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Abstract

Direct position determination (DPD) methods are known to have many advantages over the traditional two-step
localization method, especially for low signal-to-noise ratios (SNR) and/or short data records. However, similar to
conventional direction-of-arrival (DOA) estimation methods, the performance of DPD estimators can be dramatically
degraded by inaccuracies in the array model. In this paper, we present robust DPD methods that can mitigate the
effects of these uncertainties in the array manifold. The proposed technique is related to the classical auto-calibration
procedure under the assumption that prior knowledge of the array response errors is available. Localization is
considered for the cases of both unknown and a priori known transmitted signals. The corresponding maximum
a posteriori (MAP) estimators for these two cases are formulated, and two alternating minimization algorithms are
derived to determine the source location directly from the observed signals. The Cramér-Rao bounds (CRBs) for
position estimation are derived for both unknown and known signal waveforms. Simulation results demonstrate
that the proposed algorithms are asymptotically efficient and very robust to array model errors.

Keywords: Array signal processing, Source localization, Direct position determination (DPD), Array model errors,
Alternating minimization algorithm, Cramér-Rao bound (CRB)

1 Introduction
Emitter localization using direction-of-arrival (DOA)
measurements [1–3] has received significant atten-
tion because of its importance in fields such as
radar, sonar, seismology, vehicle navigation, and
wireless communications. In this type of localization
system, a single moving observer or multiple station-
ary observers are used to determine the emitter pos-
ition. Generally, each base station is equipped with
an antenna array that can be used to estimate the
angle of arrival of the transmitted signals. With mul-
tiple DOA estimates from different observer loca-
tions, it is possible to locate the source [4–6]. This
emitter localization procedure is called two-step lo-
cation. In the first step, the signal parameters (e.g.,
DOA [1–6], time difference of arrival (TDOA) [7, 8],

time of arrival (TOA) [9, 10], frequency difference of
arrival (FDOA) [11, 12], frequency of arrival (FOA)
[13], received signal strength (RSS) [14], gain ratios
of arrival (GROA) [15]) are obtained independently
from the intercepted signals by spatially separated
sensors. In the second step, the measurements of all
sensors are transferred to a central unit and the
transmitter location is estimated. Note that this
two-step procedure is also known as the decentra-
lized approach [16].
It is worth mentioning that, although the two-step

approach is extensively used in modern localization
systems, it is only a suboptimal position determin-
ation technique. This is because the signal metrics
extracted from the waveforms ignore the constraint
that all measurements must correspond to the same
transmitter. Consequently, information loss between
the two steps is inevitable. Indeed, the extended in-
variance principle (EXIP) [17] can be used to show
that the two-step procedure can also provide an
asymptotically efficient estimate under certain
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conditions. In practice, however, these requirements
are not easily satisfied.
To improve the localization accuracy of two-step

location methods, the direct position determination
(DPD) technique has been proposed and extensively
developed. DPD is a centralized and single-step loca-
tion technique in which the estimator uses exactly
the same signal samples as in two-step methods, but
estimates the source location directly, skipping the
intermediate (first) step. This can be viewed as
searching for the emitter location that best explains
the collected data. In general, the DPD method is
superior to the classical two-step methods for low
signal-to-noise ratios (SNR) and/or short data re-
cords. Moreover, DPD can be applied to many wire-
less positioning systems. In particular, DPD methods
for locating a narrowband radio emitter based on
Doppler shift [18, 19] and for locating a wideband
source using a time delay metric [20–22] have been
presented. Additionally, DPD estimators using both
the Doppler effect and the relative delay have been
developed [23–26]. In the DPD methods mentioned
above, several platforms each carrying single-antenna
receivers are used for source location; hence, the
DOA information of the impinging signals cannot be
exploited. To use such signal metrics, DPD methods
based on multiple static stations, each equipped with
an antenna array, have been proposed [27]. This
single-step location technique models the array re-
sponse as a function of the source position, requir-
ing only a two-dimensional search for planar
geometry and a three-dimensional search for the
general case. Following the methods in [27], other
DPD estimators for special localization scenarios
have been reported in the literature. Specifically,
DPD methods for multiple-source scenarios are stud-
ied in [28, 29], and some high-resolution DPD
methods are proposed in [30–32]. Additionally, DPD
methods tailored to special signal structures (e.g., or-
thogonal frequency division multiplexing signals,
cyclostationary signals, noncircular signals, and inter-
mittent emissions) have been developed [33–37].
Note that the experimental results in [18–37] dem-
onstrate that the single-step approach outperforms
the two-step method in scenarios with low SNR and/
or relatively few data records.
High-resolution DOA estimation methods are

known to be sensitive to errors in the array response
model [38–42]. This is because these approaches re-
quire exact knowledge of the array manifold. Note
that the DPD methods using an antenna array also
rely on the accuracy of the array model. As a result,
it is reasonable to expect their localization accuracy
to deteriorate significantly in the event of an array

model mismatch. In [43–45], for the case of a
known signal waveform, the closed-form expression
for the mean square error (MSE) of the DPD estima-
tor was derived for the case of array model errors.
However, in practice, the signal waveform is rarely
known. Consequently, an alternative statistical ana-
lysis of the DPD method in the presence of array
model errors was performed [46] under the assump-
tion that the signal waveform is unknown. All the
theoretical and experimental results in [43–46] dem-
onstrate that the accuracy loss caused by array
model errors is considerable. Hence, a new DPD
technique that accounts for array model errors is
needed to improve the emitter location accuracy.
However, to the best of our knowledge, very few
studies have considered this topic. This paper pre-
sents robust DPD methods that can reduce the im-
pact of uncertainties in the array manifold. The
proposed technique is similar to the traditional
auto-calibration procedure in the field of array signal
processing and assumes that certain prior knowledge
of the array response errors is available. This is a
reasonable assumption in most applications, and it
allows for more general perturbation models. We
consider two different localization cases: the case of
a priori known signal waveforms and the more real-
istic case where the transmitted signals are unknown
to the location systems. The corresponding
maximum a posteriori (MAP) estimators for the two
cases are formulated and two alternating
minimization algorithms are developed to estimate
the emitter position directly from the received signal
samples. Hence, the proposed methods follow the
Bayesian framework [47–50]. Additionally, to verify
the asymptotic efficiency of the new methods, the
Cramér-Rao bounds (CRBs) for position estimation
are derived for both unknown and known signal
waveforms.
The remainder of this paper is organized as fol-

lows. Section 2 describes the method and experi-
mental used in this paper. In Section 3, the signal
model for DPD is formulated and the array error
model is also discussed. Section 4 presents a robust
DPD method in the presence of array model errors,
when signal waveform is unknown. In Section 5, an
alternative robust DPD method in the presence of
uncertainties in array manifold is proposed for the
case of known transmitted signals. In Section 6, the
CRB expressions for the position estimation are
derived for both unknown and known signal
waveforms. Simulation results are reported in
Section 7. Conclusions are drawn in Section 8. The
proofs of the main results are given in the Appendix
1, 2, 3, 4, and 5.
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2 Methods/experimental
This study refers to the field of emitter localization.
The aim of this study is to propose the robust DPD
methods that can mitigate the effects of these uncer-
tainties in the array manifold. The methods are de-
signed based on MAP criterion. We consider two
different localization cases: the case of a priori
known signal waveforms and the more realistic case
where the transmitted signals are unknown to the
location systems. The numerical optimization tech-
nology is applied and two alternating minimization
algorithms to identify the unknown parameters are
presented. To verify the asymptotic efficiency of the
new methods, we derive the CRBs on position
estimation for both unknown and known signal
waveforms.
We perform a set of Monte Carlo simulations to

examine the behavior of the proposed robust DPD
methods. The root mean square error (RMSE) of
position estimate is employed to assess and compare
the performance. All the simulation results are aver-
aged over 2000 independent runs. We compare our
algorithms with the algorithms in [27], and the trad-
itional two-step localization algorithms, as well as
the CRB for unknown and known signal waveforms.
Besides, all the experiments are conducted for the
3D localization.
All data and procedures performed in the paper

are in accordance with the ethical standards of re-
search community. This paper does not contain any
studies with human participants or animals per-
formed by any of the authors.

3 Problem formulation
3.1 Signal model for direct position determination
3.1.1 Time-domain signal model
Consider a stationary radio emitter and N base sta-
tions that can intercept the transmitted signal. Each
base station is equipped with an antenna array com-
posed of M sensors. The transmitter’s position is de-
noted by an L × 1 vector of coordinates p. In this
paper, we consider the three-dimensional (3D) sce-
nario, in which p = [px py pz]

T and L = 3. The
complex envelopes of the signal observed by the nth
base station are modeled by

xn tð Þ ¼ βnan p;μnð Þs t−τn pð Þ−t0ð Þ þ εn tð Þ 1≤n≤Nð Þ
ð1Þ

where

� an(p) is the array response of the nth station to a
signal transmitted from position p,

� s(t − τn(p ) − t0) is the signal waveform transmitted
at unknown time t0 and delayed by τn(p ),

� τn(p ) is the signal propagation time from the
emitter to the nth base station (i.e., distance divided
by signal propagation speed),

� βn is an unknown complex scalar representing the
channel attenuation between the emitter and the
nth base station,

� εn(t) denotes temporally white, circularly symmetric
complex Gaussian noise with zero mean and
covariance matrix σ2εIM ,

� μn represents the perturbed array parameters and is
used to model the uncertainty in the array steering
vector.

We assume that the observation vector xn(t) is sam-
pled with period T. The kth data sample can then be
expressed as

xn;k ¼ βnan p;μnð Þs kT−τn pð Þ−t0ð Þ þ εn;k 1≤k≤Kð Þ
ð2Þ

where K is the number of snapshots.

3.1.2 Frequency-domain signal model
In order to determine the emitter position directly from
the received signal samples, it is desirable to separate the
propagation delay τn(p ) and transmit time t0 from the
signal waveform. This is easy when using the
frequency-domain representation of the problem. Taking
the discrete Fourier transform (DFT) of (2), we get

xn;k ¼ βnan p;μnð Þsk � exp − jωk τn pð Þ þ t0ð Þf g þ εn;k

1≤n≤N ; 1≤k≤Kð Þ
ð3Þ

where

� ωk = 2π(k − 1)/(KT) is the kth known discrete
frequency point,

� sk is the kth Fourier coefficient of the unknown
signal corresponding to frequency ωk,

� εn;k is the kth Fourier coefficient of the random
noise corresponding to frequency ωk.

As the DFT is an orthogonal linear transformation,
the probability distribution of the noise vector εn;k is
the same as that of εn, k, with first- and
second-order moments given by

Wang et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:38 Page 3 of 28



E εn;k
� � ¼ OM�1

E εn;kε
T
n;k

h i
¼ OM�M ; E εn;kε

H
n;k

h i
¼ σ2

ε IM

E εn;kε
T
n;l

h i
¼ E εn;kε

H
n;l

h i
¼ OM�M

8>><>>: 1≤k ; l≤K ; k≠lð Þ

ð4Þ
Note that the robust DPD methods proposed in this

paper are derived from the frequency-domain signal
model (3). For notational convenience, we introduce the
following three vectors

xn ¼ xHn;1 xHn;2 ⋯ xHn;K
h iH

; β ¼ β1 β2 ⋯ βN½ �T

s ¼ s1 � exp − jω1t0f g s2 � exp − jω2t0f g ⋯ sK � exp − jωK t0f g½ �T

8<:
ð5Þ

3.2 Array error model
This subsection describes the array error model. Ac-
cording to the discussion in [47, 48, 50], μn can be
modeled by considering it as a real random vector
and is composed of the array parameters that are
subject to perturbations. A nominal value of μn, de-
noted by μn, 0, is known, resulting in a nominal
array manifold an(p, μn, 0). As a consequence, the ac-
tual array response may be different. We denote the
length of μn as Qn.
It is known that μn may include either structured

parameters, such as the sensor gain, phase, position,
and/or mutual coupling, or unstructured parameters.
Generally, the perturbation parameter vector μn can
be modeled as a Gaussian random variable with
mean E[μn] = μn, 0 and covariance

E μn−μn;0

� �
μn−μn;0

� �T
� �

¼ Ωn 1≤n≤Nð Þ ð6Þ

Moreover, μn1 and μn2 are statistically independent
for n1 ≠ n2. Note that the covariance matrices {Ωn}1 ≤
n ≤ N are also assumed to be known. These matrices
can be determined, for example, using sample statis-
tics from a number of independent, identical calibra-
tion experiments or using tolerance data specified by
the sensor manufacturer [51].
In the next sections, the a priori information in

the form of a probability distribution is used to de-
velop two robust DPD methods with regard to array
model mismatch. The first DPD method covers the
common case of signals with unknown waveforms,
and the second one is applicable to the less common
case of signals with known waveforms. For nota-
tional simplicity, we define the following two vectors

μ0 ¼ μH
1;0 μH

2;0 ⋯ μH
N ;0

h iH
μ ¼ μH

1 μH
2 ⋯ μH

N

� �H
8<: ð7Þ

4 Robust direct position determination method
for case of unknown signal waveform
In this section, we propose a new DPD method that
is robust to array model errors and assumes that the
signal waveforms are unknown. The optimal MAP
estimator for the problem at hand is formulated, and
a computationally efficient numerical algorithm is
derived.

4.1 Optimization criterion for maximum a posteriori
estimator
If the transmitted signals are unknown, the parame-
ters to be determined involve p, fskg1≤ k ≤K , t0, β, and
μ. From (5), both fskg1≤ k ≤K and t0 are contained in
the vector s. Hence, the estimation of fskg1≤ k ≤K and
t0 can be replaced by the estimation of s.
When deriving the MAP estimator, the a priori distribu-

tion of {μn}1 ≤ n ≤N must be exploited. Following [47–50],
the joint estimation of p, s, β, and μ is then obtained as

min
p;s;β;μ

JU‐MAP p; s; β; μð Þ ¼ min
p;s;β;μ

f JU‐ML p; s; β; μð Þ

þ 1
2
�
XN
n¼1

μn−μn;0

� �T
Ω−1

n μn−μn;0

� �
g

ð8Þ

where

JU‐MAP p; s;β;μð Þ ¼ JU‐ML p; s;β; μð Þ

þ 1
2
�
XN
n¼1

μn−μn;0

� �T
Ω−1

n μn−μn;0

� � ð9Þ

Here, JU‐MLðp; s; β;μÞ is the negative log-likelihood
function, which is given by

JU‐ML p; s;β;μð Þ ¼ 1
σ2
ε
�
XN
n¼1

XK
k¼1

‖xn;k

−βnan p;μnð Þsk � expf− jωkðτn pð Þ

þt0Þgk22
¼ 1

σ2
ε
�
XN
n¼1

xn− s⊙γn pð Þð Þ � an p;μnð Þð Þβn
�� ��2

2

ð10Þ

where ⊗ denotes Kronecker product, and ⊙ repre-
sents Schur product (element by element multiplica-
tion), and

γn pð Þ ¼ ½ exp − jω1τn pð Þf g exp − jω2τn pð Þf g ⋯

exp − jωKτn pð Þf g�T
ð11Þ

Setting Ωn;0 ¼ Ωn=σ2ε , the optimization criterion can
be finally formulated as
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min
p;s;β;μ

f
XN
n¼1

xn−ð s⊙γn pð Þð Þk � anðp;μnÞÞβnk22
þ 1
2
�
XN
n¼1

μn−μn;0

� �T
Ω−1

n;0 μn−μn;0

� �
g

ð12Þ

where we assume, without loss of generality, that the
first element in s is equal to one so that the solution
is unique and unambiguous.
Obviously, (12) is a multidimensional nonlinear

minimization problem, and no closed-form solution
is available. In the next subsection, we present an ef-
ficient numerical algorithm to solve (12). For this
purpose, the following matrices are introduced:

fA p;μð Þ ¼ A1 p;μ1ð Þð ÞH A2 p;μ2ð Þð ÞH ⋯ AN p; μNð Þð ÞH
h iH

An p;μnð Þ ¼ blkdiag a0n;1 p; μnð Þ a0n;2 p;μnð Þ ⋯ a0n;K p; μnð Þ
h i
1≤n≤Nð Þ

ð13Þ

where

a0n;k p;μnð Þ ¼ an p;μnð Þ � exp − jωkτn pð Þf g ð14Þ

4.2 Numerical algorithm
Recalling (12), it is apparent that the unknown par-
ameter vectors of p, s , β, and μ cannot be com-
pletely separated. Hence, the straightforward
minimization of (12) with respect to p, s, β, and μ is
rarely feasible. Because of the diversity of the un-
knowns, we derive an alternating minimization algo-
rithm to identify the unknown parameters in an
iterative manner. This numerical method has been
successfully applied to a variety of signal processing
issues [52, 53].
After careful analysis of the present problem, the

unknown parameters can be grouped into two cat-
egories: one is composed of p and s , and the other
comprises β and μ. The two sets of variables are al-
ternately optimized in succession. First, the
minimization is performed with respect to p and s ,
while β and μ are kept unchanged. Subsequently, we
solve the problem for β and μ while keeping p and s
constant. This procedure is repeated until the con-
vergence criterion is satisfied. A detailed description
of the two steps in each iteration is given in the fol-
lowing subsection.

4.2.1 Joint optimization of p and s

First, consider the joint optimization of p and s, with

β and μ given by β̂
ðaÞ

and μ̂ðaÞ , respectively. Fortu-
nately, when β and μ are fixed, the estimation of p
and s can be decoupled.

Using the result in [27], we have the following
optimization problem for finding the position vector p.

max
p

f 1 pð Þ ¼ max
p

λmax B p; μ̂ að Þ
� �� �H

B p; μ̂ að Þ
� �	 


¼ max
p

λmax C p; μ̂ að Þ
� �n o

ð15Þ
where λmax{⋅} denotes the maximal eigenvalue of its in-
put matrix and

C p; μ̂ að Þ
� �

¼ B p; μ̂ að Þ
� �� �H

B p; μ̂ að Þ
� �

B p; μ̂ að Þ
� �

¼ A p; μ̂ að Þ
� �� �H

X

8><>: ð16Þ

with X ¼ blkdiag½x1 x2 ⋯ xN � . Note that the
cost function f1(p) in (15) is expressed as the max-
imal eigenvalue of some positive semidefinite matrix
and, hence, the functional form of f1(p) with respect
to p is not explicit. The most straightforward
method for solving (15) may be a grid search, as rec-
ommended in [27]. However, this method is very
computationally expensive when the area of interest
is large and the grid step size is small. To avoid a
multidimensional search, we derive an efficient
Gauss-Newton algorithm, which has much faster
convergence speed than the steepest ascent and stee-
pest descent methods. For this purpose, we first
introduce the following proposition, which is associ-
ated with the matrix eigenvalue perturbation result.
Proposition 1: Let Z ∈ Cn × nbe a positive semidefi-

nite matrix with eigenvalues λ1 ≤ λ2 ≤⋯ ≤ λn, associ-
ated with unit eigenvectors v1 , v2 , ⋯ , vn,
respectively. Moreover, λjdiffers from the other eigen-
values. Assume Z is corrupted by a Hermitian error
matrix δΖ ∈ Cn × n, and the corresponding perturbed

matrix is denoted as Ẑ, i.e., Ẑ ¼ Zþ δZ∈Cn�n . If the

eigenvalues of matrix Ẑ are defined by λ̂1≤ λ̂2≤⋯≤ λ̂n,
then the relationship between λ̂ j and λjcan be de-
scribed by

λ j ¼ λ j þ vHj � δZ � v j þ vHj � δZ � V j � δZ � v j þ o δZk k2F
� �

ð17Þ
where

V j ¼
Xn
i ¼ 1
i≠ j

vivHi
λ j−λi

ð18Þ

The proof of Proposition 1 is given in Appendix 1.
The result in Proposition 1 can be used to obtain

Wang et al. EURASIP Journal on Advances in Signal Processing  (2018) 2018:38 Page 5 of 28



the second-order Taylor series expansion of the cost
function f1(p), from which the gradient and Hessian
matrix of f1(p) can be obtained.
Assume that vector p̂ belongs to some neighbor-

hood of the true value p. The second-order Taylor

series expansion of Cðp̂; μ̂ðaÞÞ around p leads to

C p̂; μ̂ að Þ
� �

¼ C p; μ̂ að Þ
� �

þ
XL
l¼1

< δp>l � _Cl p; μ̂ að Þ
� �

þ 1
2
�
XL
l1¼1

XL
l2¼1

< δp>l1 � < δp>l2 � €Cl1l2 p; μ̂ að Þ
� �

þo δpk k22
� �

ð19Þ
where

_Cl p; μ̂ að Þ
� �

¼
∂C p; μ̂ að Þ

� �
∂ < p>l

¼ _Bl p; μ̂ að Þ
� �� �H

B p; μ̂ að Þ
� �

þ B p; μ̂ að Þ
� �� �H

_Bl p; μ̂ að Þ
� �

ð20Þ

€Cl1l2 p; μ̂ að Þ
� �

¼
∂2C p; μ̂ að Þ

� �
∂ < p>l1∂ < p>l2

¼ €Bl1l2 p; μ̂ að Þ
� �� �H

B p; μ̂ að Þ
� �

þ B p; μ̂ að Þ
� �� �H

€Bl1l2 p; μ̂ að Þ
� �

þ _Bl1 p; μ̂ að Þ
� �� �H

_Bl2 p; μ̂ að Þ
� �

þ _Bl2 p; μ̂ að Þ
� �� �H

_Bl1 p; μ̂ að Þ
� �

ð21Þ

with _Blðp; μ̂ðaÞÞ ¼ ∂Bðp;μ̂ðaÞÞ
∂<p>l

and €Bl1l2ðp; μ̂ðaÞÞ ¼
∂2Bðp;μ̂ðaÞÞ

∂<p>l1 ∂<p>l2
. Let λ1ðp; μ̂ðaÞÞ≤λ2ðp; μ̂ðaÞÞ≤⋯≤λNðp; μ̂ðaÞÞ

and v1ðp; μ̂ðaÞÞ ; v2ðp; μ̂ðaÞÞ ; ⋯ ; vN ðp; μ̂ðaÞÞ be the
eigenvalues and relevant unit eigenvectors of matrix

Cðp; μ̂ðaÞÞ , respectively. Combining (15), (17), and
(19) leads to

f 1 p̂ð Þ ¼ λmax C p̂; μ̂ að Þ
� �n o

¼ λN p; μ̂ að Þ
� �

þ
XL
l¼1

< δp>l � vN p; μ̂ að Þ
� �� �H

_Cl p; μ̂ að Þ
� �

vN p; μ̂ að Þ
� �

þ 1
2
�
XL
l1¼1

XL
l2¼1

< δp>l1 � < δp>l2

� vN p; μ̂ að Þ
� �� �H

ð2 _Cl1 p; μ̂ að Þ
� �

VN p; μ̂ að Þ
� �

_Cl2 p; μ̂ að Þ
� �

þ€Cl1l2 p; μ̂ að Þ
� �

ÞvN p; μ̂ að Þ
� �

þ o δpk k22
� �

ð22Þ
where

VN p; μ̂ að Þ
� �

¼
XN−1

n¼1

vn p; μ̂ að Þ
� �

vn p; μ̂ að Þ
� �� �H

λN p; μ̂ að Þ
� �

−λn p; μ̂ að Þ
� � ð23Þ

Define the following vector and matrices

h p; μ̂ að Þ
� �

¼

vN p; μ̂ að Þ
� �� �H

_C1 p; μ̂ að Þ
� �

vN p; μ̂ að Þ
� �

vN p; μ̂ að Þ
� �� �H

_C2 p; μ̂ að Þ
� �

vN p; μ̂ að Þ
� �

⋮

vN p; μ̂ að Þ
� �� �H

_CL p; μ̂ að Þ
� �

vN p; μ̂ að Þ
� �

26666664

37777775
H p; μ̂ að Þ
� �

¼ H1 p; μ̂ að Þ
� �

þH2 p; μ̂ að Þ
� �

8>>>>>>>>><>>>>>>>>>:
ð24Þ

where

Then, f 1ðp̂Þ in (22) can be rephrased as

f 1 p̂ð Þ ¼ f 1 pð Þ þ δpT � h p; μ̂ að Þ
� �

þ 1
2
� δpT �H p; μ̂ að Þ

� �
� δp

þo δpk k22
� � ¼ f 1 pð Þ þ δpT � Re h p; μ̂ að Þ

� �n o
þ 1
2
� δpT � Re H p; μ̂ að Þ

� �n o
� δpþ o δpk k22

� �
ð26Þ

where the second equality follows from the fact that
f1(⋅) is a real function and δp is a real vector. From
(26), Refhðp; μ̂ðaÞÞg and RefHðp; μ̂ðaÞÞg are the gra-
dient and Hessian matrix of f1(p), respectively. Con-
sequently, the Gauss-Newton algorithm for solving
(15) is given by

p iþ1ð Þ ¼ p̂i−αi Re H p̂ ið Þ; μ̂ að Þ
� �n o� �−1

� Re h p̂ ið Þ; μ̂ að Þ
� �n o

ð27Þ
where α ∈ (0, 1) denotes the step size, and superscript i
indexes the ith iteration.
Before proceeding, some remarks are concluded.
Remark 1: Clearly, (15) is a nonlinear least-squares

optimization problem, so it can be effectively solved by
the Gauss-Newton algorithm.

Remark 2: Note that the imaginary parts of hðp; μ̂ðaÞÞ
and Hðp; μ̂ðaÞÞ are ignored in (26) and (27). However,
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this does not lead to any information loss or perform-
ance degradation. The vanishing term in the second

equality in (26) is δpT � Imfhðp; μ̂ðaÞÞg þ δpT � ImfHðp;
μ̂ðaÞÞg � δp=2 , which is equal to zero because f 1ðp̂Þ ,
f1(p), and δp are real scalars or vectors. As a result,

Refhðp; μ̂ðaÞÞg and RefHðp; μ̂ðaÞÞg are the true gradi-
ent and Hessian matrix of f1(p), respectively, and no
approximation is necessary. Hence, (27) can be
viewed as a standard Gauss-Newton algorithm.
Remark 3: It is worth noting that apart from

Gauss-Newton algorithm, there are many other local
search algorithms, such as Newton algorithm, stee-
pest descent algorithm, Levenberg-Marquardt algo-
rithm, etc. However, Newton algorithm is much
more computationally demanding because it requires
computing the second-order derivative of the cost
function; steepest descent algorithm has slower
convergence rate than the other algorithms;
Levenberg-Marquardt algorithm needs to introduce a
reasonable damping factor, which is difficult to de-
termine. For these reasons, we use Gauss-Newton al-
gorithm to solve (15). In our simulation performed
in Section 7, this algorithm can provide satisfactory
results. Besides, it must be emphasized that all these
algorithms can only guarantee local convergence;
that is to say, it is not guaranteed to obtain the glo-
bal optimal solution for these algorithms.
Remark 4: In the simulations described in Section

7, the step size α is set to 0.85. A number of simula-
tion results indicate that this value for α provides
good estimates of the source position.

Assuming that the convergence result of (27) is p̂ðaÞ ,
the derivation in [27] implies that the optimal solution
of s is given by

bs að Þ ¼ vmax B p̂ að Þ; μ̂ að Þ
� �

B p̂ að Þ; μ̂ að Þ
� �� �H

	 

ð28Þ

where vmax{⋅} denotes the eigenvector (with first
element equal to one) corresponding to the largest
eigenvalue of its matrix argument.

4.2.2 Joint optimization of β and μ
This subsection describes the minimization of the criter-
ion in (12) with respect to β and μ, while p and s are

fixed at p̂ðaÞ and bsðaÞ, respectively.
Likewise, the estimation of β and μ can also be

decoupled. First, the channel attenuation scalar {βn}1 ≤
n ≤N that minimizes (12) is given by

β̂n;opt ¼
1

an p̂ að Þ;μn

� ���� ���2
2
� bs að Þ

⊙γn p̂ að Þ
� ���� ���2

2

� bs að Þ
⊙γn p̂ að Þ

� �� �
� an p̂ að Þ;μn

� �� �H
xn

1≤n≤Nð Þ
ð29Þ

Inserting (29) back into (12) we get the following con-
centrated problem

As each term in the sum only depends on the par-
ameter of one array (i.e., μn), the minimization in
(30) can be performed by solving the following N
subproblems:

where

Obviously, (31) is a nonlinear least-squares
optimization problem, which can be efficiently solved
by the Gauss-Newton algorithm. The corresponding
iterative formula is given by

where i is the iteration number and Gn(μn) is the
Jacobian matrix of gn(μn), i.e.,

Gn μnð Þ ¼ ∂gn μnð Þ
∂μT

n
¼ Gn;1 μnð Þ

Gn;2 μnð Þ
� �

ð34Þ

From (32), it can be checked that
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Gn;1 μnð Þ ¼
bs að Þ

⊙γn p̂ að Þ
� �� �

� an p̂ að Þ;μn

� �� �H
xn

an p̂ að Þ; μn

� ���� ���2
2
� bs að Þ

⊙γn p̂ að Þ
� ���� ���2

2

� bs að Þ
⊙γn p̂ að Þ

� �� �
�
∂an p̂ að Þ;μn

� �
∂μT

n

0@ 1A

þ
bs að Þ

⊙γn p̂ að Þ
� �� �

� an p̂ að Þ;μn

� �� �
xTn

an p̂ að Þ;μn

� ���� ���2
2
� bs að Þ

⊙γn p̂ að Þ
� ���� ���2

2

� bs að Þ
⊙γn p̂ að Þ

� �� ��
�
∂ an p̂ að Þ; μn

� �� ��

∂μT
n

0@ 1A
−
2 bs að Þ

⊙γn p̂ að Þ
� �� �

� an p̂ að Þ;μn

� �� �H
xn

an p̂ að Þ;μn

� ���� ���4
2
� bs að Þ

⊙γn p̂ að Þ
� ���� ���2

2

� bs að Þ
⊙γn p̂ að Þ

� �� �
� an p̂ að Þ;μn

� �� �
an p̂ að Þ;μn

� �� �H

�
∂an p̂ að Þ;μn

� �
∂μT

n

ð35Þ

Gn;2 μnð Þ ¼ 1ffiffiffi
2

p �Ω−1=2
n;0 ð36Þ

We conclude some remarks as follows.
Remark 5: Similarly, as (31) is also a nonlinear

least-squares optimization problem, we can use the
Gauss-Newton algorithm to find its optimal
solution.

Remark 6: The imaginary parts of ðGnðμ̂ðiÞ
n ÞÞHGnðμ̂ðiÞ

n Þ

and are neglected

in (33). Nevertheless, this does not mean that there
are any approximations in (33), because μn is a real
vector. The detailed derivation of (33) is given in
Appendix 2.

Assuming that the convergence result of (33) is μ̂ðaÞ
n ,

substituting this back into (29) leads to the estimation

of β, which is denoted by β̂
ðaÞ
.

4.2.3 Summary of the alternating minimization algorithm
The ingredients of the previous two subsections can
be combined to form the proposed alternating
minimization algorithm, which is summarized as
follows.

Proposed alternating minimization algorithm I

Step 1: Define a convergence threshold δ > 0 and choose the initial
values p̂ð0Þ , ŝð0Þ , μ̂ð0Þ and β̂

ð0Þ
.

Step 2: Set the iteration counter m≔ 0 and compute the cost function

JðmÞ
U using (12).

Step 3: Calculate p̂ðmÞ using the Gauss-Newton algorithm given in (27).

Step 4: Compute ŝðmÞ according to (28).

Step 5: Calculate μ̂ðmÞ from (33).

Step 6: Compute β̂
ðmÞ

via (29).

Step 7: Increment the iteration counter m≔m + 1 and compute the
cost function JðmÞ

U using (12). If j JðmÞ
U − Jðm−1Þ

U j ≤δ, stop the procedure;
otherwise go to Step 3.

The following remarks concern the alternating
minimization algorithm described above.
Remark 7: The algorithm iterates until the

convergence criterion is satisfied. Similar to the analysis
in [54], it follows that, at each step, the cost function

reduces so that J ð1ÞU > J ð2ÞU > ⋯ > J ðmÞ
U ≥0 . Therefore,

f J ðmÞ
U gþ∞

m¼1 is a convergent series and the convergence is
ensured. Based on our experimental results, 20 iterations
are sufficient to guarantee the convergence.
Remark 8: As in many iterative algorithms, convergence

to the global optimum of the cost function depends on
the initial estimate. If the initial values are properly
chosen, the effects of these initial errors can largely be
removed. For the problem at hand, the initial value of μ
can be chosen as its nominal value μ0, and the starting
point of p can be obtained using the traditional two-step
localization method, where the DOA parameter can be es-
timated by subspace-based methods [1–3]. If the un-
knowns to be found are DOAs, the array manifold in
(1)-(3) should be modeled as a function of direction, as in
[1–3]. This is not difficult, because the position vector p is
a function of direction. Once the DOAs relative to all ar-
rays have been estimated, the initial source position can
be easily determined using the closed-form method [4]. In
addition, s and β can be initialized from (28) and (29), re-
spectively. The simulation results in Section 7 demon-
strate that using these initial estimates gives satisfactory
performance.

4.2.4 Complexity analysis
Here, the computational complexity of the proposed DPD
method is studied in terms of the number of multiplication.
Table 1 summarizes the numerical complexity.

5 Direct position determination method for case
of known signal waveform
The aim of this section is to propose an alternative robust
DPD method that accounts for the uncertainties in the
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array manifold for the case of known signal waveforms.
Applications of this study can be found in, for example,
wireless communications, where some known preamble
sequences are often transmitted for training or
synchronization purposes [55, 56]. Similar to Section 4,
the robust DPD algorithm developed here is also based on
an optimal MAP estimator for the current problem.

5.1 Optimization criterion for maximum a posteriori
estimator
If the transmitted signals are a priori known, the sole
unknown parameter embedded in s is t0. Consequently,
we can consider the estimation of t0 instead of s . Using
the a priori distribution of {μn}1 ≤ n ≤N, the MAP estimator
with respect to p, t0, β, and μ can be written as

min
p;t0;β;μ

JK‐MAP p; t0;β;μð Þ ¼ min
p;t0;β;μ

f JK‐ML p; t0;β; μð Þ

þ 1
2
�
XN
n¼1

μn−μn;0

� �T
Ω−1

n μn−μn;0

� �
g

ð37Þ

where

JK‐MAP p; t0;β;μð Þ ¼ JK‐ML p; t0; β;μð Þ þ 1
2

�
XN
n¼1

μn−μn;0

� �T
Ω−1

n μn−μn;0

� �
ð38Þ

Here, JK ‐ML(p, t0, β, μ) is the negative log-likelihood
function for the case of known waveform, which can be
formulated as

JK‐ML p; t0; β;μð Þ ¼ 1
σ2
ε
�
XN
n¼1

XK
k¼1

kxn;k−βnanðp;μnÞsk

� exp − jωk τn pð Þ þ t0ð Þf gk22
¼ 1

σ2ε
�
XN
n¼1

xn−ð s0⊙φn p; t0ð Þð Þk � anðp;μnÞÞβnk22

ð39Þ

where

f s0 ¼ s1 s2 ⋯ sK½ �T
φn p; t0ð Þ ¼ ½ exp − jω1 τn pð Þ þ t0ð Þf g exp − jω2 τn pð Þ þ t0ð Þf g

⋯ exp − jωK τn pð Þ þ t0ð Þf g�T

ð40Þ

Note that the vector s0 is known here. Combining
(37)–(39), we obtain the following optimization
problem:

min
p;t0;β;μ fXNn¼1

xn−ð s0⊙φn p; t0ð Þð Þk � anðp;μnÞÞβnk22

þ 1
2
�
XN
n¼1

μn−μn;0

� �T
Ω−1

n;0 μn−μn;0

� �
g

ð41Þ

It does not seem possible to solve (41) in closed form
because of its nonlinear nature. In the next subsection,
an efficient numerical algorithm for solving this problem
is presented.

5.2 Numerical algorithm
The algorithm proposed in this subsection is similar to
that in Subsection 4.2, and is also implemented by
adopting the alternating minimization algorithm. After a
close inspection of (41), we can divide the unknown
parameters into two categories: one is composed of p
and t0, and the other comprises β and μ. The two sets of
variables are alternately updated by separate
optimization procedures. A detailed description of the
proposed algorithm is given in the following subsections.

5.2.1 Joint optimization of p and t0
We perform joint optimization with respect to p and t0,

with β and μ fixed to β̂
ðbÞ

and μ̂ðbÞ, respectively.
According to the derivation in [27], the joint estimates

of p and t0 can be obtained by solving the following
optimization problem:

max
p;t0

f 3 p; t0ð Þ ¼ max
p;t0

ðBðp; μ̂ bð ÞÞÞHS0d t0ð Þ
��� ���2

2
ð42Þ

where

S
0 ¼ diag s0½ � ¼ diag s1 s2 ⋯ sK½ �

d t0ð Þ ¼ exp − jω1t0f g exp − jω2t0f g ⋯ exp − jωK t0f g½ �T
	

ð43Þ

We define a permutation matrix Π subject to

vec B p; μ̂ bð Þ
� �� �H

� �
¼ Π � vec B p; μ̂ bð Þ

� �� �
ð44Þ

Using the identity vec(XYZ) = (ZT⊗X) ⋅ vec(Y), (42)
can then be written as

max
p;t0

f 3 p; t0ð Þ ¼ max
p;t0

S
0
d t0ð Þ

� �T
� IN

� �
Πbðp; μ̂ bð ÞÞ

���� ����2
2

ð45Þ

where bðp; μ̂ðbÞÞ ¼ vecðBðp; μ̂ðbÞÞÞ . Note that, instead of
finding p and t0 jointly, we can estimate them separately
in sequence to reduce the computational complexity.
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First, we consider t0 as a nuisance parameter and
rewrite (45) as an optimization problem for the position
vector p as follows:

max
p

f 4 pð Þ ¼ max
p

max
t0

S
0
d t0ð Þ

� �T
� IN

� �
Πbðp; μ̂ bð ÞÞ

���� ����2
2

( )
ð46Þ

where

f 4 pð Þ ¼ max
t0

S
0
d t0ð Þ

� �T
� IN

� �
Πbðp; μ̂ bð ÞÞ

���� ����2
2

ð47Þ
In (47), the functional form of f4(p) is not explicit.

Therefore, the most straightforward method for solving
(46) may be a grid search. However, this is
computationally intensive, as stated previously. Thus, we
develop an iterative algorithm for solving (44) based on
the Gauss-Newton algorithm.
To obtain an iterative procedure, we need to derive

the gradient and Hessian matrix of the cost function
f4(p). For this purpose, a preliminary mathematical
result is presented as follows.
Proposition 2: Consider a twice continuously

differentiable function f(z, y) that depends on the
independent variables y ∈R and z ∈Rm × 1. Define a
vector function f mðzÞ ¼ max

y
f f ðz; yÞg and assume that,

for a given z, the extreme point that maximizes f(z, y)
with respect to y is denoted as ym(z). The gradient and
Hessian matrix of fm(z) are then given by

fm zð Þ ¼ ∂ f m zð Þ
∂z

¼ _f1 z; ym zð Þð Þ

Fm zð Þ ¼ ∂2 f m zð Þ
∂z∂zT

¼ €F11 z; ym zð Þð Þ−
€f21 z; ym zð Þð Þ€fT21 z; ym zð Þð Þ

€f 22 z; ym zð Þð Þ

8>><>>:
ð48Þ

where

_f 2 z; yð Þ ¼ ∂ f z; yð Þ
∂y

; €f 22 z; yð Þ ¼ ∂2 f z; yð Þ
∂y2

_f1 z; yð Þ ¼ ∂ f z; yð Þ
∂z

; €f21 z; yð Þ ¼ ∂ _f 2 z; yð Þ
∂z

¼ ∂2 f z; yð Þ
∂y∂z

€F11 z; yð Þ ¼ ∂2 f z; yð Þ
∂z∂zT

8>>>>>><>>>>>>:
ð49Þ

The proof of Proposition 2 is provided in
Appendix 3. Note that the gradient and Hessian
matrix of the criterion function f4(p) can be
obtained from this result.
We first assume that, for a given p, the point that

maximizes f3(p, t0) with respect to t0 is denoted as t0,
m(p). This can be obtained by the fast Fourier transform

(FFT) [27]. Using (45) and the first equality in (48), the
gradient of f4(p) can be expressed as

r p; μ̂ bð Þ
� �

¼ ∂ f 4 pð Þ
∂p

¼ ∂ f 3 p; t0ð Þ
∂p

����
t0¼t0;m pð Þ

¼ 2 � Ref ∂b p; μ̂ bð Þ
� �
∂pT

0@ 1AH

ΠT

ððS0� d t0;m pð Þ� �� �
� d t0;m pð Þ� �� �T

S
0TÞ � IN ÞΠbðp; μ̂ bð ÞÞg

ð50Þ

Furthermore, using the second equality in (48), the
Hessian matrix of f4(p) can be formulated as

R p; μ̂ bð Þ
� �

¼ ∂2 f 4 pð Þ
∂p∂pT

¼ R0 p; μ̂ bð Þ
� �

−
1

r0 p; μ̂ bð Þ
� �

� r0 p; μ̂ bð Þ
� �

r0 p; μ̂ bð Þ
� �� �T

ð51Þ

where

R0 p; μ̂ bð Þ
� �

¼ ∂2 f 3 p; t0ð Þ
∂p∂pT

����
t0¼t0;m pð Þ

; r0 p; μ̂ bð Þ
� �

¼ ∂2 f 3 p; t0ð Þ
∂p∂t0

����
t0¼t0;m pð Þ

; r0 p; μ̂ bð Þ
� �

¼ ∂2 f 3 p; t0ð Þ
∂t20

����
t0¼t0;m pð Þ

ð52Þ
Combining (45) and (50) leads to

R0 p; μ̂ bð Þ
� �

¼ 2 � Ref ∂b p; μ̂ bð Þ
� �
∂pT

0@ 1AH

ΠTððS0� d t0;m pð Þ� �� �
� d t0;m pð Þ� �� �T

S
0TÞ � IN ÞΠ �

∂b p; μ̂ bð Þ
� �
∂pT

g þ 2

� RefððΠTððS0� d t0;m pð Þ� �� �
� d t0;m pð Þ� �� �T

S
0TÞ � IN ÞΠbðp; μ̂ bð ÞÞÞT � ILÞ

� ∂
∂pT

vec
∂b p; μ̂ bð Þ

� �
∂pT

0@ 1AH0B@
1CAg

ð53Þ
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At this point, the Gauss-Newton algorithm for solving
(46) can be formulated as

p̂ iþ1ð Þ ¼ p̂ ið Þ−αi R p̂ ið Þ; μ̂ bð Þ
� �� �−1

r p̂ ið Þ; μ̂ bð Þ
� �

ð56Þ

where α ∈ (0, 1) is the step size, and superscript i
represents the iteration number.

Let the convergence result of (56) be p̂ðbÞ . Then, t0
can be obtained from the following minimization
problem:

max
t0

f 5 t0ð Þ ¼ max
t0

ðBðp̂ bð Þ; μ̂ bð ÞÞÞHS0d t0ð Þ
��� ���2

2
ð57Þ

Note that the cost function in (57) can be
minimized via FFT algorithm, which has been
discussed in [27].

5.2.2 Joint optimization of β and μ
The objective function in (41) is now minimized with

respect to β and μ, with p and t0 given by p̂ðbÞ and t̂
ðbÞ
0 ,

respectively. Note that the algorithm presented in

Section 4.2.2 can still be applied here, but p̂ðaÞ , γnðp̂ðaÞÞ,
and bsðaÞ must be replaced with p̂ðbÞ, φnðp̂ðbÞ; t̂ðbÞ0 Þ, and

bs bð Þ ¼ ½s1 � exp − jω1 t̂
bð Þ
0

n o
s2

� exp − jω2 t̂
bð Þ
0

n o
⋯ sK � exp − jωK t̂

bð Þ
0

n o
�
T
;

ð58Þ

respectively.

5.2.3 Summary of the alternating minimization algorithm
A possible implementation of the proposed alternating
minimization algorithm is outlined as follows.

Proposed alternating minimization algorithm II

Step 1: Define a convergence threshold δ > 0 and choose the initial
values p̂ð0Þ , t̂ð0Þ0 , μ̂ð0Þ and β̂

ð0Þ
.

Step 2: Set the iteration counter m≔ 0 and compute the cost function

JðmÞ
K using (41).

Step 3: Calculate p̂ðmÞ using the Gauss-Newton algorithm given in (56).

Step 4: Compute t̂
ðmÞ
0 from (57) by FFT algorithm.

Step 5: Calculate μ̂ðmÞ from (33) and (58).

Step 6: Compute β̂
ðmÞ

via (29) and (58).

Step 7: Increment the iteration counter m≔m + 1 and compute the
cost function JðmÞ

K using (41). If j JðmÞ
K − Jðm−1Þ

K j ≤δ, stop the procedure;
otherwise go to Step 3.

In the following, we make two remarks concerning the
alternating minimization algorithm described above.

Remark 9: Similar to sequence f J ðmÞ
U gþ∞

m¼1, f J ðmÞ
K gþ∞

m¼1 is
also monotonically decreasing and, hence, convergence
is guaranteed. From our simulation results, it can be
observed that 20 iterations are generally enough to
satisfy the convergence criterion.
Remark 10: The selection of the initial values is

again important. For the current problem, the initial
value of μ can be chosen as its nominal value μ0 and
the starting point of p can be obtained using the
two-step localization method, where the DOA param-
eter can be estimated by the algorithm proposed for
the scenario of known waveforms [55, 56]. As stated
in Remark 8, when the unknowns to be determined
are DOAs, we need to express the array manifold in
(1)–(3) as a function of direction, as in [1–3]. This
can easily be achieved, because the position vector p
is a function of DOA. Once the DOAs corresponding
to all the arrays have been estimated, the estimated
initial position is given by the closed-form method

r0 p; μ̂ bð Þ
� �

¼ 2 � Re
∂b p; μ̂ bð Þ

� �
∂pT

0@ 1AH

ΠT S
0� _d t0;m pð Þ� �� ��

d t0;m pð Þ� �� �T
S
0T� �

� IN
� �

Πbðp; μ̂ bð ÞÞ

8><>:
9>=>;

þ2 � Re
∂b p; μ̂ bð Þ

� �
∂pT

0@ 1AH

ΠT S
0�

d t0;m pð Þ� �� �� _d t0;m pð Þ� �� �T
S
0T� �

� IN
� �

Πbðp; μ̂ bð ÞÞ

8><>:
9>=>;

ð54Þ

r0 p; μ̂ bð Þ
� �

¼ 2 � Re b p; μ̂ bð Þ
� �� �H

ΠT S
0� €d t0;m pð Þ� �� ��

d t0;m pð Þ� �� �T
S
0T� �

� IN
� �

Πb p; μ̂ bð Þ
� �	 


þ2 � Re b p; μ̂ bð Þ
� �� �H

ΠT S
0� _d t0;m pð Þ� �� �� _d t0;m pð Þ� �� �T

S
0T� �

� IN
� �

Πb p; μ̂ bð Þ
� �	 
 ð55Þ
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[4]. Further, from (57), we have the initial solution of
t0 from the FFT algorithm, and the initial guess of β
can be given by (29) and (58). From the results in
Section 7, it is clear that these initial estimates allow
the proposed algorithm to provide satisfactory
estimation accuracy.

5.2.4 Complexity analysis
We now address the computational complexity of the
proposed DPD method in terms of the number of
multiplications. Table 2 summarizes the numerical
complexity.

6 Cramér-Rao bound on covariance matrix of
localization errors
The CRB gives a lower bound on the asymptotic
covariance matrix of any asymptotically unbiased
estimator. The bound can be obtained by the inverse
of the Fisher information matrix (FIM). Relating the
parameter estimates to this bound can provide a
nature measure of performance. The purpose of this
section is to derive the CRBs for the estimates of the
emitter’s position. We consider the cases when the
signal waveform is unknown and when the signal
waveform is known.

6.1 Cramér-Rao bound on position estimate for case of
unknown signal waveform
This subsection is devoted to the derivation of the CRB
for localization under the assumption that the signal
waveform is unknown. For this case, the full parameter
set contains both the deterministic parameters σ2

ε , p, β, s

, and the stochastic parameter μ. Hence, the CRB

derivation should follow the Bayesian theory framework
[47–50]. Note that the CRB derivation can also be used
for stochastic parameters, as in [47–50, 57, 58]. To this
end, a novel parameter vector that comprises all the
deterministic and stochastic unknowns is introduced as

η að Þ ¼ σ2ε pT Re βf gð ÞT Im βf gð ÞT Re sf gð ÞT Im sf gð ÞT μ
h iT

¼ σ2ε η0 að Þh iT
ð59Þ

where

η0 að Þ ¼ pT Re βf gð ÞT Im βf gð ÞT Re sf gð ÞT Im sf gð ÞT μ
h iT

ð60Þ

We proceed to define a data vector as

x ¼ xH1 xH2 ⋯ xHN
� �H

¼ ½xH1;1 xH1;2 ⋯ xH1;K xH2;1 xH2;2

⋯ xH2;K ⋯ ⋯ xHN ;1 xHN ;2

⋯ xHN ;K �
H

ð61Þ
The mean vector of x is given by

x0 ¼ E x½ � ¼ ½xH1;1;0 xH1;2;0 ⋯ xH1;K ;0 xH2;1;0 xH2;2;0

⋯ xH2;K ;0 ⋯

⋯ xHN ;1;0 xHN ;2;0

⋯ xHN ;K ;0�
H

ð62Þ
where

xn;k;0 ¼ E xn;k
� � ¼ βnan p;μnð Þsk

� exp − jωk τn pð Þ þ t0ð Þf g ð63Þ

When the deterministic and stochastic parameters
coexist, we should use the hybrid CRB. As a
consequence, the FIM for vector η(a) is given by [47–50,
57, 58].

< FIM η að Þ
� �

>ij ¼< FIM1 η að Þ
� �

>ijþ < FIM2 η að Þ
� �

>ij

¼ Ex;μ
∂2 f ML η að Þjx� �

∂ < η að Þ>i∂ < η að Þ> j

" #

þEμ
1
2
� ∂

2 μ−μ0ð ÞTΩ−1 μ−μ0ð Þ
∂ < η að Þ>i∂ < η að Þ> j

" # ð64Þ

where

< FIM1 η að Þ
� �

>ij ¼ Ex;μ
∂2 f ML η að Þjx� �

∂ < η að Þ>i∂ < η að Þ> j

" #

< FIM2 η að Þ
� �

>ij ¼ Eμ
1
2
� ∂

2 μ−μ0ð ÞTΩ−1 μ−μ0ð Þ
∂ < η að Þ>i∂ < η að Þ> j

" #
8>>>><>>>>: ð65Þ

in which f MLðηðaÞjxÞ is the maximum likelihood (ML)
function of the compound data vector x . Note that the
first term, FIM1(η

(a)), resembles the standard expression
for the FIM in the unperturbed model augmented by the
perturbation parameter μ. However, FIM1(η

(a)) is not
easily calculated, because the μ-parameter generally
behaves in a nonlinear fashion, making the expectation
with respect to μ difficult to compute. In [57], the above
expression is examined for some special cases, but it is
hard to generalize this result. Indeed, a more common
approach is to ignore the expectation with respect to μ
and calculate FIM1(η

(a)) at μ0, as in [47–50, 58].
Following the analysis in [47–50, 58], it can be shown
that this approximation is O(1), which implies that
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Ex;μ
∂2 f ML η að Þjx� �

∂ < η að Þ>i∂ < η að Þ> j

" #

¼ Ex
∂2 f ML η að Þjx� �

∂ < η að Þ>i∂ < η að Þ> j

�����
μ0

24 35þ O 1ð Þ ð66Þ

Additionally, note that Ex;μ½ ∂2 fMLðηðaÞjxÞ
∂<ηðaÞ>i∂<ηðaÞ> j

� ¼ OðNKÞ ,
so we can still obtain an asymptotically valid CRB.
Another reason for ignoring this approximation is that
the distribution of μ is symmetric and, in this paper, the
error μ − μ0 is assumed to be sufficiently small.
Combining (64) and the above discussion, the FIM for

vector η′(a) can be approximately expressed as

< FIM η0 að Þ� �
>ij ¼ 2

σ2
ε
�

< Re ΤH
η0 að ÞΤη0 að Þ

n o
>ijþ

< Ω−1>ij � δ i; jð Þ ð67Þ

where δ(i, j) is an indicator function such that δ(i, j) = 1 if
both i and j correspond to the element in μ, δ(i, j) = 0
otherwise, Ω = blkdiag[Ω1 Ω2 ⋯ ΩN], and

Tη0 að Þ ¼ ∂x0
∂η0 að ÞT ¼ ½∂x0

∂pT

∂x0
∂ Re βf gð ÞT

∂x0
∂ Im βf gð ÞT

∂x0
∂ Re sf gð ÞT

∂x0
∂ Im sf gð ÞT

∂x0
∂μT

�

¼ Tp T Re βf g T Im βf g T Re sf g T Im sf g Tμ
� �

ð68Þ

It follows from (67) that

FIM η0 að Þ� �
¼ 2

σ2ε
� Re ΤH

η0 að ÞΤη0 að Þ

n o
þ OO

OΩ−1

� �
ð69Þ

Using (62) and (63), and after some algebraic
manipulations, the sub-matrices in (68) can be written as

Substituting (68) and (70) into (69) leads to

where

The details of calculating the matrices in (72) are
shown in Appendix 4.
Note that, in practice, only the p corner of the CRB

matrix is of interest. Invoking the partitioned matrix
inversion formula, the CRB matrix for position vector p
can be written as

CRB að Þ pð Þ ¼ σ2
ε

2
�

Re Z að Þ
1

n o� �−1 þ Re Z að Þ
1

n o� �−1

� Re Z að Þ
2

n o
� ð Re Z að Þ

3

n o
− Re Z að ÞH

2

n o
� Re Z að Þ

1

n o� �−1

� Re Z að Þ
2

n o
þ OO

Oσ2
εΩ

−1=2

� �
Þ
−1

� Re Z að ÞH
2

n o
� Re Z að Þ

1

n o� �−1
Þ

0BBBBBBBBBBBBB@
ð73Þ

Note that the superscript “a” in (73) indicates that this
CRB corresponds to the case of an unknown signal
waveform. In addition, the trace of this CRB matrix is
the minimum achievable localization MSE.

6.2 Cramér-Rao bound on position estimate for case of
known signal waveform
In this subsection, the CRB on the covariance matrix of
location estimation is deduced for the case where the
transmitted signals are a priori known. Accordingly, the
complete parameter set comprises the deterministic
parameters σ2ε , p, β, and t0, as well as the random
parameter μ. Hence, the hybrid CRB should also be
considered. To proceed, we collect all these parameters
into the following vector:

Tp ¼ ∂x0
∂pT

¼ diag β� 1MK�1½ � � diag 1N�1 � s� 1M�1½ � � ∂ A p;μ0ð Þ1K�1ð Þ
∂pT

T Re βf g ¼ ∂x0
∂ Re βf gð ÞT ¼ diag 1N�1 � s� 1M�1½ � � blkdiag A1 p;μ1;0

� �
1K�1 A2 p; μ2;0

� �
1K�1 ⋯ AN p;μN ;0

� �
1K�1

h i
T Im βf g ¼ ∂x0

∂ Im βf gð ÞT ¼ jT Re βf g ¼ j � diag 1N�1 � s� 1M�1½ � � blkdiag A1 p;μ1;0

� �
1K�1 A2 p; μ2;0

� �
1K�1 ⋯ AN p;μN ;0

� �
1K�1

h i
T Re sf g ¼ ∂x0

∂ Re sf gð ÞT ¼ diag β� 1MK�1½ � � A p;μ0ð Þ

T Im sf g ¼ ∂x0
∂ Im sf gð ÞT ¼ jT Re sf g ¼ j � diag β� 1MK�1½ � � A p;μ0ð Þ

Tμ ¼ ∂x0
∂μT

¼ diag β� 1MK�1½ � � diag 1N�1 � s� 1M�1½ � � ∂ A p;μ0ð Þ1K�1ð Þ
∂μT

0

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:
ð70Þ
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η bð Þ ¼ σ2ε pT Re βf gð ÞT Im βf gð ÞT t0 μ
h iT

¼ σ2ε η0 bð Þh iT
ð74Þ

where

η0 bð Þ ¼ pT Re βf gð ÞT Im βf gð ÞT t0 μ
h iT

ð75Þ

Likewise, the FIM for vector η′(b) can be
approximately expressed as

FIM η0 bð Þ� �
¼ 2

σ2ε
� Re ΤH

η0 bð ÞΤη0 bð Þ

n o
þ OO

OΩ−1

� �
ð76Þ

where

Tη0 bð Þ ¼ ∂x0
∂η0 bð ÞT ¼ ∂x0

∂pT

∂x0
∂ Re βf gð ÞT

∂x0
∂ Im βf gð ÞT

∂x0
∂t0

∂x0
∂μT

" #

¼ Tp T Re βf g T Im βf g Tt0 Tμ
� �

ð77Þ

Note that matrix FIM(η′(b)) is also computed at the
nominal value μ0. According to the analysis in
Subsection 6.1, we can still obtain an asymptotically
valid CRB. In addition, all the sub-matrices in (77) are
given explicitly in (70), except for Tt0 . Therefore, we
need only derive an expression for Tt0 . From (62) and
(63), it can be checked that

Tt0 ¼
∂x0
∂tT0

¼ − j � diag β� 1MK�1½ �
� diag 1N�1 � s⊙ωð Þ � 1M�1½ �
� A p;μ0ð Þ1K�1ð Þ ð78Þ

where ω = [ω1 ω2 ⋯ ωK]
T. Inserting (70), (77),

and (78) into (76) produces

where

(80)
In Appendix 5, the details of calculating the matrices

in (80) are provided.
With the application of the partitioned matrix

inversion formula, the CRB matrix for position vector p
can be expressed as

CRB bð Þ pð Þ ¼ σ2ε
2
�

Re Z bð Þ
1

n o� �−1
þ Re Z bð Þ

1

n o� �−1
� Re Z bð Þ

2

n o
�ð Re Z bð Þ

3

n o
− Re Z bð ÞH

2

n o
� Re Z bð Þ

1

n o� �−1
� Re Z bð Þ

2

n o
þ OO

Oσ2εΩ
−1=2

� �
Þ
−1

� Re Z bð ÞH
2

n o
� Re Z bð Þ

1

n o� �−1
Þ

0BBBBBBBBBBBBBBBBB@
ð81Þ

where the superscript “b” indicates the case of a
known signal waveform, and the trace of CRB(b)(p) is
the minimum achievable MSE for any unbiased
localization method.

7 Simulation results
This section presents a set of Monte Carlo
simulations to examine the behavior of the proposed
robust DPD methods. The RMSE of position estimate
is employed to assess and compare the performance.
All the simulation results are averaged over 2000
independent runs. We compare our algorithms with
the algorithms in [27], and the traditional two-step
localization algorithms, as well as the CRB for un-
known and known signal waveforms. Besides, all the
experiments are conducted for the 3-D localization.

(79)
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7.1 Simulation results for case of unknown signal waveform
In this subsection, the algorithm presented in Section 4
is evaluated and its estimation accuracy is compared
with that of the first algorithm in [27], which assumes
the signal waveform is unknown. Both of these
algorithms are denoted as algorithm I in the figures
below. In addition, the two-step localization algorithm
used for comparison here is realized using the robust
Bayesian algorithm [48] to estimate the DOAs in the
first step and exploiting the Taylor series (TS) algo-
rithm [59] to locate the source in the second phase. If
the unknowns to be found are DOAs, the array mani-
fold in (1)–(3) should be modeled as a function of dir-
ection, as in [1–3]. This is not difficult to achieve
because position vector p is a function of direction.
The array model mismatch considered here is caused
by sensor location perturbations. The sensor position
errors are zero-mean Gaussian random variables in
both the x and y directions, and are independent and
identically distributed (IID) from sensor to sensor and
array to array. The standard deviation of the position
errors is denoted by σL.
In the first set of experiments, we consider three

base stations placed at [0, 2500, 0] m, [0, 0, 0] m,
and [0, − 2500, 0] m and a single emitter located at
[1500, 2000, 2000] m. The transmitted waveforms are
realizations of a narrowband Gaussian random
process, and are unknown to the receivers. Each base
station is equipped with a uniform circular array
(UCA). The channel attenuation magnitude is fixed at
1, and the channel phase is selected at random from

a uniform distribution over [−π, π). Additionally,
unless stated otherwise, we use the following settings:
(1) K = 128 samples; (2) SNR = 10 dB; (3) M = 5
sensors; (4) σL = 0.03λ (where λ is the wavelength of
the carrier signal); and (5) array radius equal to the
wavelength. Figures 1, 2, 3, 4, and 5 display the
RMSEs of the localization methods as functions of
the SNR of the emitter signal, number of snapshots
K, standard deviation of the sensor position errors σL,
number of array elements M, and ratio of array
radius to wavelength, respectively.
It can be observed from Figs. 1, 2, 3, 4, and 5 that

algorithm I in this paper outperforms algorithm I in [27]
in terms of the estimation accuracy. The performance gap
is especially noticeable for high SNRs and large sensor
position errors. This is because, in these cases, the array
model errors dominate the performance. Our technique
accounts for these errors and incorporates the prior
statistics of the array perturbations for source localization.
The results in Figs. 1, 2, 3, 4, and 5 show that, when the
SNR decreases and the array aperture increases, the
proposed algorithm gives only a minor performance
improvement. This is because, for lower SNRs and large
array apertures, the measurement noise is the dominant
error source, and the two algorithms give similar
performance. In addition, the estimation accuracy of our
algorithm achieves the CRB provided by (73) at moderate
noise and error levels. Finally, it is worth noting that the
DPD estimators perform significantly better than the
two-step localization method. This improvement has been
explained in the literature.

Fig. 1 RMSEs of localization methods and the corresponding CRBs as a function of SNR of the emitter signal for case of unknown signal waveform
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In the second experiment, we use the same
simulation settings with a varying emitter location.
The source coordinate is set as [1500, 2000, 2000]
+ α∙[200, 200, 200] m, where α ranges from 0 to
10. The distance between the emitter and the
receivers increases as α increases. Figure 6
illustrates the RMSEs of the localization methods
with respect to α.

From Fig. 6, we can draw similar conclusions
similar to those for Figs. 1, 2, 3, 4, and 5; they are
not repeated here for reasons of brevity. We only
emphasize that the RMSE improvement from
algorithm I in this paper over algorithm I in [27] is
more significant as α increases. Hence, the gain in
localization accuracy of our algorithm increases as the
source moves farther away from the receivers.

Fig. 2 RMSEs of localization methods and the corresponding CRBs as a function of number of snapshots for case of unknown signal waveform

Fig. 3 RMSEs of localization methods and the corresponding CRBs as a function of standard deviation of sensor position errors for case of unknown
signal waveform
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7.2 Simulation results for case of known signal waveform
In this subsection, the positioning accuracy of the
algorithm given in Section 5 is compared with that of
the second algorithm given in [27], which assumes the
signal waveform is known. These are referred to as
algorithm II in the following figures. Additionally, for a
fair comparison, in the simulated two-step localization

algorithm, the DOAs are estimated by the algorithm pre-
sented in [56], which assumes a known waveform. As
stated above, when the unknowns to be determined are
DOAs, we need to express the array manifold in (1)–(3)
as a function of direction, following [1–3]. This can be
easily achieved because position vector p is a function of
DOA. The array model error results from sensor gain

Fig. 4 RMSEs of localization methods and the corresponding CRBs as a function of number of array elements for case of unknown signal waveform

Fig. 5 RMSEs of localization methods and the corresponding CRBs as a function of ratio of array radius to wavelength for case of unknown
signal waveform
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and phase uncertainties, corresponding to case 2 in Sec-
tion 4 of [39]. Moreover, both gain and phase perturba-
tions are independent and identically distributed
zero-mean Gaussian random variables. The standard de-
viations of the gain and phase errors are denoted as σG
and σP, respectively. We assume σG = 0.01σP hereafter;
thus, if σP changes, σG alters accordingly.
In the first set of experiments, the location system

consists of three base stations located at [500, 2500, 0] m,
[0, 0, 0] m, and [500, − 2500, 0] m. The emitter is
positioned at [1500, 500, 2500] m. The signal waveforms
are generated in the same way as described in Subsection
7.1, but they are known to the receivers. Each base station
is equipped with a UCA. The channel attenuation
magnitude is fixed at 1, and the channel phase is selected
at random from a uniform distribution over [−π, π).
Additionally, unless otherwise specified, we adopt the
following simulation parameters: (1) K = 128 samples;
(2) SNR = 10 dB; (3) M = 6 sensors; (4) σP = 0.1rad;
and (5) array radius equal to wavelength. Figures 7, 8, 9,
10, and 11 plot the RMSEs of the localization
methods against the SNR of the emitter signal,
number of snapshots K, standard deviation of the
sensor phase errors σP, number of array elements M,
and ratio of array radius to wavelength, respectively.
In Figures 7, 8, 9, 10, and 11, the RMSEs clearly

demonstrate the superior performance of algorithm II in
this paper over algorithm II in [27] and the two-step
localization algorithm. Moreover, the performance im-
provement is more pronounced as the SNR and sensor
model errors increase and the array aperture decreases.

The impact of array model mismatch is effectively miti-
gated by our algorithm. Additionally, the proposed algo-
rithm yields a solution that attains the CRB accuracy
provided by (81) at moderate noise and error levels.
In the second experiment, the same simulation

parameters are used, but the source location changes.
The emitter position coordinates are set as [1500, 500,
2500] + α∙[200, 200, 200] m, where α varies from 0 to 10.
Again, the source becomes farther away from the
receivers as α increases. Figure 12 shows the RMSEs of
the localization methods with respect to α.
The performance gain of the proposed algorithm over

the other algorithms is corroborated by the results in
Fig. 12. Moreover, the RMSE improvement of the new
algorithm over algorithm II in [27] becomes stronger as
the source moves farther away from the receivers. This
observation is consistent with the results in Fig. 6.

7.3 Running time of the localization methods
In this subsection, the runtime of all the localization
methods considered in the experiments is compared. All
the simulations were implemented using MATLAB
R2016b on a ThinkPad laptop equipped with Intel Core
i7–7500 CPU and 8 GB RAM.
First, we adopt the simulation settings used to produce

Fig. 2. Figure 13 depicts the average runtime of the
considered localization methods as a function of
snapshot number. Second, the simulation parameters
used to produce Fig. 8 were applied. In Fig. 14, the
average runtime versus the snapshot number is
compared for the considered localization methods.

Fig. 6 RMSEs of localization methods and the corresponding CRBs as a function of α for case of unknown signal waveform
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It is easily observed from Figs. 13 and 14 that the
runtime of the proposed DPD methods is
significantly higher than that of the other methods.
This is because the model errors are considered and
there are too many nuisance variables to be
optimized besides the source position vector. The
two-step localization method has the fastest runtime

among the compared methods, mainly because it is
a decentralized method.

8 Discussion
From the simulation results described above, we can
observe that the proposed algorithms can effectively
mitigate the effects of array model mismatch, and they

Fig. 8 RMSEs of localization methods and the corresponding CRBs as a function of number of snapshots for case of known signal waveform

Fig. 7 RMSEs of localization methods and the corresponding CRBs as a function of SNR of the emitter signal for case of known signal waveform
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outperform the algorithms in [27] obviously for high SNRs
and large sensor position errors. Moreover, the gain in
localization accuracy of our algorithms increases as the
source moves farther away from the receivers. The
estimation performance of the developed algorithms can

attain the corresponding CRB at moderate noise and error
levels. However, the complexity of the proposed algorithms
are higher than that of the algorithms in [27] because they
account for the array model errors and require more
computational procedure. Finally, it needs to be mentioned

Fig. 10 RMSEs of localization methods and the corresponding CRBs as a function of number of array elements for case of known
signal waveform

Fig. 9 RMSEs of localization methods and the corresponding CRBs as a function of standard deviation of sensor phase errors for case of known
signal waveform
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that the present study only deals with the single-source
situation. In our future work, we intend to extend the pro-
posed methods to the multiple-source scenario.

9 Conclusions
This paper presents robust DPD methods that can
reduce the negative effect of array model mismatch.

The idea behind the newly proposed technique is
similar to that of the array error auto-calibration
methods, which assume that certain prior statistical
distribution of the array model errors is available. We
consider two different localization cases, the case of a
priori known signal waveform and the more realistic
case where transmitted signals are unknown to the

Fig. 12 RMSEs of localization methods and the corresponding CRBs as a function of α for case of known signal waveform

Fig. 11 RMSEs of localization methods and the corresponding CRBs as a function of ratio of array radius to wavelength for case of known
signal waveform
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location systems. The corresponding MAP estimators
for the two cases are formulated and two effective al-
ternating minimization algorithms are developed to
locate the source directly from the signals captured at
several antenna arrays simultaneously. The proposed
methods follow the Bayesian framework given in [47–
50]. Besides, for the purpose of verifying the

asymptotic efficiency of the new methods, the CRB
expressions for position estimation are also deduced
for both unknown and known signal waveforms.
Simulation results confirm that the proposed algo-
rithms are able to provide the CRB accuracy and the
effect of array model errors can be decreased
considerably.

Fig. 14 Average running time as a function of the snapshot number (the second simulation results)

Fig. 13 Average running time as a function of the snapshot number (the first simulation results)
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10 Appendix 1
10.1 Proof of Proposition 1

Assume the normalized eigenvectors of matrix Ẑ are v̂1 ;
v̂2 ; ⋯ ; v̂n . Applying the Hermitian matrix
eigen-perturbation theory [60], we have

λ̂ j ¼ λ j þ δλ 1ð Þ
j þ δλ 2ð Þ

j þ⋯

v̂ j ¼ 1−
1
2
�
Xn
i ¼ 1
i≠ j

ξ 1ð Þ
ji

��� ���2
0BBBB@

1CCCCAv j þ
Xn
i ¼ 1
i≠ j

ξ 1ð Þ
ji vi þ

Xn
i ¼ 1
i≠ j

ξ 2ð Þ
ji vi þ⋯

8>>>>>>><>>>>>>>:
ð82Þ

where δλð1Þj and ξð1Þji are the first-order perturbation

terms, i.e., δλð1Þj ¼ OðkδZk2Þ and ξð1Þji ¼ OðkδZk2Þ , and
δλð2Þj and ξð2Þji are the second-order perturbation terms,

i.e., δλð2Þj ¼ OðkδZk22Þ and ξð2Þji ¼ OðkδZk22Þ . It follows

from the matrix eigen-equation that

Ẑv̂ j ¼ λ̂ jv̂ j⇔ Zþ δZð Þð 1−
1
2
�
Xn
i ¼ 1
i≠ j

ξ 1ð Þ
ji

��� ���2
0BBBB@

1CCCCAv j

þ
Xn
i ¼ 1
i≠ j

ξ 1ð Þ
ji vi þ

Xn
i ¼ 1
i≠ j

ξ 2ð Þ
ji vi þ⋯Þ

¼ λ j þ δλ 1ð Þ
j þ δλ 2ð Þ

j þ⋯
� �ð 1−

1
2
�

Xn
i ¼ 1
i≠ j

ξ 1ð Þ
ji

��� ���2
0BBBB@

1CCCCAv j

þ
Xn
i ¼ 1
i≠ j

ξ 1ð Þ
ji vi þ

Xn
i ¼ 1
i≠ j

ξ 2ð Þ
ji vi þ⋯Þ

ð83Þ

Comparing the first-order perturbation terms between
both sides of (83), it can be observed that

Xn
i ¼ 1
i≠ j

ξ 1ð Þ
ji λivi þ δZ � v j ¼

Xn
i ¼ 1
i≠ j

ξ 1ð Þ
ji λ jvi þ v j � δλ 1ð Þ

j

ð84Þ

Premultiplying vHj and vHi ði≠ jÞ on both sides of (84)

leads to

δλ 1ð Þ
j ¼ vHj � δZ � v j

ξ 1ð Þ
ji ¼ vHi � δZ � v j

λ j−λi

8><>: ð85Þ

Furthermore, comparing the second-order perturb-
ation terms between both sides of (83), it follows that

Xn
i ¼ 1
i≠ j

ξ 2ð Þ
ji λivi þ

Xn
i ¼ 1
i≠ j

ξ 1ð Þ
ji � δZ � vi

¼
Xn
i ¼ 1
i≠ j

ξ 2ð Þ
ji λ jvi þ

Xn
i ¼ 1
i≠ j

ξ 1ð Þ
ji � δλ 1ð Þ

j � vi þ δλ 2ð Þ
j � v j

ð86Þ

Premultiplying vHj on both sides of (86) and using (85)

yields

δλ 2ð Þ
j ¼

Xn
i ¼ 1
i≠ j

ξ 1ð Þ
ji vHj � δZ � vi

¼ vHj � δZ �
Xn
i ¼ 1
i≠ j

vivHi
λ j−λi

0BBBB@
1CCCCA � δZ � v j

¼ vHj � δZ � V j � δZ � v j ð87Þ

Combining (82), (85) and (87) completes the proof.

11 Appendix 2
11.1 Proof of (33)

Assume that μ̂ðiÞ
n is the estimation of μn at the ith

iteration step. In order to obtain the updated estimate of
μn at the (i + 1)th iteration, we need to substitute the

first-order Taylor series expansion of gn(μn) round μ̂ðiÞ
n

into (31), which yields

(88)

Noting that μn−μ̂
ðiÞ
n is a real vector, we can reformulate

(88) as
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(89)
It is obvious that (89) is a linear least-squares estima-

tor, and its optimal solution satisfies

(90)
which indicates that (33) holds true.

12 Appendix 3
12.1 Proof of Proposition 2
From the definition of ym(z), it follows that

f m zð Þ ¼ max
y

f z; yð Þf g ¼ f z; ym zð Þð Þ ð91Þ

Then, the gradient of fm(z) can be written as

fm zð Þ ¼ ∂ f m zð Þ
∂z

¼ _f1 z; ym zð Þð Þ þ _f 2 z; ym zð Þð Þ

� ∂ym zð Þ
∂z

ð92Þ

From (92), we can obtain the Hessian matrix of fm(z)
as

Fm zð Þ ¼ ∂2 f m zð Þ
∂z∂zT

¼ ∂fm zð Þ
∂zT

¼ €F11 z; ym zð Þð Þ þ €f21 z; ym zð Þð Þ

� ∂ym zð Þ
∂z

� �T

þ ∂ym zð Þ
∂z

� €fT21 z; ym zð Þð Þ þ €f 22 z; ym zð Þð Þ

� ∂ym zð Þ
∂z

� ∂ym zð Þ
∂z

� �T

þ _f 2 z; ym zð Þð Þ � ∂
2ym zð Þ
∂z∂zT

ð93Þ

On the other hand, using the definition of ym(z) again,
we have

_f 2 z; ym zð Þð Þ ¼ ∂ f z; yð Þ
∂y

����
y¼ym zð Þ

¼ 0 ð94Þ

Substituting (94) into (92) proves the first equality in
(48). Taking the derivative with respect to z on both
sides of (94) yields

€f21 z; ym zð Þð Þ þ €f 22 z; ym zð Þð Þ � ∂ym zð Þ
∂z

¼ Om�1 ð95Þ

which implies

∂ym zð Þ
∂z

¼ −
€f21 z; ym zð Þð Þ
€f 22 z; ym zð Þð Þ ð96Þ

The second equality in (48) can be proved by inserting
(94) and (96) into (93). At this point, the proof of
Proposition 2 is completed.

13 Appendix 4
13.1 Detailed derivation of matrices in (72)
It can be seen from (72) that, in order to calculate matri-

ces ZðaÞ
1 , ZðaÞ

2 , and ZðaÞ
3 , we must derive the explicit ex-

pressions for matrices ΤH
pΤp , ΤH

pΤ Refβg , ΤH
pΤ Refsg ,

ΤH
pΤμ , ΤH

RefβgΤ Refβg , ΤH
RefβgΤ Refsg , ΤH

RefβgΤμ , ΤH
Refsg

Τ
Refsg, ΤH

RefsgΤμ, and ΤH
μ Τμ.

Using (70) and after some algebraic manipulation, we
have

TH
p Tp ¼

XN
n¼1

XK
k¼1

βn
�� ��2 � skj j2

�
∂a0n;k p;μn;0

� �
∂pT

0@ 1AH

�
∂a0n;k p;μn;0

� �
∂pT

ð97Þ

(98)

(99)

(100)

(101)

(102)

(103)
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TH
Re sf gT Re sf g ¼

XN
n¼1

βn
�� ��2

� diag½ a0n;1 p;μ1;0

� ���� ���2
2

a0n;2ðp;μ2;0Þ
��� ���2

2

⋯ a0n;K ðp;μN ;0Þ
��� ���2

2�
ð104Þ

(105)

(106)

14 Appendix 5
14.1 Detailed derivation of matrices in (80)
From (80) and the results in Appendix 4, in order to cal-

culate matrices ZðbÞ
1 , ZðbÞ

2 , and ZðbÞ
3 , we need to derive the

closed-form expressions for matrices ΤH
t0Τt0 , Τ

H
t0Τp , ΤH

t0

Τ Refβg, and ΤH
t0Τμ.

Combining (70) and (78) and after some algebraic ma-
nipulation, we get

TH
t0Tt0 ¼

XN
n¼1

XK
k¼1

ω2
k � βn

�� ��2 � skj j2

� a0n;k p;μn;0

� ���� ���2
2

ð107Þ

TH
t0Tp ¼

XN
n¼1

XK
k¼1

jωk � βn
�� ��2 � skj j2

� a0n;k p;μn;0

� �� �H
�
∂a0n;k p;μn;0

� �
∂pT

ð108Þ

(109)

(110)
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