmic RMS deviations for the online
learning technique, whereas in the right-hand side figure,
the results for the fixed parameters model are shown. It
is clearly visible that there are two distinct regions. In
the upper left area, the results are very similar for both
approaches which can be explained by the fact that for
all ϕ1 and ϕ2 from this range, the results of the online
learning technique stayed almost unchanged over time.
The opposite picture is met in the bottom right area.
There, it is clearly visible that the RMS errors for the

Fig. 3 Left: power estimation using the NLO with the proposed online learning technique, using the NLO with fixed ARMA(2,0) parameters and the
(simulated) true values and pseudo-measurements considered. Right: error between true values of power and estimated with three models: simple
model, ARMA(2,0) model with fixed parameters, and ARMA(2,0) with online learning technique
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Fig. 4 Evolution of the online estimation of the ARMA coefficients ϕ and σ . Standard deviation for σ=0.00048

fixed parameters approach are significantly larger than
those obtained by the online learning technique, indicat-
ing convergence of the estimated AR parameters. Again,
a similar situation holds for the other buses where only
pseudo-measurements of bus power where available for
the estimation. The measurement uncertainties concern-
ing the Kalman filter for state estimation could be found
in [19].
For a particular choice of initial AR parameter estimates,

Fig. 7 presents the time evolution of the estimation errors
for active power at bus 6 with ϕ = (1.7,−0.3). Here, the
left-hand side figure shows the estimation error over time
for the NLO with fixed AR parameters. The red dashed
line in right-hand side figure shows the results for the
NLO with the online learning technique with yellow dots
showing the change of ϕ. It is clearly visible in Fig. 7 when

the parameters ϕ start varying and how this interacts with
the estimation. That is, the NLO with online learning
shows an adaption to the change in the estimation qual-
ity, whereas the error for the NLO with fixed parameters
increases exponentially. This corresponds to the situation
shown in Fig. 3, where the estimation quality for certain
choices of the AR parameters results in a almost arbitrar-
ily large RMS estimation errors for the NLO with fixed
AR parameters whereas the adaptive NLO shows a much
better performance in the same situation.

5 Conclusions and outlook
It has been shown previously that the original nodal load
observer (NLO) approach to state estimation in LV and
MV grids has the principle advantage of improving over
the pseudo-measurements by estimating the remaining

Fig. 5 Reactive power estimation using the NLO with the proposed online learning technique at node 4
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Fig. 6 Root-mean-square deviation between estimated and true values of active power at bus 6 for various initial ARMA(2,0) parameters (ϕ1,ϕ2).
Left: Results for the NLO with online learning technique. Right: Results for the NLO with fixed ARMA(2,0) parameters

error using a Kalman filter. However, it has also been dis-
cussed in previous publications that there are a number of
issues which have to be overcome in order to yield reliable
state estimates for practical networks. The main draw-
back of the original NLO is the simple dynamic model.
To this end, we here proposed a versatile dynamic model
for an improved estimation of the pseudo-measurements
errors based on an AR processmodel. The challenge in the
application of AR processes with non-linear state estima-
tion is in the choice of AR model parameters. Therefore,
we considered a recently proposed online learning tech-
nique for the estimation of AR parameters and integrated
this into the NLO. The online learning method calculates
an update to the AR model parameters in each time step
using, and can thus be applied in parallel to the Kalman
filter. Estimation of AR parameters were received run-
ning over 96 values for all 11 buses (except the slack bus).
That is, the method recalculates the AR model parame-
ters online in each time step instead of for the whole time
series in a batch approach.

With this approach, the NLO for the first time is able
to produce accurate and fast results for state estimation of
electrical power grids. The advantage of using a recursive
technique for model parameter estimation was demon-
strated by a comparison with the NLO with fixed AR
parameters for a realistic MV distribution network. We
demonstrated the adaptive nature of the online learning
technique and its performance compared to using a fixed
AR model. The results clearly showed that already small
changes to the model parameters can have a significant
impact and that the online learning technique is able to
adjust the AR model parameters with very good rate of
convergence.
The proposed extension of the NLO results in a robust,

reliable state estimator for MV and LV electrical grids.
Our initial test shown here demonstrated the potential
of this novel approach. It can be expected that this also
holds for AR models of higher dimension and larger net-
works. This will be a topic of future research. Initial tests
with actual measurement data of electrical MV networks

Fig. 7 Error between estimated and true values of active power at bus 6 for ϕ =[ 1.7,−0.3]. Left figure shows the error for the fixed parameters
model, whereas in the right one the red dashed line corresponds to the results for online learning technique and yellow dots show the error of ϕ
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furthermore showed promising results and will be a topic
of a future work. Moreover, the incorporation of weather
forecasts for improved pseudo-measurements, uncer-
tainty of line impedances, and other topology parameters
as well as other kinds of measurement data with the NLO
will be addressed in future research.

Endnote
1www.gridsens.eu
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