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Abstract

A simultaneous wireless information and power transfer system in interference channels of multi-users is considered.
In this system, each transmitter sends one data stream to its targeted receiver, which causes interference to other
receivers. Since all transmitter-receiver links want to maximize their own average transmission rate, a power allocation
problem under the transmit power constraints and the energy-harvesting constraints is developed. To solve this
problem, we propose a game theory framework. Then, we convert the game into a variational inequalities problem by
establishing the connection between game theory and variational inequalities and solve the variational inequalities
problem. Through theoretical analysis, the existence and uniqueness of Nash equilibrium are both guaranteed by the
theory of variational inequalities. A distributed iterative alternating optimization water-filling algorithm is derived,
which is proved to converge. Numerical results show that the proposed algorithm reaches fast convergence and
achieves a higher sum rate than the unaided scheme.

Keywords: Distributed algorithm, Game theory, Interference channels, Power allocation, Simultaneous wireless
information and power transfer, Variational inequality theory

1 Introduction
Simultaneous wireless information and power transfer
(SWIPT), which transports both information and energy
simultaneously by the same radio-frequency (RF) signal,
has caused great concern in both academic and industrial
fields and offers great convenience to wireless terminals
[1–3]. According to [3], time switching (TS) and power
splitting (PS) are two practical receiver designs. As a PS
receiver plays a significant role in SWIPT, it divides the
received signal into two signal flows, one for energy har-
vesting (EH) and the other for information decoding (ID)
[4, 5]. Based on the position relationship between the ID
receiver and the EH receiver, which is spatially separated
or co-located, there are two types of SWIPT networks [6].
Recently, the study of realizing SWIPT in the interfer-

ence channels (IFC) has received considerable attention.
As an extra energy source in the IFC, the cross-link
signals are salutary to EH [7]. However, the cross-link
signals are harmful to information transmission, which
brings new challenges to the transmission designs. The
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authors of [8] investigated an adaptive resource allocation
scheme called proportional-fair power allocation (PFPA)
in multiuser OFDM systems for fair share of resources
and efficient operation. In [9], the authors solved a sum
rate maximization problem in a two-user IFC where the
two receivers can simultaneously decode information and
harvest energy. The author of [10] found a necessary
condition of the optimal transmission strategy consid-
ering three different scenarios according to the receiver
mode in a K-user IFC. In [11], the authors divided an
optimal robust secure beamforming and power splitting
scheme to minimize the total transmit power while sat-
isfying the constraints on the minimum amounts over
IFC. The authors of [12] jointly designed the allocating
transfer power and receive PS coefficient for a two-link
SWIPT system in IFC. In [13], a new transmission strat-
egy was derived to maximize the energy beamforming
and minimize the leakage beamforming in a two-user
MIMO IFC. In [14], the authors derived a hybrid algo-
rithm comprised of a linear combination of maximum
ratio transmission (MRT) and zero-forcing (ZF) beam-
forming to minimize required power in a K-user IFC
network. To minimize the total transmission power, [15]
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proposed a joint beamforming and power splitting algo-
rithm based on second-order cone programming (SOCP)
relaxation in a K-user IFC network. Based on PS scheme,
the work [16] considered amulti-user SWIPT interference
system and studied joint transceiver design to minimize
the total transmit power. Reference [17] proposed a syn-
chronous power descending (SPD) algorithm to updates
each links’ transmit power and PS ratio in a IFC SWIPT
system. However, to the best of our knowledge, an iter-
ative water-filling algorithm based on a game theory to
solve the power allocation problem in IFC SWIPT systems
with K direct links to maximize its sum rate has not yet
been studied.
In this paper, we devise an iterative water-filling algo-

rithm based on game theory to solve the formulated
power allocation problem for the IFC SWIPT sys-
tems. The main contributions of this paper are listed
in the following:
1. A K transceiver links SWIPT system in interference

channels is developed. In particular, each transmitter-
receiver link is modeled as a strategy player who
chooses its transmit power to maximize its individual
rate.

2. A game framework is formulated to solve the pro-
posed power allocation problem. Then, we convert
the game into a variational inequality (VI) problem
using VI theory and analyze the existence and unique-
ness of the Nash equilibrium (NE). In addition, a
pricing mechanism is introduced to keep a balance
between EH and ID.

3. Different from that of reference [18], an alternating
optimization (AO)method is employed because of the
coupled variables and non-convexity, which converts
the original problem into two sub-problems.

4. To deal with the formulated sub-problem, a dis-
tributed iterative water-filling algorithm (IWFA) is
devised to optimize the power allocation problem.

2 Problem formulation and power allocation
method

2.1 Problem formulation
2.1.1 Game-theoretic framework formulation
An SWIPT system in the interference channels consisting
K source-destination links is considered. In this system,
each link includes a single-antenna source node S and a
single-antenna destination nodeD equipped with a power
splitter, which splits the received signal into two streams,
one for EH and the other for ID. Moreover, it is assumed
that perfect channel state information (CSI) is available,
only one single-data stream is transmitted and all nodes
operate in half-duplex mode. As illustrated in Fig. 1, each
source node Sj transmits data to its own receiver Dj at the
same time. The received signal at Dk can be expressed as

yk = √pkhkksk +
K∑

j �=k,j=1

√
pjhjksj + nak (1)

where pk and pj are the transmit power of Sk and Sj, sk and
sj are the transmit symbols of Sk and Sj with E{|sk |2} =
1,E{|sj|2} = 1, hkk and hjk are the channel gains from Sk
to Dk and Sj to Dj, and nak ∼ CN (0, σ 2

ak) is the additive
white Gaussian noise (AWGN) introduced by the receiver
antenna at Dk , and K = {1, . . . ,K}. The transmit power
constraint of each node can be given by

0 ≤ pj ≤ pmax
j (2)

where pmax
j , j ∈ K denotes the peak power of each user.

Fig. 1 The system model for SWIPT in K-user interference channels. This system include K source-destination links. Each link includes a
single-antenna source node and a destination node equipped with a power splitter, which splits the received signal into two streams, one for EH
and the other for ID. The solid lines represent the channel gain between the related node pairs, and the dotted lines represent the channel gain
between other unrelated node pairs. The symbol nak , k ∈ {1, ...K} represents the noise at nodes Dk , and β is the PS ratio
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A portion, βj ∈ (0, 1), of the received signal is allocated
for ID. Then, the signal for ID at Dk can be expressed as

yIDk = √
βkpkhkksk +

K∑

j �=k,j=1

√
βjpjhjksj + nall (3)

where nall = √
βknak + nk is the overall noise at Dk with

covariance σ 2
all and nk is the AWGN originating from the

power splitter with covariance σ 2
k . Meanwhile, the power

of the desired signal received by Dk for ID can be given as

E{|yIDk |2} = βkpk|hkk|2 +
K∑

j �=k,j=1
βjpj|hjk|2 + σ 2

all. (4)

Dividing the desired signal power by the interference
and noise power, the signal-to-interference-noise-ratio
(SINR) for the kth link between Sk and Dk can be
expressed as

γk = βkpk|hkk|2∑K
j �=k,j=1 βjpj|hjk|2 + σ 2

all
. (5)

Accordingly, the achievable rate of the kth link is

rk
(
pk ,p−k

) = log2 (1 + γk) (6)

where p(−k) � (pj)j �=k is the set of allocating power of all
users except the kth one.
A portion, 1 − βj, of the signal received at Dk is for EH

and the power collected at Dk follows the constraints

(1 − βk)
K∑

j=1
|hjk|2pj ≥ ek (7)

where ek is the power threshold at Dk .
To maximize the achievable sum rate, a rate maxi-

mization problem with power constraint can be stated as
follows

max
p

K∑

k=1
rk (p) (8a)

s.t. p ∈ P (8b)

where p = [
p1, p2, ..., pK

]T represents the power alloca-
tion strategy of all users, and P �

{
p|0 ≤ pj ≤ pmax

j ,

(1−βk)
∑K

j=1 |hjk|2pj ≥ ek
}
is the set of power constraints.

Since the non-convex problem (8) is difficult to solve, we
devise a distributed framework based on game theory to
solve the power allocation problem. Specifically, we con-
sider the scenario where each user maximizes its own rate

selfishly via allocating the transmit power. Then, the game
G is formulated as

G1 : max
pk

rk
(
pk ,p−k

)

s.t. pk ∈ Pk
(9)

where Pk �
{
pk|0 ≤ pk ≤ pmax

k , (1 − βk)
(
|hkk|2pk +

∑K
j=1,j �=k |hjk|2pj

)
≥ ek

}
is the feasible set of the kth user.

It can be observed from (9) that the problem is still
non-convex and difficult to solve because the objective
function rk is non-convex and the constraint Pk of the
kth user is coupled. Therefore, we redefine the objective
function as

fk
(
pk ,p−k

)
� −rk

(
pk ,p−k

)
. (10)

To let the optimization problemmore decentralized and
keep a balance between EH and ID, a pricing mechanism
is introduced through a punishment in the payoff func-
tion. We define the pricing factor as α = (

αj
)K
j=1, where αj

represents the penalty of the jth user. From (7), we define a
linear function about the power constraint of the kth link,

ϕk
(
pk ,p−k

) = (1 − βk)
K∑

j=1
|hjk|2pj − ek

= Apk + B

(11)

where A = (1 − βk) |hkk|2 and B = (1 − βk)
∑K

j=1,j �=k
|hjk|2pj − ek . Then, we define the total penalty at the kth
user as

αkϕk
(
pk ,p−k

) = ζkpk + αkB (12)

where ζk � αk (1 − βk) |hkk|2.
Considering the penalty, the payoff function of the kth

user can be given as

vk
(
pk ,p−k ;αk

) = fk
(
pk ,p−k

) − ζkpk . (13)

Consequently, the original game G1 can be formulated
as a game

G2 : min
pk

vk
(
pk ,p−k ;αk

)
(14a)

s.t. pk ∈ Pk (14b)

Our purpose is determining a NE point {p∗,α∗} in the
feasible set to minimize the objective function vk in G2,
which satisfies the following condition

vk(p∗
k ,p

∗
−k ;α

∗
k ) ≤ vk

(
pk ,p∗

−k ;αk
)
. (15)

2.1.2 VI problem formulation
It can be observed from (14) that the objective func-
tion and the constraints of the game G2 involves coupled
variables, then we derived an AO method to solve this
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problem, which converts the original problem into two
subproblems. In this section, we analyze the NE point of
the game G2 using VI theory, optimize the power alloca-
tion problem using IWFA algorithm, and update the price
vector using variable-step projection scheme.
In this subsection, we focus on finding the optimal

power strategy p∗ of the game G2 for the given price α.
First, we rewrite the original game G2 into a VI prob-
lem VI(Pk ,Vk), which is denoted to find a power strategy
p∗ ∈ Pk satisfying the following condition

(
pk − p∗

k
)
Vk

(
pk ,p∗

−k
) ≥ 0; pk ,p∗

−k ∈ Pk (16)

where

Vk
(
pk ,p∗

−k
) = �pk vk(pk ,p−k ;αk)

= − �pk fk(pk ,p−k) + ζk

= − 1
ln 2

(∑K
j=1 |hjk|2pj
βk|hkk|2

)−1

+ ζk

� V + ζk .

(17)

is the gradient �vk . Then, we establish the relation
between the formulated game G2 and the VI problem
VI (Pk ,Vk).

Proposition 1 The game G2 is equivalent to the problem
VI (Pk ,Vk).

Proof A proof is given in Appendix A.

The game G2 can be rewritten as VI (Pk ,Vk) after the
proof is completed. And the existence and uniqueness
of the NE can be analyzed by studying the VI problem
VI (Pk ,Vk).

2.2 Power allocation method
2.2.1 Analysis of the NE
The following theorem proposed in [19] is commonly
used to verify the existence of the NE.

Theorem 1 A NE exists in a VI (A, F) problem if the set
A is convex and compact; the function F is continuous in
its feasible set.

After investigating the properties of the set A and the
function F of the VI problem, we have the following
proposition regarding the existence of the NE.

Proposition 2 The game G2 possesses at least one NE.

Proof A proof is given in Appendix B.

Based on ([20], Eq. 13) , the VI (A, F) admits a unique
solution if F is strongly monotone onA. The definition of
strongly monotone is provided in the following.

Definition 1 Given a mapping F : A ⊆ R
n → R

n, if the
setA is convex and there exists a constant c > 0 satisfying
the following condition, F is strongly monotone.

(F(x) − F(y))(x − y) ≥ c| x − y |2, ∀x, y ∈ A. (18)

We analyze the uniqueness of the NE by proving a suf-
ficient condition for the strong monotonicity of Vk . To
prove the strongmonotonicity ofVk , the second derivative
of vk(p) can be given as

�2
pk vk(p) = β2

k |hkk|4(
βk

∑K
j=1 |hjk|2pj + σ 2

k

) (19a)

�2
pk ,pjvk(p) = β2

k |hkk|2|hjk|2(
βk

∑K
j=1 |hjk|2pj + σ 2

k

) . (19b)

we have the following proposition regarding the unique-
ness of the NE.

Proposition 3 Vk is strongly monotone in its feasible set.
Furthermore, the game G2 has the unique NE.

Proof A proof is given in Appendix C.

The above analysis about the existence and uniqueness
of the NE shows that the NE of game G2 always exists and
admits its uniqueness for the given price factor. To achieve
the unique NE, we use a water-filling method based on the
best response. For any fixed p−k and α, the NE point of the
game G2 is the fixed-point of the water-filling mapping,
which can be expressed as

p∗(α) = wvk
(
p∗

−k(α);α
)

�[
1

μk + ζk
− βk

∑K
j �=k,j=1 |hjk|2pj + σ 2

k
βk|hkk|2 ]p

max
k

0

(20)

where the majorization notion in p∗(α) represents p(α)

after optimization, [x]ba� min(max(x, a)b)with 0 ≤ a ≤ b
and μk ≥ 0 is chosen to satisfy the power constraint (2).

2.2.2 Optimal α with variable-step projection scheme
In this section, we discuss the optimization of α with p
fixed. For the optimal p∗

k(α), we rewrite Eq. (11) as

φ(α) = (1 − βk) |hkk|2p∗
k(α)

+ (1 − βk)
K∑

j=1,j �=k
|hjk|2pj − ek .

(21)
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To optimize α, we introduce a nonlinear complement
problem (NCP), which is to find the price vector such that

NCP(φ) : 0 ≤ α ⊥ φ(α) ≥ 0. (22)

The NCP is an equivalent form to VI problem. We use
the well-known variable-step projection scheme to solve
this NCP, which is described in the following algorithm.

2.2.3 Distributed iterative algorithm
Denote the allocating power and the pricing factor of the
kth user at the nth iteration as p(n)

k (α) and α(n), respec-
tively. To achieve the unique NE, a distributed iterative
algorithm with AO is summarized as the Proposed Itera-
tive AO Algorithm in Table 1. It is worth noting that such
the AO scheme guarantees the local optimum.
It can be seen that the price α is computed by the

variable-step projection scheme and εn is the nth itera-
tion step size. As mentioned in [21], we could choose a
sufficiently small value to assign to the step size εn. The
notion [ ·]+ represents that the value is meaningful when it
is larger than zero, and let the value be zero when it is less
than zero. And the proofs of convergence property about
α and pk(α) are similar to the Theorems 6 and 10 in [18].

3 Numerical results and discussions
It is assumed that the channels between all links are
mutually independent Rayleigh fading and the free-space
propagation pathloss coefficient is 2. And random chan-
nels with 100 slots are generated. The variances of the
noises are σ 2

all = σ 2, pmax
k = Pmax, and βk = 0.5.

We study the convergence property of IWFA in a four-
link network. Figure 2 shows the allocating power of four
users versus iterations considering two different initial
points: (1.1, 1.5, 1.2, 1.3) and (1.4, 1.3, 0.8, 1.0) under the
same conditions Pmax = 25 and σ 2 = 1. It can be
observed that all users’ allocating power converge to the
same points (1.28, 1.39, 1.00, 1.41). After several similar

Table 1 Proposed iterative AO algorithm

step 1: Initialize.

Set p(0) as a vector satisfying p(0)
k ∈ P , α(0) ≥ 0 and

εn > 0 as the nth iteration step size.

step 2: Repeat.

(1) Compute pk
(
ζ

(
α(n)

))
using water-filling method as

follows with fixed α(n) :

pk
(
ζ

(
α(n)

)) = wvk
(
p−k

(
ζ

(
α(n)

))
; ζ

(
α(n)

))
.

(2) Compute α using variable-step projection scheme as

follows with fixed p∗
k (α):

α(n+1) = [
α(n) − εnφ(α(n)

]+
.

step 3: Until convergence.

attempts, we have that the IWFA quickly converges to the
unique NE from different initial points.
Figure 3 provides the results of sum rate versus the

interlink distance dL. Different conditions of Pmax ∈
{20dB, 30dB} and σ 2 ∈ {0.5, 1.0} are simulated, respec-
tively. There are two schemes for comparison. Scheme 1
is the unaided scheme without iteration, and scheme 2 is
IWFA scheme. We consider a linear topology where every
transmitter-receiver link is parallel to each other. It can be
seen that the sum rate increases as the dL increasing for
two schemes. Then, the IWFAmethod outperforms to the
unaided method under all conditions. In addition, the sys-
tem performance is better when the AWGN is smaller and
the maximum transmit power is bigger.
Figure 4 shows results of the average transmit power

versus the harvest energy threshold ek . Different con-
ditions of K ∈ {3, 4} and the different initial pricing
α ∈ {0.5, 0.6, 0.7} are simulated, respectively. It can be
observed that the average transmit power decreases as the
harvest energy threshold ek increases for our proposed
scheme, and the system requires less average transmit
power with the increase of the number of links. We can
also see that the average transmit power decreases as α

increasing. In addition, the average transmit power of our
proposed IWFA scheme always smaller than the unaided
scheme when the number of links is the same.
Figure 5 provide results of the average bit error

rate (BER) versus SINR. As we can see, our propose
IWFA scheme is always better than the unaided scheme
in BER performance. The reason is that the unaided
is the simplest in computing complication with no
iteration involved.

4 Conclusions
In this paper, a power allocation problem was solved for a
SWIPT system in K-user interference channels using the
framework of game theory. We rewrote the formulated
game as a variational inequality problem to analyze the NE
of the game. Furthermore, we provided a distributed iter-
ative algorithm with AO scheme to solve the formulated
problem and update the price factor. Numerical results
demonstrated that the proposed IWFA scheme can attains
more sum rate and requires less transmit power than
the unaided scheme under the same conditions of Pmax
and σ 2.

Appendix A
Proof of Proposition 1
The relationship between game and VI is usually ver-
ified using the following theorem proposed in the
reference [19].

Theorem 2 A given game G = 〈N , {An} , {fn(x)}〉 is
equivalent to VI(A, F) if the following two conditions hold:
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Fig. 2 The power allocation profile versus iterations of IWFA from two different sets of initial points. Figure 2 shows the allocating power of four
users versus iterations considering two different initial points. The solid lines and the dotted lines represent different allocating power results for four
users under different initial points

(i) The strategy set An is closed and convex; (ii) the payoff
function is convex and continuously differential for x ∈ An.

Now, let us prove the relationship between the game
G2 and the VI problem VI (Pk ,Vk) using Theorem 2.

First, note that the strategy set Pk in (14b) is convex.
Then, the payoff function vk(pk ,p−k) in (14a) is contin-
uously differentiable in its feasible set. Finally, the payoff
function vk(pk ,p−k) is convex in its feasible set because
the logarithmic function is always concave and ζkpk is a

Fig. 3 The sum rate as a function of the interlink distance dL in a two-link system. Figure 3 provides the results of sum rate versus the interlink
distance dL. Each link represents the sum rate under the different interlink distance. And the different types lines represent the proposed IWFA
scheme and the unaided scheme under different conditions of Pmax ∈ {20dB, 30dB} and σ 2 ∈ {0.5, 1.0}
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Fig. 4 The average transmit power as a function of the harvest energy threshold. Figure 4 shows the results of the average transmit power versus
the harvest energy threshold. The different types of lines represent the proposed IWFA scheme and the unaided scheme under different conditions
of K ∈ {3, 4} and α∈ {0.5, 0.6, 0.7}

linear function. Both conditions in Theorem 2 are satis-
fied. Thus, the problem VI (Pk ,Vk) is equivalent to the
formulated game G2.

Appendix B
Proof of Proposition 2
For problem VI (Pk , sVk), the strategy set Pk is convex
and compact since the items 0 ≤ pk ≤ pmax

k and

(1 − βk)
(
|hkk|2pk + ∑K

j=1,j �=k |hjk|2pj
)

≥ ek of Pk are
linear functions.
It is can be observed from Eq. (17) that Vk =

�pk vk(pk ,p−k ;αk), we can prove the continuity of Vk by
computing its first derivative. And we can see that its first
derivative is exists; furthermore, the utility function Vk is
continuous in Pk .

Fig. 5 The average bit error rate (BER) versus SINR. Figure 5 shows the results of the BER of 3 users versus SINR. The different types of lines represent
the proposed IWFA scheme and the unaided scheme
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Thus, we know that the VI problem admits at least one
solution according to Theorem 1 and the NE existence
is proved.

Appendix C
Proof of Proposition 3
From (17), we have that �pk vk(pk ,p−k) = Vk . Con-
sider two different power p(1)

k and p(2)
k in the strategy set.

According to the mean-value theorem, we have
(
p(1)
k − p(2)

k

) {[
Vk(p(1))

]
−

[
Vk(p(2))

]}

=
(
p(1)
k − p(2)

k

) {
�pk vk

(
p(1)
k

)
− �pk vk

(
p(2)
k

)}

=
(
p(1)
k − p(2)

k

) K∑

j=1
�2

pk ,pjvk(zk)
(
p(1)
j − p(2)

j

)

�Q(t).
(23)

Define dk = p(1)
k − p(2)

k and dj = p(1)
j − p(2)

j , we have

Q(t) =dk
K∑

j=1
�2

pk ,pjvk(zk)dj

≥dk �2
pk vk(zk)dk

(24)

since dk
∑K

j �=k �2
pk ,pjvk(zk)dj > 0. Then, we have

Q(t) ≥ dk �2
pk vk(zk)dk (25)

Then, the strongly monotonicity of Vk can be proved as
(
p(1)
k − p(2)

k

) {[
Vk(p(1))

]
−

[
Vk

(
p(2)

)]}

≥
K∑

k=1
dk �2

pk vk(zk)dk

=
K∑

k=1
dk2 �2

pk vk(zk)

≥dk2
K∑

k=1
�2

pk vk(zk)

=csm| p(1)
k − p(2)

k |2

(26)

where csm = ∑K
k=1 �2

pk vk(zk) > 0 is the strongly mono-
tone constant. Therefore, the Eq. (18) always hold, which
completes the proof.
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