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Abstract

In this paper, we propose a massive MIMO (multiple-input-multiple-output) architecture with distributed steerable
phased antenna subarrays for position estimation in the mmWave range. We also propose localization algorithms and
a multistage/multiresolution search strategy that resolve the problem of high side lobes, which is inherent in spatially
coherent localization. The proposed system is intended for use in line-of-sight indoor environments. Time
synchronization between the transmitter and the receiving system is not required, and the algorithms can also be
applied to a multiuser scenario. The simulation results for the line-of-sight-only and specular multipath scenarios
show that the localization error is only a small fraction of the carrier wavelength and that it can be achieved under
reasonable system parameters including signal-to-noise ratios, antenna number/placement, and subarray apertures.
The proposed concept has the potential of significantly improving the capacity and spectral/energy efficiency of
future mmWave massive MIMO systems.

Keywords: Direct position estimation, mmWave, Massive MIMO, Steerable phased antenna arrays, Wireless indoor
localization

1 Introduction
Millimeter-wave (mmWave) communication and mas-
sive MIMO (multiple-input-multiple-output) are disrup-
tive technologies for cellular 5G (5th generation) systems.
Not surprisingly, they have been in the focus of inten-
sive research efforts in both academia and industry in
the last decade. The application of massive MIMO sys-
tems in the mmWave band represents a big research and
technological challenge. Since the work of Marzetta in
2010 [1], there have been many technical papers on this
technology. Some address system issues [2–6], and others
signal processing [7], analog and hybrid beamforming
[8–17], propagation and channel modeling/measurement
[18–20], technological aspects [21], and practical imple-
mentations [22, 23].
Multi-userMIMO systems referred to as massiveMIMO

systems were introduced in [1]. Unlike in conventional M
IMO systems for point-to-point communications where the
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channels between pairs of antennas are assumed uncorre-
lated, inmassiveMIMO systems there is a large number of
antennas at a base station (BS). The antennas of the system
form beams toward low-cost user devices with spatially
separated single antennas [1]. Many antennas are required
in the mmWave band because of the high pathloss and
the need for large antenna gains to obtain sufficiently high
signal-to-noise ratios (SNRs).
Traditionally, beamforming by the antennas is realized

completely in the digital domain. This entails that every
antenna has its own radio-frequency (RF) chain (a low-
noise amplifier, a down-converter, an A/D converter at
the receiving side, a D/A converter, up-converter, and a
power amplifier at the transmitting side), which renders
the application of massive MIMO in mmWave impracti-
cal due to high cost and energy consumption. A promising
solution to these problems lies in the concept of hybrid
transceivers, which use a combination of analog beam-
forming in the RF domain and digital beamforming in the
baseband to allow for RF circuits with a smaller number
of up/down conversion chains. In practice, a beamformer
is usually implemented as an array of phase shifters with
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only a discrete set of possible shifts (phase quantization)
[7]. Interest in hybrid transceivers has accelerated over
the past 3 years (especially following [7]), and as a result,
various structures have already been proposed.
In the wide literature, there are only a few papers dealing

with localization with mmWave massive MIMO systems.
The authors of [24] surveyed applications of localiza-
tion in massive MIMO systems and state that the 5G
technology is expected to allow localization accuracy of
1 cm, which is twice the carrier wavelength at 60 GHz
(around 5 mm). In [25], high-accuracy localization with
mmWave systems in applications related to assisted living
and location awareness was considered. It was concluded
that “future 5G mmWave communication systems could
be an ideal platform for achieving high-accuracy indoor
localization.” The performance of localization based on
the RSSI (received signal strength indicator) principle
applied to the mmWave range was investigated in [26],
and it was found that it was possible to achieve accu-
racy of around 1 m. A fingerprint-based localization was
presented in [27], and a method for direct localization
was introduced in [28]. In [29], the authors presented an
mTrack system for high precision passive object tracking
at 60 GHz and claimed that submillimeter accuracy could
be achieved. This accuracy can provide location aware-
ness in massive MIMO systems that can be exploited to
improve communication and enable location-based ser-
vices. Performance limits of localization by beamforming
with mmWave systems was studied in [15]. The problem
of positioning and orientation of subarrays of user nodes
was investigated in [30, 31]. Papers [32] and [33] propose
a method for localization/tracking of moving terminals in
dense urban environments in 5G based on intermediate
ToA/DoA (time of arrival/direction of arrival) estimates
at base stations. The method consists of two steps and is
implemented using extended Kalman filters and achieves
sub-meter accuracy in cmWave. This error is about five
times larger than the carrier wavelength but is suffi-
cient for location aware communications [24]. In [34],
a solution to non-cooperative transmitter localization is
presented. The solution is based on sectorized antennas
and intermediate DoA and RSS (received signal strength)
estimates at base stations. That paper also provides the
CRBs (Cramér-Rao bounds) for DoA/RSS and localization
errors, and it shows that the methods achieve sub-meter
accuracy.
One may argue that localization, especially in coher-

ent LoS (line-of-sight) scenarios (typical of the mmWave
band), can have profound implications on system capac-
ity. Namely, if it is possible to localize a UT (user terminal)
with an accuracy much better (by two orders of magni-
tude) than the carrier wavelength, then it is conceivable
to focus energy from distributed transmitters to the loca-
tion of the UT (and to possibly other locations, if there

are more users) with greatly reduced interference levels
to other users. This clearly suggests that accurate location
awareness enables location-aided communication.
Our previous research has confirmed that in a spatially

coherent scenario (where the LoS component is dominant
and where the carrier phase changes predictably over dis-
tance), a distributed antenna array and direct localization
algorithms can achieve localization accuracy much bet-
ter than the carrier wavelength (by two to three orders of
magnitude). In [35], it was reported that accuracy of 30%
of carrier wavelength in RFID (radio frequency identifica-
tion) localization was achieved. Localization in a spatially
coherent scenario was also addressed in [36, 37]. The
spatially coherent approach suffers from high side lobes
in the criterion function (localization ambiguity). This
problem of side lobes is similar in nature to the one of
side/grating lobes in direction of arrival estimation with
classical antenna arrays.
In this paper, we aim at achieving a high localization

accuracy with distributed antenna subarrays in mmWave,
where the accuracy would be much better than the carrier
wavelength. At the same time, we also resolve the problem
of localization ambiguity. New research problems arise
with this including designing an architecture of such sys-
tem and formulating algorithms which achieve these two
goals. Even though the focus of this paper is localiza-
tion with mmWave massive MIMO systems, the proposed
localization algorithms are applicable to cmWave bands
as well. This is an important feature of the algorithms
because the 3GPP (3rd Generation Partnership Project)
group has started to define bands for 5G and the cmWave
bands are expected to be used in the first phase of 5G
networks [38]. The contributions of our paper are as
follows:
1. We propose an innovative mmWave massive MIMO

architecture for accurate localization. In the proposed
concept, the BS uses distributed “subarray units,”
which are connected to the fusion center of the BS by
calibrated wired or fiber-optic links. Each subarray
unit has one “omni antenna” and one phased antenna
subarray (thus, there are two RF chains in total). The
distributed array composed of omni antennas is used
for the detection of signal presence (interception),
estimation of time axes misalignment between the
UT and BS, and accurate coherent localization. The
antenna subarrays are used to estimate the location
of the UT once its presence has been detected.

2. We propose coherent and non-coherent localization
algorithms. The algorithms are of maximum
likelihood (ML)-type for single user and additive
white Gaussian noise scenarios, but can also be
applied to multi-user settings because they are
user-selective (a user’s code sequence is adopted in
the criterion functions of the algorithms).
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3. We formulate a multistage/multiresolution searching
and scanning strategy to achieve high localization
accuracy, which is much better than the carrier
wavelength. The strategy also circumvents the
ambiguity problem. The idea is to split the
localization process into stages in which increasingly
accurate estimates are made over smaller and smaller
domains.

In the paper, we also demonstrate the performance
of the proposed algorithms with extensive simulations.
The numerical experiments were carried out to study the
performance in LoS-only and multipath (LoS + NLoS)
scenarios.
The rest of this paper is organized as follows. Section 2.1

introduces the system architecture of the mmWave mas-
sive MIMO system with distributed subarrays, the mul-
tistage/multiresolution searching and scanning strategy
for localization, and the mathematical models of the sig-
nals. In Section 2.2, we propose three different classes of
algorithms for multistage/multiresolution searching and
scanning. In Section 3, we demonstrate the performance
of the system and the methods with Monte Carlo simu-
lations, and we discuss the obtained results. Concluding
remarks are given in Section 4.

2 Methods
The aim of the research is to develop algorithms for coher-
ent passive localization in massive MIMO systems with
distributed phased antenna arrays, so that the localization

error is a small fraction of the carrier wavelength, and
also to solve the ambiguity problem, inherent to coher-
ent position estimation. We have proposed an innovative
model of amassiveMIMO systemwith distributed phased
antenna arrays, formulated a signal model for this system
model, proposed a multistage/multiresolution localiza-
tion strategy, and proposed new localization algorithms.
The performance of the proposed strategy and its algo-
rithms is evaluated by running Monte Carlo simulations
in which the signals were generated according to the
proposed system and signal models, and then the loca-
tion of the simulated transmitter was estimated using the
proposed strategy.

2.1 Systemmodel of mmWavemassive MIMOwith
distributed subarrays

2.1.1 System architecture
Our system uses a distributed antenna array to selectively
estimate the position of an independent RF transmitter,
Tx, based on its code sequence (known to the system).
All the antennas, including the transmitting one, are dis-
tributed indoors and are either stationary or slow-moving
(see Fig. 1). The slow-moving requirement is needed to
allow for neglecting Doppler effects. The receiving anten-
nas are grouped in M “subarrays.” The distances between
the antennas within the same subarray are of the order of
the carrier wavelength, λc.
Themth subarray has Lm antennas with positions �rm,l=(
xm,l, ym,l, zm,l

)�, m ∈ {1, 2, . . . ,M}, and l ∈ {1, 2, . . . , Lm}.

Fig. 1 The system architecture
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The signals from those antennas are inputs to a beam-
former, which multiplies them by complex coefficients
wm,l that are electronically set in advance (see Fig. 2).
The output of the mth beamformer is IQ (in-phase
quadrature-phase) demodulated and A/D (analog-to-
digital) converted to obtain the (complex) samples of the
mth channel. Further, each subarray has an omnidirec-
tional receiving antenna at �rm,0 = (

xm,0, ym,0, zm,0
)� with

its own A/D converter. Thus, the digital signal processor
(DSP) in the fusion center has access to 2M channels.
Another option is to have A/D converters and pro-

cessing circuitry at the units. Then, they are digitally
connected to the fusion center.
The Tx antenna is at an unknown position �r = (x, y, z)�,

whereas the three-dimensional positions of all the other
antennas in the system are known. All the receiving chan-
nels are time, phase, and frequency synchronized to each
other. Time synchronization between the Tx and our sys-
tem is not required. However, it is assumed that they both
use the same (known) carrier frequency. To perform the
most accurate position estimation, each of the channels,

Fig. 2 A phased antenna subarray unit

including the one of the Tx, must match the phase of
its local carrier to its clock. With the matching, the car-
rier phase would be 0 at each beginning of observation
interval.
In summary, every antenna unit in the proposed sys-

tem includes one omni antenna and one phased antenna
array (two receiving channels are needed at each antenna
unit). Thus, we have two functionally independent, mutu-
ally synchronized distributed antenna systems in time and
frequency.

2.1.2 Multistage/multiresolution searching and scanning
strategy

The system performs detection and location estimation of
user transmitters in three stages, Fig. 3. In stage 1, the sys-
tem runs a numerically low-intensive algorithm to detect
the presence of RF transmissions and to obtain approx-
imate estimates of the transmitters’ locations. Only the
omni antennas are employed in stage 1, and they can be
used all the time. To start the estimation, the algorithm
has to wait only for a single period of the Tx sequence.
Each omni antenna channel has a bank of as many cross-
correlators as there are user sequences of interest. When
at least three cross-correlators detect the presence of a
sequence s for two-dimensional localization (or four for
three-dimensional localization), the algorithm performs
coarse localization of this user (with sequence s) over a
grid that spans the entire area of interest. The resulting
inaccuracy of the estimated locations is expected to be of
the order of 10λc or more.
In stage 2, another algorithm refines the search of the

previous stage by scanning the area around the previous
estimates using the subarrays. Since each subarray can
only operate with a single set of coefficients wm,l at a
time, more than one observation period is needed for a
single estimate. The length of the period corresponds to
the period of the user sequence. Also, there must be time
intervals between the periods so that the beamformers
can change their coefficients.
Stage 2 can be split into steps 2a, 2b, etc., each cor-

responding to beamformers with different beam widths,
resolutions, and scan areas. The number of steps depends
on the ratio of the resulting root-mean-squared error
(RMSE) of stage 1 and the required RMSE of stage 2. The
larger the ratio, the more steps should be used to keep the
number of observation intervals down. The coefficients
in stage 2a are chosen to create relatively wide (sector)
beams for the subarrays in order to decrease the num-
ber of points on the scan grid, while still providing an
SNR (signal-to-noise-ratio) gain compared to that of the
omnidirectional antennas. This translates into a smaller
number of sequence periods required for estimation.
The last step of stage 2 uses the narrowest possible

beams for the given subarrays, and it scans the smallest
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Fig. 3 The block scheme of the multistage/multiresolution search strategy

area. Each scan point requires a new sequence period. The
scan grid needs to be sufficiently fine so that the result-
ing location error is below λc. The overall purpose of this
stage is to shrink enough the search area so that in the
third stage one can solve the so called ambiguity problem,
discussed later in the text, which is inherent to the applied
algorithm.
In stage 3, only one sequence period is needed and only

the signals from the omni antennas are used. The algo-
rithm in this stage relies on the phase relations among
the different channels to make the most accurate esti-
mates. The search grid is small but very fine because the
resulting error is expected to be of the order of λc/100 or

better. When the Tx is localized with this accuracy and it
moves, it can be tracked by continuously running the same
algorithm.

2.1.3 Signal model
The Tx prepares a periodic training signal in the following
way. A complex sequence s = [s0, s1, . . . , sN−1]�, assigned
to a user, is repeated multiple times and D/A (digital-to-
analog) converted with sampling frequency νs. The result-
ing periodic continuous-time signal is s(t), where the
time variable t in the mathematical model is normalized
with 1/νs. For compatibility between the discrete-time
and continuous-time domains, we use normalization of
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time values with 1/νs and frequencies with νs throughout
the paper. The real and imaginary components of s(t) are
upconverted to the carrier frequency νc with quadrature
carriers. The resulting RF signal is periodic with period
N/νs and its bandwidth is B. The signals in all the channels
are sampled at the Nyquist rate, which implies B = νs.
The RF signal of the Tx propagates at c = 3 × 108 m/s.

The lth antenna in the mth subarray receives the signal
whose baseband equivalent is

um,l(t) = sm,l(t) + ηm,l(t), (1)

sm,l(t) = am,le−jωc(t0+τm,l)s
(
t − t0 − τm,l

)
, (2)

where m ∈ {1, 2, . . . ,M}, l ∈ {0, 1, . . . , Lm}. The index l =
0 denotes the omni antenna associated with the appropri-
ate subarray; am,l is an unknown real-valued attenuation
coefficient; ωc = 2π fc and fc = νc/νs are normalized
carrier frequencies in radians per sample and cycles per
sample, respectively; t0 is an unknown delay of the start
of the transmission of a period of the Tx signal rela-
tive to the receiving system’s time axis; τm,l = dm,lνs/c
is the propagation delay from the Tx to the appropriate
receiving antenna where dm,l = ‖�r − �rm,l‖; ηm,l(t) is inde-
pendent complex Gaussian noise in the frequency range
(−1/2, 1/2). The baseband equivalent of the signal at the
output of themth beamformer is

um(t) = sm(t) + ηm(t), (3)

sm(t) =
Lm∑

l=1
wm,lam,le−jωc(t0+τm,l)s

(
t − t0 − τm,l

)
, (4)

ηm(t) =
Lm∑

l=1
wm,lηm,l(t). (5)

The DSP has access to the samples um(n) and um,0(n)

form ∈ {1, 2, . . . ,M} and n ∈ {0, 1, . . . ,N − 1}.
The discrete-time matrix baseband model derived from

(1)–(5) is given by

um,0 = sm,0 + ηm,0, (6)
sm,0 = am,0FHDt0+τm,0Fs, (7)
um = sm + ηm, (8)

sm =
Lm∑

l=1
wm,lam,lFHDt0+τm,lFs, (9)

where

um,0 = [
um,0(0),um,0(1), . . . ,um,0(N − 1)

]� , (10)

ηm,0 = [
ηm,0(0), ηm,0(1), . . . , ηm,0(N − 1)

]� , (11)
um = [um(0),um(1), . . . ,um(N − 1)]� , (12)
ηm = [ηm(0), ηm(1), . . . , ηm(N − 1)]� , (13)

are all N × 1 complex vectors, Dτ is a time-delay-by-τ
operator that also models the appropriate carrier phase

shift, and F is a modified DFT (discrete Fourier trans-
form) matrix such that F−1 = FH and whose rows are
sorted by their corresponding natural RF frequencies.
More formally,

Dτ = e−jωcτDiag
{
exp

(
−j

2π
N

τk
)}

, (14)

F = 1√
N
exp

(
−j

2π
N

k · n�
)
, (15)

where n = [0, 1, . . . ,N − 1]� , k = [−N
2 ,−N

2 + 1, . . . ,
N
2 − 1

]�, exp() is the element-by-element exponential
function, and Diag{} is a diagonal matrix with the given
elements on its main diagonal.

2.2 Direct position estimation algorithms
In this subsection, we describe algorithms for estimating
the position of a user with a code sequence s, where the
algorithms have different levels of accuracy and numerical
complexity. The algorithms are derived for a single-user
scenario; however, if the code sequences of the other users
are orthogonal to s, the algorithms can also be applied in
multi-user settings. If the sequences are not orthogonal
and the users are sufficiently separated from each other in
space, the algorithms should still work well.

2.2.1 Coherent algorithms
First, we discuss coherent algorithms, which rely on dif-
ferences of carrier phases among signals from different
channels and on differences of complex envelopes. We
point out that information about the Tx location is also
present in the signal amplitudes; however, we will not use
it here.
The coherent algorithms only use the signals from the

omni antennas; therefore, the available data for process-
ing include the time samples um,0(n) for 1 ≤ m ≤ M,
0 ≤ n ≤ N − 1. We assume that the noises in the channels
have the same power, which is known, so that ηm,0(n) has
a circularly symmetric Gaussian probability density func-
tion (PDF) with mean 0 and variance σ 2, or ηm,0(n) ∼
CN

(
0, σ 2) ,∀m. In practice, if the noisy data have differ-

ent powers, they can be scaled by different factors to make
this condition hold. The PDF of the observed data is

fC(u0) ∝
M∏

m=1
exp

(−‖um,0 − sm,0‖2/σ 2) , (16)

where ‖·‖ denotes the Frobenius norm. We want to esti-
mate the unknown parameters of sm,0, ∀m, from which we
can estimate the location of Tx.
According to the ML method, we maximize the

likelihood function (also given by (16)) with respect
to the unknown parameters,

(
a1,0, . . . , aM,0, t0, x, y, z

)
.

This maximization is equivalent to the minimization of∑M
m=1‖um,0 − sm,0‖2, or more specifically of
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g1 =
M∑

m=1

(
a2m,0‖s‖2 − 2am,0Re

(
uHm,0F

HDt0+τm,0Fs
))
.

(17)

Note that the propagation times τm,0 implicitly depend
on the coordinates of the Tx, x, y, z.
The minimization can be first carried out over

am,0 (∀m) and then over (t0, x, y, z). For given t0, x, y, z,
the ML estimate of am,0 is given by

âm,0= argmin
am,0∈[0,+∞)

(
a2m,0‖s‖2−2am,0Re

(
uHm,0FHDt0+τm,0Fs

))

= max
{
0,

1
‖s‖2 Re

(
uHm,0FHDt0+τm,0Fs

)
}
.

(18)

Note that negative values are not allowed for the ampli-
tude am,0 and that the function being minimized is a
second-degree polynomial of am,0. After substituting (18)
in (17), we obtain the estimates of t0, x, y, and z from

(
t̂0, x̂, ŷ, ẑ

)=argmax
t0,x,y,z

M∑

m=1

(
max

{
0, Re

(
uHm,0FHDt0+τm,0Fs

)})2.

(19)

The above steps represent the coherent ML algorithm.
The search for the best values of (t0, x, y, z) must be very

fine, but this would result in high numerical complexity.
As an alternative, we propose a statistically suboptimal
approach but numerically much more efficient. Without
loss of generality, we select the first channel to be the ref-
erence channel. In a preprocessing step, we estimate the
total delay in that channel, t1 = t0 + τ1,0 from

t̂1 = argmax
t1

(
Re

(
uH1,0F

HDt1Fs
))
. (20)

This maximization can further be simplified by breaking
it down into three steps. First, we estimate an integer-
valued delay t̂1,int, dismissing the carrier phase, from

t̂1,int = argmax
t1,int

∣
∣uH1,0F

HDt1,intFs
∣
∣ , (21)

which reduces to

t̂1,int = argmax
t1,int

∣
∣uH1,0

[
s(N − t1,int), . . . , s(N − 1),

s(0), . . . , s(N − t1,int − 1)
]�∣

∣
∣ .

(22)

In the second step, we find a fractional, but still a rela-
tively rough estimate t̂1,r by searching in a smaller interval,
say, t1 ∈ (

t̂1,int − 0.5, t̂1,int + 0.5
)
, also dismissing the

carrier phase and using (21), or

t̂1,r = argmax
t1,r∈R

∣
∣uH1,0FHDt1,rFs

∣
∣ ,

R = (
t̂1,int − 0.5, t̂1,int + 0.5

)
.

(23)

In the third step, we estimate with the highest accuracy
t̂1, by searching in the smallest interval around t̂1,r, now
relying also on the carrier phase and employing (20).
Finally, once we obtain t̂1, we estimate the location of

Tx from

(̂x, ŷ, ẑ)=argmax
x,y,z

M∑

m=1

(
max

{
0,Re

(
uHm,0F

HDτm,0−τ1,0+̂t1Fs
)})2

.

(24)

This is the algorithm we will use in stage 3 of the esti-
mation process. Note that this final search grid does not
include the t0 dimension and that the calculation of the
first term in the sum (m = 1) can be omitted because it
is constant. Also, in practice, channel 1 may sometimes
have low SNR, and therefore, another channel should be
selected as a reference.
One inherent disadvantage of the coherent algorithms

is that there are many high and narrow lobes in the cri-
terion function near the true location of the Tx. This is
often referred to as the “ambiguity problem.” Stage 3 relies
on stage 2 of the localization to correctly identify the main
lobe from the side lobes.
Besides the ambiguity problem in the spatial domain,

there is also an ambiguity problem in the estimation of t1
in the time domain. The resulting effect is an additional
error which is an integer multiple of 1/fc. This error is
equal across the channels and (x, y, z). For narrowband
signals, its impact on the localization accuracy is negligi-
ble. For wideband signals, on average, this error is smaller
than for narrowband signals.

2.2.2 Non-coherent algorithms
Now, we discuss algorithms that discard carrier phase dif-
ferences between signals from different channels, unlike
the coherent algorithms that exploit these phase differ-
ences. The algorithms use the same data as the ones
in Section 2.2.1; however, their criterion functions do
not fluctuate nearly as much over (x, y, z) and as a result
their estimates are much less accurate. Convenient conse-
quences of this are that the search grid can be made much
coarser and that the ambiguity problem does not exist.
We assume completely unknown phase terms in each

channel, ψm,0, and write

sm,0 = am,0ejψm,0FHDt0+τm,0Fs. (25)

We follow the same reasoning as in Section 2.2.1, except
that negative values are allowed for am,0 since we choose
the best phase ψm,0 anyway, and formulate the optimiza-
tion problem as
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(
ψ̂1,0, . . . , ψ̂M,0, t̂0, x̂, ŷ, ẑ

)

= argmax
ψ1,0,...,ψM,0
t0,x,y,z

M∑

m=1

(
Re

(
ejψm,0uHm,0F

HDt0+τm,0Fs
))2.

(26)

We can find the solutions for ψm,0 separately. Namely,
for given t0, x, y, z, the solutions for ψm,0 are given by

ψ̂m,0 = − arg
(
uHm,0FHDt0+τm,0Fs

)
, m = 1, 2, . . . ,M.

(27)

When these solutions are substituted in (26), we opti-
mize over (t0, x, y, z), or

(
t̂0, x̂, ŷ, ẑ

) = argmax
t0,x,y,z

M∑

m=1

∣
∣uHm,0FHDt0+τm,0Fs

∣
∣2 . (28)

We refer to the algorithm based on the solutions in
(27) and the optimization in (28) as the noncoherent ML
algorithm.
We also propose a noncoherent ML algorithm with

reduced computational complexity. As in the coherent
algorithm, we first estimate the total delay in channel 1
and use the obtained estimate to search for the coordi-
nates of Tx, or

(̂x, ŷ, ẑ) = argmax
x,y,z

M∑

m=1

∣∣
∣uHm,0F

HDτm,0−τ1,0+̂t1Fs
∣∣
∣
2
. (29)

This is the algorithm we will use in stage 1 of the esti-
mation process. The first term in the sum is constant, so
it can be omitted (the index m can take just the values

2, 3, . . . ,M). Also note that there is no need for the esti-
mate t̂1 to be as accurate as in the implementation of the
coherent algorithm. Therefore, one can skip step 3 of the
method for estimating t1 accurately. Instead of t̂1, one can
use t̂1,r.

2.2.3 Semi-coherent algorithms
The difference between the coherent and non-coherent
algorithms is in the way how the summation in the cri-
terion function is used; in the coherent algorithm, it is
the real component of the sum that is applied whereas
in the non-coherent algorithm, it is the absolute values
of its terms that are exploited (cf. (24) and (29)). By tak-
ing absolute values, the constant phase differences among
channels are lost. We can use this idea to formulate a
semi-coherent algorithm by taking the appropriate abso-
lute values before summing over the channels (over m),
but after summing over the antennas in each subarray
(over l). In this way, the phase differences between the
antennas of the same subarray are preserved, whereas the
phase differences between subarrays are lost.
Let us choose a scan grid inside a given area of inter-

est, see Figs. 4 and 5. Let �rSGp be the position of the
pth point on the scan grid. Unlike the coherent and non-
coherent algorithms, for each point on the scan grid, a
newN-sample-long signal segment, u(p)

m , (∀m), is received
by the beamformers whose beams have been directed to
this point. The beams are formed by setting their coeffi-
cients wm,l. The 3 dB widths of the beams are chosen to
be greater than the distance between adjacent scan-grid
points to avoid degradation due to the grid. The objective
is to estimate p and t0 by

Fig. 4 Stage 2a scanning
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Fig. 5 Stage 2b scanning

(̂p, t̂0) = argmax
p,t0

M∑

m=1

∣
∣
∣
∣
∣
u(p)H
m

( Lm∑

l=1
FHDt0D(B)

τm,l
Fs

)∣
∣
∣
∣
∣
,

(30)

where D(B)
τ = Diag

{
exp

(−j 2πN τk
)}

denotes a baseband
signal time delay matrix without a carrier phase shift,
unlike Dτ . The position estimate of Tx is then �̂r = �rSGp̂.
As before, we can avoid estimating t0 by estimating t̂m

for each omni antenna in preprocessing and then maxi-
mizing over p, i.e.,

p̂ = argmax
p

M∑

m=1

∣
∣
∣∣
∣
u(p)H
m

( Lm∑

l=1
FHDt̂m−τm,0

D(B)
τm,l

Fs
)∣

∣
∣∣
∣
.

(31)

This is the algorithm we will use in stage 2 of the estima-
tion process.
If the signals are narrowband, the expressions (30) and

(31) reduce to (32) and (33), respectively:

(̂p, t̂0) = argmax
p,t0

M∑

m=1

∣
∣
∣u(p)H

m e−jωct0s
∣
∣
∣ , (32)

p̂ = argmax
p

M∑

m=1

∣
∣∣u(p)H

m e−jωc(̂tm−τm,0)s
∣
∣∣ . (33)

3 Numerical results and discussion
This section provides numerical results obtained by the
presented algorithms with Monte Carlo simulations for
two scenarios—a LoS-only scenario and a multipath sce-
nario. We experimented with two distributed receiver
antenna array geometries for each of the two scenarios.

GeometryG1 consists of five antenna subarrays, each sub-
array having the geometry of an 18-element acoustic cam-
era scaled down by a factor of 3 [39]. One omni antenna is
added to the center of each subarray. The centers are in the
plane, z = 0. The omni antennas have the following coor-
dinates x and y in meters: (−2.20,−1.24), (0.18,−2.64),
(2.96,−1.06), (2.53, 2.21), and (−2.18, 2.24). They are rep-
resented by white triangles in the figures in this section.
The positions of the subarrays were chosen by hand in

order to be irregular. The distances between subarrays
were selected to correspond to subarrays placed on the
walls of a room. The subarrays have planar geometry in
vertical plains, rotated around their vertical axes so that
their broadside directions (approximately) point to the
center of the area between subarrays (the room). Geom-
etry G2 is formed from G1 by scaling up by a factor of
five the antenna positions in the subarrays with respect
to their centers (omni antennas). The simulations were
carried out using a known deterministic sequence, the
first of the modulatable orthogonal sequences proposed
in [40] for a given N. The parameters were as follows:
νc = 60 GHz B = 10 MHz, and SNR0 = 10 dB (if
not stated otherwise), where SNR0 denotes the SNR in
a virtual channel whose antenna is at a distance of 1 m
from the transmitting antenna. Throughout this section,
we assume that the signal power decreases with squared
distance from the transmitter.
In the multipath scenario, we simulated a specular mul-

tipath. We simulated only first-order reflected paths off
four vertical planes (x = −2.4 m, y = −2.85 m,
x = 3.15 m, and y = 2.45 m), which represented walls of a
room, so that the subarrays are attached to them (at a dis-
tance of about 20 cm). As in [41], we assumed a ratio of
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LoS component power and the sum of reflected compo-
nent powers (the Rice factor) of at least 10 dB. According
to the ray-tracing method, the reflected components were
modeled as if they were sent by virtual images of the Tx
(w.r.t. the walls) according to the LoS model (7) (which
includes a time shift, a carrier phase shift, and an attenu-
ation). The reflected components were then phase shifted
by π , and their sum at each receiving antenna was scaled
to get the specified Rice factor.

3.1 Qualitative characterization of the criterion functions
This subsection shows the qualitative behavior of the cri-
terion functions of the respective algorithms for each of
the three localization stages. The Tx was at (0, 0, 0), near
the “center” of eitherG1 orG2. Since stages 1 and 3 employ
only omni antennas, the choice of subarray geometry does
not matter. The criterion functions are shown over areas
lying in the plane z = 0. In Figs. 6, 7, 8, 9, 10, and 11, the
true Tx location is marked by a circle with a cross and the
estimated location by a square.
In order to localize the Tx with accuracy much better

than λc, we use the coherent algorithm. Its criterion func-
tion has high side lobes and requires a very fine search grid
(see Fig. 6). Therefore, we cannot work with it immedi-
ately, but instead we resort to amultistage/multiresolution
search.
Figure 7 shows the LoS-only criterion function of stage

1 (given by (29)) over an area inside the antenna array for
N = 1024. The function does not have side lobes, it is
not influenced by carrier phases, it is immune to phase
synchronization errors, and it varies slowly across space,
which suggests that a coarse grid can be used.

Fig. 6 The criterion function of stage 3, given by (24) with N = 1024

Fig. 7 Criterion function of stage 1, given by (29) with N = 1024

Figure 8 shows the LoS-only criterion function of stage 2
over an area inside the antenna array forG1 forN = 1024.
We have also generated the corresponding criterion func-
tion for N = 16, but it is not shown because it has the
same shape. It also has no side lobes but shows more vari-
ations across space compared to the criterion function
of stage 1. This function offers better estimation accu-
racy. Figure 9 shows the same results over a smaller area
for geometry G2. The figures suggest that the plane wave

Fig. 8 Criterion function of stage 2, given by (31) for G1 with N = 1024
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Fig. 9 Criterion function of stage 2 for G2 with N = 1024

assumption would not be justified because of the size of
subarray apertures.
Figure 10 shows the LoS-only criterion function of stage

3 for N = 1024 over an area around the transmitter
spanning a little more than the main lobe. As the used
algorithm is coherent (utilizes information in the phase of
the carrier for localization), the criterion function has side
lobes, separated by approximately 2λc/3. Since we use an
adaptive search grid in this stage, the algorithm finds the

Fig. 10 Criterion function of stage 3, given by (24) with N = 1024

Fig. 11 Criterion function for stage 2, G1, Rice factor 10 dB, and
N = 1024 with ray-tracing

peak of the lobe it has been initialized on (the initializa-
tion point is the estimate obtained in stage 2). Clearly, to
prevent the algorithm from converging to a side lobe, the
localization in stage 2 must produce an estimate inside
the main lobe of the criterion function of stage 3. In other
words, if the localization error of stage 2 is smaller than
approximately λc/3, the ambiguity problem is resolved,
because the displacement of the center of the main lobe in
stage 3 due to noise is small compared to its width without
noise.
Figure 11 shows the criterion function of stage 2 in

the multipath scenario for N = 1024 over an area inside
the antenna array forG1, along with wall positions and the
“rays” from the ray-tracing method. The Rice factor was
10 dB. The figure shows that the localization algorithm
is robust w.r.t. the multipath propagation since the lobes
corresponding to the reflected rays cannot be seen. The
criterion functions for stage 1 and 3 with multipath prop-
agation are not given because they are almost identical to
the LoS-only ones.

3.2 Quantitative characterization of the algorithms
In this subsection, we evaluate the accuracy of the algo-
rithms of each stage. As performance metrics, we used
both the MSE (mean squared error) and RMSE of the
estimates.
In Fig. 12, we display the histogram of the SNRs at the

antennas of array G1 (it is similar for G2) for all simulated
transmitter locations (points of the Tx grid) for SNR0 =
10 dB. Most of the SNRs are between − 5 and 10 dB.
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Fig. 12 Distribution of SNRs at the antennas for simulated Tx
locations for SNR0 = 10 dB

The contour plots in the rest of the section were gen-
erated over a Tx grid of 16 × 16 points that covers most
of the area inside the array to show the error distribution
across space. The grid has uniformly spaced points in the
plane z = 0.
In Fig. 13, we plotted the LoS-only RMSEs relative to

the carrier wavelength, λc, for stage 1 for N = 1024. For
every Tx grid point, we performed 100 Monte Carlo runs
and averaged out the results. Note that the accuracy is
generally better near the first antenna because it is used
as the reference antenna for estimating t1. If the position

Fig. 13 RMSE/λc for stage 1 and N = 1024

Fig. 14 RMSE/λc of stage 2 for G1 and N = 1024

estimate of this stage is far away from the reference
antenna, another antenna can be adopted as the refer-
ence and the process is repeated. Stage 3 could benefit
from choosing a better reference antenna even more. The
RMSE of stage 1 varies between 6 and 12 λc in the given
area. These values determine how narrow the search grid
in the next stage can be for a given Tx position, because

Fig. 15 RMSE/λc for stage 2 for G2 and N = 16
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Fig. 16 RMSE/λc of stage 2 for G2 and N = 1024

the grid should include the real Tx position. If the esti-
mation errors have Gaussian distributions, the search grid
for the next stage should span an area that is ± 2 standard
deviations of the current stage along each dimension in
order to include the real location with probability of 0.95.
The LoS-only RMSEs relative to λc for stage 2 for G1

and N = 1024 is shown in Fig. 14. Again, we ran 100

Fig. 17 Probability of missing the main lobe in stage 3 due to the
error in stage 2, for G2 used in stage 2 and N = 1024

Fig. 18 RMSE/λc of stage 3 and N = 1024 when the main lobe is not
missed

Monte Carlo simulations for every Tx grid point and
computed from them the RMSEs. The same results but
for G2, and N = 16 and N = 1024, are presented in
Figs. 15 and 16. These results are better because of the
increased space between the antennas in the subarrays.

Fig. 19MSE/CRB of stage 3 and N = 1024 when the main lobe is not
missed
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Fig. 20 Stage 3 error CDF curves for different initializations

The increased space produces “narrower beams,” i.e., bet-
ter spatial selectivity. For N = 1024 and G2, the RMSE
is below λc/6 over a significant part of the area inside
the array. This allows the search in stage 3 to start some-
where within the main lobe of its criterion function with a
probability of 0.95. Thus, we can argue that the ambiguity
problem is avoided with high probability. The simulations
in which the analog beamformers had phase quantization
with a resolution of 3◦ were also carried out. The results
are not shown here because they were almost identical to
the ones without phase quantization.
The LoS-only results for stage 3 for N = 1024 are plot-

ted in Figs. 17, 18, and 19. In this experiment, for every Tx
grid point, we had 1000 Monte Carlo runs. In Fig. 17, we
see how the probability of obtaining an estimate from a
side lobe (or that the main lobe was missed) varies across
the Tx grid. This probability depends on the estimate of
stage 2 because the algorithm of stage 3 uses an adaptive
grid that converges to the maximum of the lobe on which
it has been initialized. Figure 18 shows the RMSE across
the Tx grid provided that the main lobe has not been
missed. As for stage 1, the effect of choosing the reference
antenna can be seen (because the accuracy is better near
the reference antenna). In this case, the obtained accuracy
is of the order of λc/100. For comparison reasons, we have
also run simulations for SNR0 = 20 dB, and the RMSE
for the Tx at (0, 0, 0) is λc/963. In Fig. 19, we observe the
statistical efficiency measured as the ratio of MSE and
Cramér-Rao bound for the stage 3 algorithm when the

main lobe has not been missed. Figure 20 shows LoS-only
CDF (cumulative density function) curves of the stage 3
localization error for N = 1024 for three cases: (1) the
main lobe is not missed, (2) the stage 3 algorithm is ini-
tialized by the results of the stage 2 algorithm for G2 (see
Fig. 16), and (3) the stage 3 algorithm is initialized by the
results of the stage 2 algorithm for G1 (see Fig. 14). The
CDF curves were obtained for the same Tx grid as for the
contour plots (e.g., Fig. 13) with five runs for each grid
point. As predicted, the algorithm in case (2) misses the
main lobe only 2% of the time. On the other hand, the
algorithm in case (3) misses the main lobe 78% of the time.
For easier comparison of the numerical results for the

LoS-only scenario, we provide them in Table 1. The first
row shows the RMSE averaged over the Tx grid, the sec-
ond row the RMSE at a point near the center of the
array (roughly (0, 0, 0)), and the third row the value not
exceeded by the RMSE of 80% of the points on the Tx grid.
The results are for the case when the main lobe in stage 3
is not missed.
Figure 21 shows CDF curves for different Rice factors

for all three localization stages for N = 1024. For each

Table 1 RMSEs for search/scan stages (G2 and N = 1024)

Stage 1 Stage 2 Stage 3

avg. RMSE 7.56λc (37.8 mm) 0.162λc (0.81 mm) 0.00365λc (0.0182 mm)

cent. RMSE 6.74λc (33.7 mm) 0.16λc (0.8 mm) 0.00317λc (0.0159 mm)

80% RMSE 8.61λc (43.1 mm) 0.176λc (0.88 mm) 0.00419λc (0.021 mm)
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Fig. 21 CDF curves of localization errors for different stages and Rice factors for SNR0 = 10 dB

stage, we show a CDF curve for LoS-only and Rice factor
values of 15 and 10 dB. GeometryG2 was used (in stage 2).
Again, these results hold for outcomes when the main
lobe in stage 3 is not missed. In stage 1, compared to the
LoS-only curve, the error is increased roughly 2.5 and 4.3

times for Rice factors 15 and 10 dB, respectively. In stage 2,
the error is increased 1.2 and 1.3 times. In stage 3, the
error increase is 6 and 10 times. Stage 2 is the least affected
bymultipath propagation thanks to the beam directivity of
the subarrays. The vertical line at λc/3 shows whether the
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Fig. 22 CDF curves of localization errors for different stages and Rice factors for SNR0 = 20 dB
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stage 2 estimate is within the main lobe of stage 3 or not.
This is a critical value for solving the ambiguity problem.
Even for a Rice factor of 10 dB, the ambiguity problem is
solved 90% of the time.
Figure 22 shows the appropriate CDF curves for SNR0 =

20 dB (instead of 10 dB as in Fig. 21). As expected, the
results for the LoS-only scenario are better. However, the
results for the multipath environment are practically the
same. Therefore, the adverse effect of multipath propaga-
tion is greater for higher SNR values.
To summarize, as opposed to the existingmethodsmen-

tioned in Section 1, which achieve a submeter localization
accuracy, the proposed methods improve that accuracy to
a small fraction of the carrier wavelength, which enables
the shift from location-based services to location-based
communication for dramatic improvement of a 5G system
performance.

4 Conclusions
In this paper, we addressed indoor position estimation
with a millimeter-wave massive MIMO system. We pro-
posed an architecture with distributed antenna units, a
multistage/multiresolution strategy, and three classes of
localization algorithms that together achieve RMSE of
up to three orders better than the carrier wavelength,
and solve the ambiguity problem, inherent to coherent
algorithms. In the LoS-only scenario, the localization
error is by two to three orders better than the carrier
wavelength, whereas in the specular multipath scenario,
it is up to 10 times worse for realistic Rice factors,
but still well below the carrier wavelength. The strat-
egy does not require channel-state information and is
applicable in multi-user scenarios, but requires domi-
nant LoS propagation. The studied signal model is inher-
ently wideband, and it assumes spherical wavefronts.
The execution of the algorithms can be partially dis-
tributed among the subarray units. The obtained accuracy
allows the base station array to focus energy to the posi-
tion of the localized user terminal on downlink and to
receive its uplink signal emitted with decreased power.
This can dramatically improve the overall capacity of the
millimeter-wave massive MIMO system. An open issue is
positioning of the BS antennas with accuracy greater than
that of the localization, including the orientation of the
subarrays.
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