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Abstract

The classical Kalman smoother recursively estimates states over a finite time window using all observations in the
window. In this paper, we assume that the parameters characterizing the second-order statistics of process and
observation noise are unknown and propose an optimal Bayesian Kalman smoother (OBKS) to obtain smoothed
estimates that are optimal relative to the posterior distribution of the unknown noise parameters. The method uses a
Bayesian innovation process and a posterior-based Bayesian orthogonality principle. The optimal Bayesian Kalman
smoother possesses the same forward-backward structure as that of the ordinary Kalman smoother with the ordinary
noise statistics replaced by their effective counterparts. In the first step, the posterior effective noise statistics are
computed. Then, using the obtained effective noise statistics, the optimal Bayesian Kalman filter is run in the forward
direction over the window of observations. The Bayesian smoothed estimates are obtained in the backward step. We
validate the performance of the proposed robust smoother in the target tracking and gene regulatory network
inference problems.
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1 Introduction
Classical Kalman filtering is defined via a set of equations
that provide a recursive evaluation of the optimal lin-
ear filter output to incorporate new observations [1]. The
filtering procedure assumes a state-space model consist-
ing of a transition equation and an observation equation.
There are three filtering paradigms [2]: the Kalman fil-
ter estimates the signal at the most recent observed time
point, the Kalman predictor estimates the signal at a
future time point, and the Kalman smoother estimates
the signal at an intermediate observation time point. The
equations for the filter and predictor are closely related,
so that solving one provides an immediate solution for the
other, whereas the smoother requires further work.
The issue that concerns us here is how to proceed when

the model is not fully known. Classically, a precondi-
tion for optimal filtering is to have complete knowledge
of the random process model; however, this assumption
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is not always realistic in many practical settings such as
target tracking [3–7]. Over the years, various adaptive
procedures have been developed that essentially provide
improving model estimates with increasing numbers of
observations [8, 9]. More recently, the problem has been
addressed under the assumption that themodel belongs to
an uncertainty class of models governed by a prior proba-
bility distribution, thereby placing thematter in a Bayesian
framework with the aim being to find a recursive filter that
is optimal over the uncertainty class.
There are two existing viewpoints for designing robust

filters: minimax robustness, which involves designing a
filter with the best worst-case performance [10–12], and
Bayesian robustness, which involves designing a robust fil-
ter with the optimal performance on average relative to a
prior (or posterior) distribution governing the uncertainty
class [13–16]. When designing a Bayesian robust filter, if
optimization is not constrained, meaning that it is over
the entire class of filters of a particular type, then the fil-
ter is called an intrinsically Bayesian robust filter when
optimality is relative to the prior distribution, and called
an optimal Bayesian filter when optimality is relative to
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the posterior distribution. This kind of uncertainty mod-
eling has been applied to linear and morphological filter-
ing, both with and without incorporating the information
embedded in the observations into the prior distribution
[15, 17]. In the case of Kalman filtering, the problem has
been addressed for the filter and predictor without prior
updating [16], which is called an intrinsically Bayesian
robust Kalman filter, and with updating based on new data
[18], which is called an optimal Bayesian Kalman filter. In
this paper, we find the optimal Kalman smoother relative
to the probability mass governing the uncertainty.
In a Bayesian robustness setting, the prior (posterior)

distribution is on the model of the underlying random
process, meaning that it refers directly to our scien-
tific uncertainty. The general aim is to find an operator
that is optimal with respect to both the stochasticity in
the nominal problem, for which the underlying model is
fully known, and the model uncertainty. The aim can be
achieved by replacing model characteristics and statis-
tics in the solution to the nominal problem with their
effective counterparts, which incorporate model uncer-
tainty in such a way that the equation structure of the
nominal solution is essentially preserved in the Bayesian
robust solution. This approach has been used for classi-
fication [19], linear and morphological filtering [15, 17],
signal compression [20], and Kalman filtering [16]. For
example, in optimal wide-sense stationary linear filtering,
the power spectra are replaced by effective power spec-
tra [15] or in Gaussian classification, the class-conditional
densities are replaced by effective class-conditional
densities [19].
An intrinsically Bayesian robust Kalman filter (IBR-KF)

has been proposed in [16] that is optimal relative to
the prior distribution of noise parameters. The theory
of the IBR-KF is rooted in the Bayesian orthogonality
principle and the Bayesian innovation process, which
are the extended versions of their ordinary counterparts
when applied to the prior distribution. Innovation pro-
cesses have long been used for Kalman filtering, dating
back to 1968 when Kailath proposed the first instance of
an innovation-based approach for Kalman filtering [21].
Building on the IBR-KF theory developed in [16], an
optimal Bayesian Kalman filter (OBKF) achieving opti-
mality on average relative to the posterior distribution of
the noise parameters when observations are incorporated
into the prior distribution was proposed [18]. The OBKF
shares the theoretical foundation of the IBR-KF, the differ-
ence being the distribution relative to which the Bayesian
innovation process and Bayesian orthogonality principle
are stated. It is the prior distribution in the latter [16] and
the posterior distribution in the former [18].
Kalman smoothing is an offline signal processing tool

where both past and future observations are used for
making estimations [22–29]. Kalman smoothers can be

classified as fixed-point, fixed-lag, and fixed-interval
smoothers [30]; however, the term Kalman smoother gen-
erally refers to the fixed-interval case in which the goal
is to estimate the sequence of states over a finite time
window using all observations in the same window.
In this paper, we assume that the parameters character-

izing the second-order statistics of process and observa-
tion noise are unknown and propose an optimal Bayesian
Kalman smoother (OBKS) framework to obtain smoothed
estimates that are optimal relative to the posterior dis-
tribution of the unknown noise parameters. Referring to
our method as an “optimal Bayesian” smoother is consis-
tent with the terminology used in other works devoted to
the design of optimal Bayesian filters when a prior dis-
tribution is assumed for the unknown parameters in the
random process model [17, 18].
In a sense, this paper fills in the last block of a six-

part Kalman filtering paradigm: (1) filter/predictor under
known model, (2) smoother under known model, (3)
adaptive filter/predictor under unknown model, (4) adap-
tive smoother under unknown model, (5) optimal fil-
ter/predictor relative to an uncertainty class of models,
and (6) optimal smoother relative to an uncertainty class
of models. This is not to say that all problems have been
solved. There can be many adaptive approaches. There
are also many ways in which there can be uncertainty
in the state-space model, and optimality relative to that
uncertainty can be defined via different cost functions. In
the four uncertainty settings referred to here, the covari-
ance matrices for the process and observation noise are
assumed to be unknown (in a manner to be precisely
defined in the sequel).
Similar to the IBR-KF and OBKF, the proposed

smoother is rooted in an innovation process. Several
ordinary Kalman smoothers have employed innovation
processes: for continuous-time systems [31], the fixed-
interval Kalman smoother for linear discrete-time systems
when only the covariance information is available [32],
and when observations might be randomly missing [33].
In this paper, we use the Bayesian innovation process
and the Bayesian orthogonality principle proposed in [16]
to derive the OBKS forward-backward equations. The
main advantage of the proposed smoothing framework is
that it possesses the same forward-backward structure as
that of the ordinary Kalman smoother with the ordinary
noise statistics replaced by their effective counterparts.
The effective statistics incorporate the uncertainty of the
parameters characterizing the observation and process
noise second-order statistics in such a way that designing
an OBKS relative to an uncertainty class can be reduced
to designing an ordinary Kalman smoother relative to
the effective statistics. Specifically, we introduce the effec-
tive Kalman smoothing gain for the backward step of
the OBKS. The proposed smoothing framework requires



Dehghannasiri et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:55 Page 3 of 17

two forward steps. In the first step, the posterior effective
noise statistics are computed. Then, the optimal Bayesian
Kalman filter is designed relative to the obtained posterior
effective noise statistics and is run in the forward direction
over the window of observations. Finally, in the backward
step, the Bayesian smoothed estimates are obtained.
This paper is organized as follows. In Section 2, we

provide the theoretical foundation and derive the recur-
sive equations for the proposed optimal Bayesian Kalman
smoother. Section 3 is devoted to the experimental evalu-
ation of the proposed OBKS method using two examples:
target tracking and gene regulatory network inference.
Finally, concluding remarks are given in Section 4.
Here, we summarize the notations employed through-

out the paper. We use uppercase and lowercase boldface
letters to denote matrices and vectors, respectively. MT ,
|M|, and Tr{M} represent the transpose, determinant, and
trace (sum of diagonal elements) operators for matrix
M, respectively. Also, diag[·] represents the diagonal ele-
ments of a diagonal matrix. The value of a time-dependent
matrix at time k is denoted byMk . Let (P,�, E) be a prob-
ability space, then E[·] denotes the expectation relative to
the probability measure P. In a real-valued random vector
x =[ x(1), ..., x(k)], each component is a real random vari-
able x(i) : � → R, 1 ≤ i ≤ k. We use E[x] and cov[x]=
E
[
xxT
]
to denote the mean vector and the covariance

matrix, respectively. Finally, N (x;μ,�) denotes a multi-
variate Gaussian function relative to random vector xwith
the mean vector μ and the covariance matrix �.

2 Optimal Bayesian Kalman smoother
2.1 Problem formulation and theoretical background
In this paper, we consider the following parameterized
state-space model:

xθ1
k+1 = �kxθ1

k + �kuθ1
k (1)

yθ
k = Hkxθ1

k + vθ2
k , (2)

where xθ1
k and yθ

k are vectors of size n×1 andm×1, called
the state vector and observation vector, respectively. �k ,
Hk , and �k are matrices of size n × n, m × n, and n × p
called the state transition matrix, observation transition
matrix, and the process noise transition matrix, respec-
tively. We let zθ1

k = Hkxθ1
k . uθ1

k and vθ2
k are p× 1 andm× 1

vectors representing the process noise and observation
noise, respectively, being zero-mean discrete white-noise
processes. The unknown noise covariance matrices of the
process and observation noise are given by

E
[
uθ1
k

(
uθ1
l

)T] = Qθ1δkl, (3)

E
[
vθ2
k

(
vθ2
l

)T] = Rθ2δkl, (4)

where δkl is Dirac delta function, i.e., δkl = 1 for k = l
and δkl = 0 for k �= l, and θ1 and θ2 are two unknown
parameters such that θ =[ θ1, θ2]∈ �, � being the col-
lection of all possible realizations for θ , governed by a
prior distribution π(θ). We assume that θ1 and θ2 are
independent. Note that while the observation vector yθ

k
depends on both θ1 and θ2, the state vector xθ1

k depends
only on θ1.
Considering a state-spacemodel according to (1) and (2)

and an observation window Yθ
L = {yθ

0, y
θ
1, ..., y

θ
L
}
of size L,

we desire an optimal Bayesian Kalman smoother (OBKS)
that is a fixed-interval smoother involving finding the esti-
mates of states xθ1

0 , xθ1
1 , ..., xθ1

L in the same window. In this
context, the Bayesian smoothed estimate x̂θ

k|L of x
θ1
k , which

is the output of the OBKS at time k, has the following form

x̂θ
k|L =

L∑

l=0
G�
k,ly

θ
l , (5)

such that the average MSE relative to the posterior distri-
bution π

(
θ |Yθ

L
)
is minimized:

G�
k,l = arg min

Gk,l∈G
Eθ∗

⎡

⎣E

⎡

⎣

(

xθ1
k −

L∑

l=0
Gk,lyθ

l

)T

(6)

×
(

xθ1
k −

L∑

l=0
Gk,lyθ

l

)]]

,

where G is the vector space of all n × m matrix-
valued functions Gk,l : N × N −→ R

n×m, and Eθ∗ [·]
denotes the expectation relative to π

(
θ |Yθ

L
)
, i.e., Eθ∗ [·]=∫

θ (·)π
(
θ |Yθ

L
)
dθ . Note that we use Eθ [·] to denote the

expectation relative to the prior distribution π(θ). Fur-
thermore, E[θ ] and E

[
θ |Yθ

L
]
represent the expectation of

parameter θ relative to π(θ) and π
(
θ |Yθ

L
)
, respectively.

It is worth mentioning that the optimal Bayesian Kalman
predictor and the optimal Bayesian Kalman filter pro-
posed in [18] correspond to L = k − 1 and L = k in (5),
respectively. Also, if instead of Eθ∗ [·], Eθ [·] is used in (6),
the estimators corresponding to L = k − 1 and L = k
in (5) are called the intrinsically Bayesian robust Kalman
predictor and filter, respectively [16].
Before developing the OBKS equations, we state a

theorem and a lemma required for deriving equations
whose proofs can be found in [16].
The next theorem is a restatement of the classical

orthogonality principle relative to the inner product
defined by Eθ∗ [E[·] ] applied to xθ1

k , yθ
l , and x̂θ

k|L, keep-
ing in mind that xθ1

k depends only on θ1, whereas x̂θ
k

depends on θ =[ θ1, θ2]. As originally stated in [16],
the “Bayesian orthogonality principle” involved the inner
product defined by Eθ [E[·] ].
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Theorem 1 (Bayesian Orthogonality Principle) The
Bayesian smoothed estimate obtained in (5) satisfies (6)
(having minimum average MSE relative to the posterior
distribution) if and only if

Eθ∗
[
E
[(

xθ1
k − x̂θ

k|L
) (

yθ
l

)T]] = 0n×m, (7)

for all l ≤ L, where 0n×m is the zero matrix of size n × m.

If x̂θ
k|k−1 is the output of the optimal Bayesian Kalman

predictor at time k, then the Bayesian innovation process
is defined as [16]

z̃θ
k = yθ

k − Hk x̂θ
k|k−1. (8)

It can be shown that [16]

Eθ∗
[
E
[
z̃θ
k

(
z̃θ
l

)T]] = Eθ∗
[
HkPx,θ

k|k−1H
T
k + Rθ2

]
δkl,

(9)

where

Px,θ
k|k−1 = E

[(
xθ1
k − x̂θ

k|k−1

) (
xθ1
k − x̂θ

k|k−1

)T]
, (10)

is the Bayesian prediction error covariance matrix relative
to θ . Note that if zθ1

k = Hkxθ1
k and ẑθ

k = Hk x̂θ
k , then

Pz,θ
k|k−1 = E

[(
zθ1
k − ẑθ

k|k−1

) (
zθ1
k − ẑθ

k|k−1

)T]

= HkPx,θ
k|k−1H

T
k . (11)

The following lemma, which can be proved similar
to the proof given in [16], helps us find the Bayesian
smoothed estimates using the Bayesian innovation pro-
cess.

Lemma 1 (Bayesian Information Equivalence) The
Bayesian smoothed estimate x̂θ

k|L for xθ
k based upon obser-

vations yθ
l , 0 ≤ l ≤ L, can be found by computing

the Bayesian smoothed estimate based upon the Bayesian
innovation process z̃θ

l , 0 ≤ l ≤ L.

2.2 Update equation for Bayesian smoothed estimate
We now proceed to develop the recursive structure of the
OBKS based on the theoretical foundation laid out in the
previous subsection.
Using Lemma 1, we can have the following form for the

Bayesian smoothed estimate x̂θ
k|L defined in (5):

x̂θ
k|L =

L∑

l=0
G�
k,l̃z

θ
l , (12)

where x̂θ
k|L obtained in (12) should satisfy the Bayesian

orthogonality principle
(
relative to z̃θ

l
)
, for l ≤ L,

Eθ∗
[
E
[(

xθ1
k − x̂θ

k|L
) (

z̃θ
l

)T]] = 0n×m. (13)

After some mathematical manipulations and also using
(9), one can verify that

G�
k,l = Eθ∗

[
E
[
xθ1
k

(
z̃θ
l

)T]]
E−1

θ∗
[
Pz,θ
l|l−1 + Rθ2

]
. (14)

Plugging (14) in (12) yields

x̂θ
k|L =

L∑

l=0
Eθ∗
[
E
[
xθ1
k

(
z̃θ
l

)T]]
E−1

θ∗
[
Pz,θ
l|l−1 + Rθ2

]
z̃θ
l

= x̂θ
k|k +

L∑

l=k+1
Eθ∗
[
E
[
xθ1
k

(
z̃θ
l

)T]]
E−1

θ∗
[
Pz,θ
l|l−1 + Rθ2

]
z̃θ
l ,

(15)

where x̂θ
k|k is the output of the OBKF, developed in [18],

at time k. We can further simplify Eθ∗
[
E
[
xθ1
k
(
z̃θ
l
)T]], for

k + 1 ≤ l ≤ L, as

Eθ∗
[
E
[
xθ1
k

(
z̃θ
l

)T]] = Eθ∗
[
E
[(

x̃θ
k + x̂θ

k|k−1

) (
Hlxθ1

l + vθ2
l −Hl x̂l|l−1

)T]]

= Eθ∗
[
E
[(

x̃θ
k + x̂θ

k|k−1

) (
Hl̃xθ

l + vθ2
l

)T]]

= Eθ∗
[
Wθ

k,l

]
HT

l ,

(16)

where x̃θ
k = xθ1

k − x̂θ
k|k−1 is the Bayesian prediction error

relative to θ at time k and its auto-correlation E
[
x̃θ
k
(
x̃θ
l
)T]

is denoted by Wθ
k,l. Note that the third equality in (16)

results from the fact that Eθ∗
[
E
[
x̂θ
k|k−1

(
x̃θ
l
)T]] = 0n×n

due to the Bayesian orthogonality principle and vθ2
l is

independent from x̃θ
k and x̂θ

k|k−1 for k < l. Therefore,
substituting (16), (15) becomes

x̂θ
k|L = x̂θ

k|k +
L∑

l=k+1
Eθ∗
[
Wθ

k,l

]
HT

l E−1
θ∗
[
Pz,θ
l|l−1 + Rθ2

]
z̃θ
l .

(17)
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Keeping in mind that we want to find a backward recur-
sive formulation for x̂θ

k|L, writing (15) for k + 1 we have

x̂θ
k+1|L =

k∑

l=0
Eθ∗

[
E
[
xθ1
k+1

(
z̃θl
)T]]

E−1
θ∗
[
Pz,θl|l−1 + Rθ2

]
z̃θl

+
L∑

l=k+1
Eθ∗

[
E
[
xθ1
k+1

(
z̃θl
)T]]

E−1
θ∗
[
Pz,θl|l−1 + Rθ2

]
z̃θl

= x̂θ
k+1|k+

L∑

l=k+1
Eθ∗

[
E
[
xθ1
k+1

(
z̃θl
)T]]

E−1
θ∗
[
Pz,θl|l−1+Rθ2

]
z̃θl

= x̂θ
k+1|k +

L∑

l=k+1
Eθ∗

[
Wθ

k+1,l

]
HT
l E

−1
θ∗
[
Pz,θl|l−1 + Rθ2

]
z̃θl .

(18)

Considering (17) and (18), one can conclude that obtain-
ing an update equation for x̂θ

k|L requires a recursive rela-

tionship between Eθ∗
[
Wθ

k,l

]
and Eθ∗

[
Wθ

k+1,l

]
and since

Wθ
k,l involves the Bayesian prediction error x̃θ

k , the first
step is to find the update equation for x̃θ

k . As shown in [16],

x̃θ
k+1 = �

�

k x̃θ
k + �kuθ1

k − �kK�
k v

θ2
k , (19)

in which

�
�

k = �k
(
I − K�

k Hk
)
, (20)

and

K�
k = Eθ∗

[
Px,θ
k|k−1

]
HT

k E−1
θ∗
[
Pz,θ
k|k−1 + Rθ2

]
, (21)

is called the effective Kalman gain matrix [18]. Also, we
call Eθ∗

[
Qθ1
]
and Eθ∗

[
Rθ2
]
the posterior effective pro-

cess noise statistics and the posterior effective observation
noise statistics, respectively. As has been shown in [18],
Eθ∗
[
Qθ1
]
is required for updating Eθ∗

[
Pz,θ
k|k−1

]
. Using (19),

we find the relation between x̃θ
l and x̃θ

k as follows:

x̃θ
l = �

�

l−1x̃θ
l−1 + �l−1uθ1

l−1 − �l−1K�
l−1v

θ2
l−1

= �
�

l−1�
�

l−2x̃θ
l−2 + �

�

l−1

(
�l−2uθ1

l−2 − �l−2K�
l−2v

θ2
l−2

)

+
(
�l−1uθ1

l−1 − �l−1K�
l−1v

θ2
l−1

)

...

= �
�

l−1�
�

l−2 . . . �
�

k x̃θ
k+

l−1∑

l′=k
�

�

l−1�
�

l−2 . . . �
�

l′+1

(
�l′uθ1

l′ −�l′K�
l′ v

θ2
l′
)
.

(22)

Using (22), we have

Eθ∗
[
Wθ

k,l

]
= Eθ∗

[
E
[
x̃θ
k

(
x̃θ
l

)T]]

= Eθ∗
[
E
[
x̃θ
k

(
x̃θ
k

)T]] (
�

�

k

)T (
�

�

k+1

)T
. . .
(
�

�

l−1

)T

= Eθ∗
[
Px,θ
k|k−1

] (
I − K�

k Hk
)T

�T
k . . .

(
I − K�

l−1Hl−1
)T

�T
l−1,

(23)

where the second equality is obtained because, for l′ ≥
k, future process noise uθ1

l′ and observation noise vθ2
l′ are

independent from x̃θ
k . Now plugging

Eθ∗
[
Px,θ
k|k
]

= (I − K�
k Hk

)
Eθ∗
[
Px,θ
k|k−1

]
, (24)

derived in [16], in (23) yields the following recursive
equation for Eθ∗

[
Wθ

k,l

]
:

Eθ∗
[
Wθ

k,l

]
= Eθ∗

[
Px,θk|k

]
�T
k

(
I−K�

k+1Hk+1
)T

�T
k+1. . .

(
I − K�

l−1Hl−1
)T

�T
l−1

= Eθ∗
[
Px,θk|k

]
�T
k E

−1
θ∗
[
Px,θk+1|k

](
Eθ∗

[
Px,θk+1|k

] (
I−K�

k+1Hk+1
)T

�T
k+1

. . .
(
I − K�

l−1Hl−1
)T

�T
l−1

)

= Eθ∗
[
Px,θk|k

]
�T
k E

−1
θ∗
[
Px,θk+1|k

]
Eθ∗

[
Wθ

k+1,l

]
,

(25)

where the second equality is obtained by multiplying
E−1

θ∗
[
Px,θ
k+1|k

]
Eθ∗
[
Px,θ
k+1|k

]
in the first equality and (23)

written for Eθ∗
[
Wθ

k+1,l

]
is used to obtain the last equality.

Substituting (25) in (17) yields the update equation for x̂θ
k|L

as

x̂θ
k|L= x̂θ

k|k+
L∑

l=k+1
Eθ∗
[
Px,θ
k|k
]
�T

k E
−1
θ∗
[
Px,θ
k+1|k

]

× Eθ∗
[
Wθ

k+1,l

]
HT

l E
−1
θ∗
[
Pz,θ
l|l−1+Rθ2

]
z̃θ
l

= x̂θ
k|k+ Eθ∗

[
Px,θ
k|k
]
�T

k E
−1
θ∗
[
Px,θ
k+1|k

] L∑

l=k+1

(
Eθ∗
[
Wθ

k+1,l

]

× HT
l E

−1
θ∗
[
Pz,θ
l|l−1+Rθ2

]
z̃θ
l

)

= x̂θ
k|k + A�

k

(
x̂θ
k+1|L − x̂θ

k+1|k
)
,

(26)

where the third equality is obtained due to (18) and

A�
k = Eθ∗

[
Px,θ
k|k
]
�T

k E
−1
θ∗
[
Px,θ
k+1|k

]
, (27)

is called the effective Kalman smoothing gain.

2.3 Update equation for the Bayesian smoothed error
covariance matrix

Letting x̃θ
k|L = xθ1

k − x̂θ
k|L be the Bayesian smoothed

error relative to θ at time k, we now aim to find a recur-
sive formulation for the average Bayesian smoothing error
covariance matrix

Eθ∗
[
Px,θ
k|L
]

= Eθ∗
[
E
[
x̃θ
k|L
(
x̃θ
k|L
)T]]

. (28)

To do so, we first obtain the following relation for x̃θ
k|L:
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x̃θ
k|L = xθ1

k − x̂θ
k|L

= xθ1
k − x̂θ

k|k − A�
k

(
x̂θ
k+1|L − x̂θ

k+1|k
)

= x̃θ
k|k − A�

k x̂
θ
k+1|L + A�

k x̂
θ
k+1|k

= x̃θ
k|k + A�

k x̃
θ
k+1|L − A�

k x̃
θ
k+1|k . (29)

Hence,

x̃θ
k|L + A�

k x̃
θ
k+1|k = x̃θ

k|k + A�
k x̃

θ
k+1|L. (30)

Taking the covariance matrix of both sides of (30) rela-
tive to Eθ∗ [E[·] ] yields

Eθ∗
[
E
[(

x̃θ
k|L + A�

k x̃θ
k+1|k

) (
x̃θ
k|L + A�

k x̃θ
k+1|k

)T]]

= Eθ∗
[
E
[(

x̃θ
k|k + A�

k x̃θ
k+1|L

) (
x̃θ
k|k + A�

k x̂θ
k+1|L

)T]]
.

(31)

Due to the Bayesian orthogonality principle, for the left-
hand side of (31),

Eθ∗
[
E
[
x̃θ
k|L
(
x̃θ
k+1|k

)T]] = 0n×n. (32)

Similarly, regarding the right-hand side of (31),

Eθ∗
[
E
[
x̃θ
k|k
(
x̃θ
k+1|L

)T]] = 0n×n. (33)

Thus, (31) can be simplified to

Eθ∗
[
Px,θ
k|L
]
+A�

k Eθ∗
[
Px,θ
k+1|k

] (
A�
k
)T

=Eθ∗
[
Px,θ
k|k
]
+A�

k Eθ∗
[
Px,θ
k+1|L

] (
A�
k
)T .

(34)

Finally, (34) can be rearranged to obtain an update
equation for Eθ∗

[
Px,θ
k|L
]

Eθ∗
[
Px,θ
k|L
]

= Eθ∗
[
Px,θ
k|k
]

+ A�
k

(
Eθ∗
[
Px,θ
k+1|L

]

−Eθ∗
[
Px,θ
k+1|k

]) (
A�
k
)T .

(35)

Finding the average Bayesian smoothing error covari-
ance matrix in (35) completes all equations needed for
implementing the OBKS framework.
The forward step of the OBKS involves running the

OBKF and in the backward step the Bayesian smoothed
estimates are obtained. We should point out that in prac-
tice for the OBKF, the posterior effective noise statistics
are updated sequentially for each k because filtering is
an online estimation scheme. However, here since we use
OBKF as the forward step of the OBKS, which is an offline
estimation, we use the posterior effective noise statis-
tics E

[
θ |Yθ

L
]
relative to the whole observation window

for the OBKF-based estimation from the beginning. In
other words, the OBKF used in the forward step, is in fact

the IBR-KF designed relative to the posterior distribution
π
(
θ |Yθ

L
)
.

To better understand the similarity between the recur-
sive structures of the proposed OBKS and the ordi-
nary Kalman smoother, Table 1 compares the recursive
equations required for these two smoothers. As this table
suggests, the recursive structure of the proposed OBKS
framework is similar to that of the classical Kalman
smoother except that it employs effective characteristics,
namely, the effective Kalman gain matrix K�

k , effective
Kalman smoothing gain matrix A�

k , and the posterior
effective noise statistics Eθ∗

[
Qθ1
]
and Eθ∗

[
Rθ2
]
.

If the state vector x0 is characterized by E[x0] and
cov[x0], then the forward step of the OBKS is initialized
as Eθ∗

[
Px,θ
0|0
]

= cov[x0], Eθ∗
[
Px,θ
1|0
]

= �0cov[x0]�T
0 +

�0Eθ∗
[
Qθ1
]
�T
0 , x̂

θ
0|0 = E[x0], and x̂θ

1|0 = �0E[x0].

2.4 Computing posterior effective noise statistics
The forward step in the OBKS requires the posterior
effective noise statistics Eθ∗

[
Qθ1
]
and Eθ∗

[
Rθ2
]
. These

expectations should be computed relative to the poste-
rior distribution π

(
θ |Yθ

L
)
. Since the closed-form solution

Table 1 Comparison of the recursive equations for the classical
and the proposed optimal Bayesian Kalman smoothers

Forward step (k = 1, ..., L)

Classical Kalman
smoother

z̃k = yk − Hk x̂k|k−1

Kk = Pxk|k−1H
T
k

(
HkPxk|k−1H

T
k + R

)−1

x̂k|k = x̂k|k−1 + Kk̃zk

x̂k+1|k = �k x̂k|k−1 + �kKk̃zk

Pxk|k = (I − KkHk)Pxk|k−1

Pxk+1|k = �k (I − KkHk)Pxk|k−1�
T
k + �kQ�T

k

Optimal Bayesian
Kalman smoother

z̃θ
k = yθ

k − Hk x̂θ
k|k−1

K�
k = Eθ∗

[
Px,θk|k−1

]
HT
k E

−1
θ∗
[
HkP

x,θ
k|k−1H

T
k + Rθ2

]

x̂θ
k|k = x̂θ

k|k−1 + K�
k z̃

θ
k

x̂θ
k+1|k = �k x̂θ

k|k−1 + �kK�
k z̃

θ
k

Eθ∗
[
Px,θk|k
]

= (I − K�
k Hk)Eθ∗

[
Px,θk|k−1

]

Eθ∗
[
Px,θk+1|k

]
= �k

(
I −K�

k Hk
)
Eθ∗
[
Px,θk|k−1

]
�T

k

+�kEθ∗
[
Qθ1
]
�T
k

Backward step (k = L − 1, L − 2, ..., 0)

Classical
Kalman
smoother

Ak = Pxk|k�
T
k

(
Pxk+1|k

)−1

x̂k|L = x̂k|k + Ak
(
x̂k+1|L − x̂k+1|k

)

Pxk|L = Pxk|k + Ak

(
Pxk+1|L − Pxk+1|k

)
AT
k

Optimal Bayesian
Kalman smoother

A�
k = Eθ∗

[
Px,θk|k
]
�T

k E
−1
θ∗
[
Px,θk+1|k

]

x̂θ
k|L = x̂θ

k|k + A�
k

(
x̂θ
k+1|L − x̂θ

k+1|k
)

Eθ∗
[
Px,θk|L
]

= Eθ∗
[
Px,θk|k
]

+ A�
k

(
Eθ∗
[
Px,θk+1|k

]

− Eθ∗
[
Px,θk+1|L

]) (
A�
k

)T



Dehghannasiri et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:55 Page 7 of 17

of the distribution is not available, these expectations
can be approximated via a Metropolis Hastings Markov
chain Monte Carlo (MCMC) approach as proposed in
[18]. To implement the MCMC method, we need to com-
pute the likelihood function f

(
Yθ
L |θ). Here, we outline

the main steps needed to compute the likelihood func-
tion and refer to [18] for more details. Taking into account
the Markov assumptions in the state-space models, the
likelihood function can be written as

f
(
Yθ
L
∣
∣θ
)

=
∫

. . .

∫

︸ ︷︷ ︸
x0,...,xL

( L∏

i=0
f (yi
∣
∣xi, θ)

×
L∏

i=1
f (xi
∣
∣xi−1, θ)f (x0)

)

dx0 . . . dxL.

(36)

Letting Q̃θ1
k = �kQθ1�T

k , since

f
(
yi
∣
∣xi, θ

) = N
(
yi;Hixi,Rθ2

)
, (37)

f
(
xi
∣
∣xi−1, θ

) = N
(
xi;�i−1xi−1, Q̃θ1

k

)
, (38)

f
(
Yθ
L
∣
∣θ
)
can be regarded as a factorization of a global

function for which we can use a sum-product algorithm
called the factor graph [34]. Utilizing factor graphs, it
can be seen that the likelihood function can be obtained
as [18]

f
(
Yθ
L |θ
)

= SL

√
|
L|
|�L| N

(
yL; 0m×1,Rθ2

)

× exp
(
1
2

(
GT
L 
−1

L GL − MT
L �−1

L ML
))

,

(39)

where


−1
L = HT

L
(
Rθ2
)−1HL + �−1

L , (40)

GL = 
L
(
HT

L
(
Rθ2
)−1 yL + �−1

L ML
)
, (41)

and �L,ML, and SL are computed recursively utilizing the
following expressions from k = 0 to k = L − 1:

�−1
k+1 =

(
Q̃θ1

k

)−1 −
(
Q̃θ1

k

)−1
�k�k�

T
k

(
Q̃θ1

k

)−1
(42)

Mk+1 = �k+1
(
Q̃θ1

k

)−1
�k�k

(
HT

k
(
Rθ2
)−1 yk + �−1

k Mk
)

(43)

Sk+1 = Sk

√√
√
√

∣
∣�k
∣
∣
∣
∣�k+1

∣
∣

∣
∣∣Q̃θ1

k

∣
∣∣
∣∣�k
∣∣
N
(
yk ; 0m×1,Rθ2

)

× exp
(
MT

k+1�
−1
k+1Mk+1+WT

k �kWk−MT
k �−1

k Mk
2

)

,

(44)

where �k andWk are obtained as

�k =
(

�T
k

(
Q̃θ1

k

)−1
�k + Hk

(
Rθ2
)−1Hk + �−1

k

)−1
,

(45)

Wk = HT
k
(
Rθ2
)−1 yk + �−1

k Mk . (46)

The initial values are S0 = 1, �0 = cov[x0], and M0 =
E[x0]. A pseudo-code outlining the computational steps
needed for computing the likelihood function is available
in Additional file 1.
The likelihood function f

(
Yθ
L |θ) is needed in a

Metropolis Hastings MCMC method to decide whether
the generated MCMC samples should be rejected or
accepted into the sequence. In this MCMC method, a
sequence of samples is generated sequentially where at
each step, a new sample θ (new) is generated based on the
last accepted sample θ (old) according to a proposal dis-
tribution f

(
θ (new)|θ (old)

)
. The new sample θ (new) will be

either accepted or rejected based on an acceptance ratio r
computed as follows:

r = min

⎧
⎨

⎩
1,

f
(
θ (old)|θ (new)

)
f
(
Yθ
L |θ (new)

)
π
(
θ (new)

)

f
(
θ (new)|θ (old)

)
f
(
Yθ
L |θ (old)

)
π
(
θ (old)

)

⎫
⎬

⎭
.

(47)

Note that f
(
Yθ
L |θ (new)

) (
and f

(
Yθ
L |θ (old)

))
are com-

puted via the set of equations given in (39)–(46). The
new sample θ (new) will be accepted into the sequence of
MCMC samples with probability r. Otherwise, it will be
discarded and the last sample θ (old) will be repeated in the
sequence. When enough MCMC samples are generated,
the posterior effective noise statistics E

[
θ |Yθ

L
]
are approx-

imated as the average of the generated samples. When a
symmetric proposal distribution, i.e., f

(
θ (old)|θ (new)

)
=

f
(
θ (new)|θ (old)

)
, such as a Gaussian distribution is used

in our simulations, then (47) can be further simplified.
Also, more explanation and a pseudo-code on how the
recursive calculations in (42)–(46) should be performed
are provided in Additional file 1.
A block diagram of the proposed OBKS framework is

shown in Fig. 1. As this figure shows, in an additional
forward step, first the posterior effective noise statis-
tics are computed, then these effective characteristics
are used in another forward step to run the OBKF (as
summarized in the forward step of Table 1), and then
in the backward step, the Bayesian smoothed estimate
for each state in the interval is computed as summa-
rized in the backward step of Table 1. Note that com-
puting the effective Kalman smoothing gain A�

k in the
OBKS requires Eθ∗

[
Px,θ
k|k
]
and Eθ∗

[
Px,θ
k+1|k

]
, which are
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Fig. 1 Illustrative view of the proposed OBKS framework. This figure presents the general framework of the proposed optimal Bayesian Kalman
smoothing framework. The posterior effective noise statistics are obtained by integrating the data in the observations window into the prior
distribution π(θ), which are used to run the OBKF in the forward direction. Then, the Bayesian smoothed estimates are obtained in the backward
direction as the outputs of the OBKS

the by-products of the OBKF in the forward direction.
Also, all computational steps for the OBKS are sum-
marized in Algorithm 1. The inputs are the prior dis-
tribution, the matrices that characterize the state-space
model, and the observations over the observation window.

Algorithm 1 Optimal Bayesian Kalman Smoother
(OBKS)
1: input: π(θ), �k ,Hk ,Qθ1 , Rθ2 , �k , Yθ

L = {yθ
0, y

θ
1, ..., y

θ
L}

2: output: x̂θ
0|L, x̂θ

1|L, . . . , x̂θ
L|L

3: Eθ∗ [Qθ1 ] , Eθ∗ [Rθ2 ]← MCMC(Yθ
L ,π(θ))

4: x̂θ
0|0 ← E[ x0]

5: x̂θ
1|0 ← �0E[ x0]

6: Eθ∗
[
Px,θ
0|0
]← cov[ x0]

7: Eθ∗
[
Px,θ
1|0
]← �0cov[ x0]�T

0 + �0Eθ∗
[
Qθ1
]
cov[ x0]�T

0
8: for k = 1, ..., L do
9: z̃θ

k ← yθ
k − Hk x̂θ

k|k−1
10: K�

k ← Eθ

[
Px,θ
k|k−1

]
HT

k E
−1
θ∗
[
HkPx,θ

k|k−1H
T
k + Rθ2

]

11: x̂θ
k|k ← x̂θ

k|k−1 + K�
k z̃

θ
k

12: x̂θ
k+1|k ← �k x̂θ

k|k−1 + �kK�
k z̃

θ
k

13: Eθ∗
[
Px,θ
k|k
]← (I − K�

k Hk)Eθ∗
[
Px,θ
k|k−1

]

14: Eθ∗
[
Px,θ
k+1|k

] ← �k
(
I −K�

k Hk
)
Eθ∗
[
Px,θ
k|k−1

]
�T

k
+�kEθ∗

[
Qθ1
]
�T
k

15: for k = L − 1, L − 2, ..., 0 do
16: A�

k ← Eθ∗
[
Px,θ
k|k
]
�T

k E
−1
θ∗
[
Px,θ
k+1|k

]

17: x̂θ
k|L ← x̂θ

k|k + A�
k
(
x̂θ
k+1|L − x̂θ

k+1|k
)

18: Eθ∗
[
Px,θ
k|L
] ← Eθ∗

[
Px,θ
k|k
] + A�

k

(
Eθ∗
[
Px,θ
k+1|k

]

−Eθ∗
[
Px,θ
k+1|L

])(
A�
k
)T

return x̂θ
k|L

The outputs are the Bayesian smoothed estimates of
the unknown states over the window obtained by the
OBKS. There are four main steps in this algorithm.
First, in line 3, the posterior effective noise statistics are
estimated using the MCMC approach, as explained in
Section 2.4, which are later used in the OBKF. Then,
we need to initialize the OBKF as outlined in lines 4–7.
Lines 8–14 are devoted to the OBKF, which is run in
the forward direction. Finally, lines 15–18 show how the
Bayesian smoothed estimates are obtained.
Also, in order to study the computational complexity of

the proposed OBKS, since the proposed recursive struc-
ture is completely similar to that of the ordinary Kalman
smoother except using the posterior effective noise statis-
tics, which are approximated using MCMC samples, we
only need to analyze the complexity of the MCMC step.
In the MCMC step, in order to obtain a sequence of
MCMC samples, the likelihood function in (36) should
be computed for each generated MCMC sample by iter-
ating the equations given in (42)–(46) from k = 0 to
k = L − 1. Therefore, the dimensions of the state vector
x and the observation vector y, the size of the window L,
and the number of generated MCMC samples can affect
the complexity. We should point out that some matrix
calculations such as inversions, multiplications, and deter-
minants might need to be performed only one time for
each generated MCMC sample. For example, when the
process noise covariance matrix is known and the system
is stationary, it is enough to compute �T

k

(
Q̃θ1

k

)−1
once

and then use it for the rest of the calculations.

3 Simulation results and discussion
To study the performance of different smoothing
approaches, we need the smoothing error covariance
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matrix Pθ ′,θ
k|L that characterizes the performance of the

Kalman smoother designed by the assumption of θ ′ =[
θ ′
1, θ ′

2
]
when applied to a model with the actual noise

parameters θ =[ θ1, θ2], which is given by [35]

Pθ ′ ,θ
k|L = Aθ ′

k Pθ ′ ,θ
k|k

(
Aθ ′
k

)T
+ Aθ ′

k

(
Q̃θ1
k + Pθ ′ ,θ

k+1|L
)(

Aθ ′
k

)T

+Aθ ′
k Pθ ′ ,θ

k|k �T
k

(
I − Dθ ′

k

)T (
Aθ ′
k

)T +Aθ ′
k

(
I−Dθ ′

k

)
�kP

θ ′ ,θ
k|k

(
Aθ ′
k

)T

− Aθ ′
k

((
Q̃θ1
k

)T (
I − Lθ ′

k

)T +
(
I − Lθ ′

k

)
Q̃θ1
k

)(
Aθ ′
k

)T
,

(48)

where Aθ ′
k = I − Aθ ′

k �k , Aθ ′
k , and Kθ ′

k are the Kalman
smoothing gain and Kalman gain matrices of the Kalman
smoother and filter designed relative to θ ′, respectively,
and matrices Dθ ′

k and Lθ ′
k can be found recursively via

Dθ ′
k = Aθ ′

k+1D
θ ′
k+1�k+1

(
I − Kθ ′

k+1Hk+1
)

+ Kθ ′
k+1Hk+1,

Lθ ′
k = Dθ ′

k . (49)

The initial conditions for these twomatrices areDθ ′
L−1 =

Kθ ′
L HL and Lθ ′

L−1 = Kθ ′
L−1HL−1.

We compare the OBKS with the steady-state minimax
Kalman smoother, intrinsically Bayesian robust Kalman
smoother (IBR-KS), and the model-specific Kalman
smoothers designed relative to all possible values of θ . The
minimax Kalman smoother has the best worst-case per-
formance among all possible model-specific smoothers
and is defined by

θmm = argmin
θ ′∈�

max
θ∈�

Tr
{
Pθ ′,θ

L
2 |L

}
. (50)

Note that we focus on the state at time L/2, which is
in the middle of the observation window, as the steady-
state performance of a smoother occurs for the middle
points in an observation window. The IBR-KS is simi-
lar to the OBKS except that the optimization is relative
to the prior distribution π(θ). To design an IBR-KS, one
can use the OBKS equations in Table 1 with expectations
relative to the prior distribution rather than the poste-
rior distribution. Therefore, for the IBR-KS the MCMC
step is not needed. The IBR-KS approach provides optimal
smoothing performance relative to the prior distribution.

3.1 Target tracking example
Let the dynamic of a vehicle at each time step be deter-
mined by the state vector xk =[ px vx py vy]T , where px, vx,
py, and vy are the horizontal position, horizontal velocity,
vertical position, and vertical velocity, respectively. If the
vehicle possesses a constant speed and the measurements
are made with intervals τ , then a state-space model with

the followingmatrices can characterize the dynamic of the
vehicle at each time step [36–38]:

�k =

⎡

⎢
⎢
⎣

1 τ 0 0
0 1 0 0
0 0 1 τ

0 0 0 1

⎤

⎥
⎥
⎦ , Hk =

[
1 0 0 1
0 0 1 0

]
, �k = I.

The covariance matrices of the process noise and obser-
vation noise are

Q = q×

⎡

⎢⎢
⎣

τ 3/3 τ 2/2 0 0
τ 2/2 τ 0 0
0 0 τ 3/3 τ 2/2
0 0 τ 2/2 τ

⎤

⎥⎥
⎦ , R =

[
r 0
0 r

]
,

where q determines the process noise intensity. In the sim-
ulations, we assume that the measurement interval is τ =
1 and the initial conditions are E[x0]=[ 100 10 30 −10]T
and cov[x0]= diag[ 25 2 25 2].
It is worth mentioning that when the process noise tran-

sition matrix �k is not an identity matrix, since the effect
of �k on the Kalman equations is only through the covari-
ance matrix of the process noise, a state-space model with
the process noise covariance matrix Q and the process
noise transition matrix �k is equivalent to a state-space
model with the process noise covariance matrix Qeq

k =
�kQ�T

k and the process noise transition matrix �
eq
k = I.

With this in mind, we can consider the simulation results
of the above target tracking example for an equivalent
state-spacemodel with the process noise transitionmatrix

�′
k =

⎡

⎢
⎢
⎣

−0.8817 0 0 0.4719
0.4719 0 0 0.8817

0 −0.8817 0.4719 0
0 0.4719 0.8817 0

⎤

⎥
⎥
⎦ ,

and the covariance matrix Q′ = q × diag[ 0.0657 0.0657
1.2676 1.2676], where Q′ is the diagonal matrix of the
eigenvalues and �′

k is matrix of the eigenvectors forQ, i.e.,
Q = �′Q′(�′)T is the eigen-decomposition of Q. There-
fore, the simulations for the target tracking example can
also be regarded for the case that the process noise transi-
tion matrix is not an identity matrix.
We set q to 2 and assume that the diagonal element r

of the observation noise covariance matrix is unknown
and represented by a uniform random variable θ over
[ 0.25, 5]. In previous work, we have used the inverse-
Wishart distribution as a prior for the covariance matrices
[20] and could have done so here; however, for computa-
tional reasons, we have limited our example to priors gov-
erning q and r. Let the observation window be of length
L = 15. For the MCMC step, we generate 10,000 MCMC
samples and use a Gaussian distribution as the proposal
distribution with themean being the last acceptedMCMC
sample and variance being equal to 4. First, we study the
average performance (MSE) over the uncertainty class for
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various Kalman smoothing approaches. To do so, for a
given sequence of observations Yθ

L , we find the error of
each Kalman smoothing approach for each k by first com-
puting the error covariance matrix using (48), where θ ′
is replaced by E

[
θ |Yθ

L
]
, E[ θ ], and θmm for the OBKS,

IBR-KS, and the minimax Kalman smoother, respectively,
and then, the MSE at time k is obtained by finding the
sum of diagonal elements of the error covariance matrix.
The MSE for the optimal Kalman smoother designed
relative to the actual θ value is obtained according to
Pk|L in Table 1. The reported average MSE is obtained
over 30 different assumed values of θ and 10 different
observation sequences for each value (300 simulations
in total). Figure 2a presents the average MSE across the
observationwindow obtained for each smoothing scheme.
As can be seen, OBKS outperforms IBR and minimax
approaches and its performance is close to the average
of the optimal MSEs obtained by the optimal smoothers.
Figure 2b shows the average MSE for the middle state
(k = 8) in the observation window. In addition, this
figure presents the average MSE of each model-specific
Kalman smoother designed relative to value θ ′. Note
that the difference between the definitions of the opti-
mal smoother and the model-specific smoother is that
the optimal smoother is designed relative to θ and always
applied to model θ , but the model-specific smoother is
designed relative to θ ′ and then applied to the model
θ . This figure suggests the better performance of the
OBKS compared to the IBR, minimax, and model-specific
Kalman smoothers.
Figure 3a, b illustrate the performances of different

Kalman smoothers for the observation noise variances
θ = 0.5 and θ = 4, respectively. Although θ is fixed,
since the OBKS performance depends on the generated
observations, we report the average MSE taken over 300

different generated observation sequences Yθ
L . It can be

seen that the OBKS has its performance close to the opti-
mal Kalman smoothers and much better compared to
other robust Kalman smoothers. Since the IBR approach
is optimal on average relative to the prior distribution, not
for each possible model within the class, it is not guar-
anteed that the IBR-KS performs well for each model, an
example being θ = 4 where minimax outperforms the
IBR approach. However, even for models for which the
IBR approach does not perform well, OBKS still gives
promising results.
In Fig. 3c, d, in addition to the MSE values for dif-

ferent smoothers, we also present the MSEs of various
Kalman filters for each time step k. For different fil-
ters, we compute Pθ ′,θ

k|k , as derived in [16], and report

Tr
{
Pθ ′,θ
k|k
}
, where θ ′ is replaced by θmm, E[ θ ], and E

[
θ |Yθ

L
]

for the minimax, IBR, and OBKF approaches, respec-
tively. Since the error covariance matrix of the filter is
used as the initial value for the error covariance matrix
of the corresponding smoother, for k = 15, the MSE of
each smoother equals that of its corresponding filter. As
expected, for other time indices k within the observation
window, the MSE of the smoother is always lower than
that of the filter. Note that due to the range of the y-axis
in Fig. 3c, d, the MSEs of various smoothing approaches
might not be distinguishable. The difference between
the performances of different smoothers is visible in
Fig. 3a, b.
Next, we analyze the smoothing performance for

different numbers of observations (observation window
length) L. Figure 4 presents the average MSE of differ-
ent Kalman smoothers at time step L/2 (middle state) as
L changes from 6 to 50. The average MSE for each L is
obtained in the same way as in Fig. 2. We can observe

a b

Fig. 2 Performance comparison of different Kalman smoothers for the target tracking example with unknown r. a Average MSE across the
observation window. b Average middle-point MSE (k = 8). θ ′ gives the value at which the model-specific smoother is designed
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a b

c d

Fig. 3 Performance analysis of different smoothers for the target tracking example over the observation window. aMSE of different smoothers for
θ = 0.5. bMSE of different smoothers for θ = 4. cMSE of different smoothers and filters for θ = 0.5. dMSE of different smoothers and filters for θ = 4

Fig. 4 Average middle-point MSE of different Kalman smoothers for
different observation window length L

that when the number of observations is small, the per-
formances of OBKS and IBR-KS are close because the
expectation of θ relative to the posterior distribution is
close to the expectation relative to the prior distribution;
however, as the number of observations increases, the
average MSE of the OBKS gets closer to that of the opti-
mal smoothers because the expectation of the unknown
parameter tends to the true parameter value. Moreover,
both the OBKS and IBR-KS always outperform the mini-
max Kalman smoother in terms of average MSE.
In the next set of simulations, we consider the case that

both the process noise parameter q and the observation
noise parameter r are unknown, being denoted by uni-
form random variables θ1 and θ2 over intervals [ 3, 5] and
[ 0.25, 5], respectively. Regarding the MCMC step, we use
a multivariate Gaussian distribution with the mean vec-
tor being the vector of last accepted samples for θ1 and
θ2 and a diagonal covariance matrix whose diagonal ele-
ments are diag[ 1 1.5]. Analogous to the previous set of
simulations, we compare the performance of the OBKS
with other smoothing approaches in terms of the average
MSE over 200 different assumed true values for θ1 and θ2
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and 10 different sets of observations for each pair of true
values (2000 simulations in total) in Fig. 5. As shown in
the figure, the OBKS outperforms other robust smoothers
and performs closely to the optimal smoother designed
relative to the underlying true model.
In Fig. 6, we analyze the average MSE at k = 8, the

middle point in the observation window. The white sur-
face represents the average middle-point MSE for each
model-specific Kalman smoother designed relative to the
process noise parameter θ ′

1 and observation noise param-
eter θ ′

2. We also show the average middle-point MSEs for
the IBR-KS, minimax smoother, and OBKS, and the aver-
age of the optimal middle-point MSEs obtained by the
optimal smoothers by constant planes. This figure sug-
gests that compared to other robust smoothers, the OBKS
achieves the closest average middle-point MSE to that of
the optimal smoothers.
Figure 7 shows the performance of different smooth-

ing approaches for two specific state-space models cor-
responding to certain values of θ1 and θ2. Figure 7a, c
correspond to θ1 = 4.5 and θ2 = 1, respectively, and
Fig. 7b, d correspond to θ1 = 3.2 and θ2 = 4, respec-
tively. The figures in the first row report the MSE of
different smoothers for each time instance within the
observation window. For both state-space models, we see
the promising performance of the OBKS. In addition to
the MSEs of different smoothers, the second row gives
the MSEs of different Kalman filters. The MSE of each
smoother is initialized by the MSE of the corresponding
filter, and then, it decreases as we proceed in the back-
ward direction. The difference between the performances

Fig. 5 Performance analysis over the observation window for the
target tracking example with unknown r and q. Average MSE of
different smoothers for each k over the observation window when
both q and r are unknown

of different smoothers is visible in Fig. 7a, b, which focus
on a shorter range for the smoothing performance.
Figure 8 studies the effect of the size of the observa-

tion window on the performances of different smoothing
approaches. We vary the size of window L from 6 to
50 and report the average middle-point MSEs of various
smoothers for each L. When L is small, the performances
of the OBKS and IBR-KS are close but as L increases,
the performance of the OBKS tends to that of the opti-
mal smoother. This is because the posterior effective noise
statistics converge to the underlying true values as the
number of observations increases.
In Fig. 9, we analyze the complexity of the proposed

OBKS framework and how its runtime changes with the
size of the window and the number of MCMC samples.
We consider the target tracking example when the size
of the window changes from 4 to 50 and the number S
of generated MCMC samples is 5000, 10,000, and 15,000.
Computations were performed on a machine with 16 GB
RAM and Intel® CoreTM i7 2.5 GHz CPU. As can be seen,
the run time tends to grow linearly with L and S. In our
simulations, we set the number of samples in the MCMC
step to 10,000 to obtain acceptable estimates at tolerable
computational complexity.
Also, in Fig. 10, we study the effect of the number of

MCMC samples, used to compute the posterior effec-
tive noise statistics, on the OBKS performance. Similar to
Fig. 3a, we assume that the observation noise variance θ

is unknown and its true value is 0.5. We consider three
different observation window sizes at L = 10, 15, 20 and
vary the number of MCMC samples from 100 to 10,000.
For each L and number of MCMC samples, we report the
middle-point MSE (MSE at k = L/2) over 300 different
observation sequences generated based on the underlying
true state-space model. As can be seen, as the number of
MCMC samples increases (especially when the number
of MCMC samples is not large enough), the OBKS per-
formance gets better because more accurate posterior
effective noise statistics can be obtained via more MCMC
samples. However, after collecting enough MCMC sam-
ples, the performance of the OBKS converges, and further
increase of MCMC samples has little additional perfor-
mance improvement. In our simulations throughout the
paper, we used 10,000 MCMC samples.

3.2 Gene regulatory network inference
In this section, we apply the proposedOBKS framework to
gene regulatory network (GRN) inference. GRNs are used
as a platform to characterize the relationship between
genes and play a major role in drug design. Numerous
GRN inference methods have been proposed in the lit-
erature, one based on Kalman filtering [39] in which the
inference problem is formulated as a state-space problem
where the parameters to be inferred are regarded as
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Fig. 6 Average middle-point MSE of different Kalman smoothers for the target tracking example with unknown r and q. The average performance of
each model-specific Kalman smoother corresponding to the noise parameters θ ′

1 and θ ′
2 is shown. The average MSE for the IBR-KS, minimax, OBKS,

and the average of optimal MSEs are shown as constant planes

hidden states. Since acquiring exact knowledge of noise
statistics is highly difficult due to the complexity of biolog-
ical systems and other practical limitations, it is prudent
to utilize a robust Kalman approach for inference. We
focus on the continuous nonlinear ordinary differential

equation model [39], where the value of each gene gi, 1 ≤
i ≤ n, n being the total number of genes in the network, is
characterized as

ġi = ηi(g1, ..., gn) + vi,

a b

c d

Fig. 7 Performance of different smoothing approaches when applied to specific state-space models for the target tracking example with unknown r
and q. aMSE of different smoothers for θ1 = 4.5 and θ2 = 1. bMSE of different smoothers for θ1 = 3.2 and θ2 = 4. cMSE of different smoothers and
filters for θ1 = 4.5 and θ2 = 1. dMSE of different smoothers and filters for θ1 = 3.2 and θ2 = 4
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Fig. 8 Effect of the size of observations on the smoother performance
in the target tracking example with unknown r and q

where ġi, vi, and ηi(·) are the derivative of the gene-
expression value relative to the time variable, the exter-
nal noise, and the regulatory function, respectively. The
regulatory function ηi is a linear combination of some
nonlinear terms [39]:

ηi(g1, ..., gn) =
Ni∑

j=1
[ (αij + uij)�ij(g1, ..., gn)] ,

where Ni is the number of nonlinear terms in ηi, �ij(·) is
the jth nonlinear term in ηi with corresponding coefficient
αij and parameter noise uij.
The inference problem for this model involves estimat-

ing the values of coefficients αij from time series data,
generated from the underlying true GRN model. To esti-
mate unknown coefficients from data, following [16, 39],

Fig. 9 Processing time required for implementing the OBKS for the
target tracking example relative to the size of the window L and the
number of MCMC samples S

Fig. 10 Effect of the number of MCMC samples on the performance
of the OBKS

we build a state-space model with vectors formed by
stacking coefficients αij, parameter noise uij, and exter-
nal noise vi in place of the state vector xk , process noise
vector uk , and observation noise vector vk , respectively.
In the state-space model, we have �k = I and �k = I.
The observation vector yk and the observation transi-
tion matrix Hk are formed using gene-expression values
gi and the nonlinear terms �ij, respectively. More details
on constructing the state-space model for this inference
problem can be found in [16, 39]. In this paper, we work
out the inference problem for the yeast cell cycle network
[39], which has n = 12 genes and 54 coefficients to be
inferred. For this network, the state vector is of size 54
and the observation vector is of size 12. To evaluate the
performance of the OBKS for network inference, we use
the synthetic time series data generated according to the
regulatory equations given in [39].
In our simulations, we assume Q = 10−7 × I and

R = θ × I in which θ is unknown and belongs to [0.25, 6].
Let the initial conditions be E[x0]= 054×1 and cov[x0]=
0.001 × I. We set the observation window length L to
15. For MCMC calculations, we use the same setting as
the first set of simulations for the target tracking exam-
ple. First we analyze the average performance over the
uncertainty class. In order to report the average MSE
for each smoothing scheme, we take the average of the
MSEs obtained over 30 different assumed true values of θ
and 20 different observation sequences for each assumed
true value (600 simulations). In Fig. 11a, we compare the
average MSEs of different Kalman smoothers for each
time index k within the observation window. The aver-
age MSE from the OBKS is lower compared to those of
the IBR-KS and minimax smoothers. Fig. 11b presents the
average middle-point MSE (for k = 8) for each model-
specific Kalman smoother designed relative to value θ ′
for the noise parameter and also those for the IBR-KS,
minimax, and the OBKS approaches are shown. We also
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a b

Fig. 11 Performance comparison of different Kalman smoothers for network inference. a Average MSE across the observation window. b Average
middle-point MSE

show the average of the optimal MSEs obtained by the
optimal smoothers. This figure verifies the promising per-
formance of the OBKS approach.
Figure 12 illustrates the performance of different

approaches for two specific state-space models corres-

ponding to θ = 1.5 and θ = 5. For each assumed true
value, the results are averaged over 200 different obser-
vation sequences generated based on the underlying true
value of θ . In Fig. 12a and b, we only show the perfor-
mance of different smoothers, but in Fig. 12c and d, we

a b

c d

Fig. 12 Performance comparison relative to specific state-space models. aMSE of different smoothers for θ = 1.5. bMSE of different smoothers for
θ = 5. cMSE of different smoothers and filters for θ = 1.5. dMSE of different smoothers and filters for θ = 5
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show the performances for both the smoothing and filter-
ing schemes. We can see that the OBKS performs much
better compared to other robust approaches.
The effect of the observation window size on the

performance of Kalman smoother-based network infer-
ence is studied in Fig. 13. For each window size L,
we report the average MSE for k = L/2 correspond-
ing to each Kalman smoothing strategy. For each L, the
average MSEs are obtained in the same way as Fig. 11.
As shown in the figure, the performance of the OBKS
gets closer to that of the optimal smoother for larger L,
which is what we expect from the OBKS as the posterior
effective noise statistics, relative to which the OBKS
is designed, eventually converge to the underlying true
values.

4 Conclusions
We proposed an optimal Bayesian Kalman smoothing
framework that provides the optimal smoothing per-
formance relative to the posterior distribution of the
unknown noise parameters. Thanks to the effective
Kalman smoothing gain that is applied to the poste-
rior distribution, the structure of the proposed OBKS is
analogous to that of the classical Kalman smoother. In
the absence of the prior update step via factor graph,
one can employ the IBR Kalman smoother to obtain the
optimality relative to the prior distribution. The optimal
Bayesian smoothing framework can play a major role in
applications where data are rare or expensive, such as in
genomics.
There are a few avenues of research in which our future

work can proceed. One future direction is to address prior

Fig. 13 Average middle-point MSE of different smoothing
approaches for different observation window length L for the
network inference example with unknown θ

construction for the proposed OBKS framework, which
involves optimizing the prior distribution such that it can
reflect the available prior knowledge as perfectly as pos-
sible. For example, this has been done for genomic clas-
sification by utilizing gene signaling pathway knowledge
to optimize prior distribution parameters [40]. Another
avenue is to extend the OBKS framework to other state-
spacemodels in which noise is not white or the state-space
model is not linear, which takes the OBKS to the realm of
extended Kalman filters.
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