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Abstract

of using different time-frequency techniques together.

Phonocardiogram (PCG) signal represents recording of sounds and murmurs resulting from heart auscultation.
Analysis of these PCG signals is critical in diagnosis of different heart diseases. Over the years, a variety of methods
have been proposed for automatic analysis of PCG signals in time, frequency, and time-frequency domains. This paper
presents a comprehensive survey of different methods proposed for automatic analysis of PCG signals with the
objective to evaluate the current state-of-the-art and to determine the potential domains of effective analysis. An
important aspect of our contribution is that the review is carried out as a function of domains of analysis rather than
simply discussing different methods. Our method further splits analysis into pre-processing, localization, and classification,
and details are presented in terms of techniques and classifiers used during these phases. Finally, results are summarized
for normal heart beat, noisy heart beat, and different pathologies using metrices like accuracy and detection rate. In
addition to time and frequency domain, time-frequency based methods including wavelet, empirical mode decomposition
(EMD) and time-frequency representation (TFR) are selected for detailed analysis. The review concludes that the
time-frequency representations like EMD and wavelets represent areas of exploration in future along with perspective
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1 Introduction

Human heart is the most important organ in the body
that provides blood to all parts of the body using a pump-
like action. During the pumping action, electrical and
mechanical activities are carried out resulting in the flow
of blood. Healthy heart is very important for the nor-
mal day to day working of human body as blood carries
important nutrients to the organs. Heart-related diseases,
known as cardiovascular diseases (CVD), are responsible
for a major proportion of deaths all around the world.
According to surveys conducted by the World Health
Organization (WHO), 33% of all deaths are the result of
CVDs [1]. Different modalities are known to exist to mon-
itor the health of heart. The most popular of these is the
electrocardiogram or ECG. The electrical activity of heart
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is recorded in the form of electrocardiogram which is
composed of three main waves, ‘P’ wave, ‘QRS’ complex,
and ‘T’ wave. The middle wave of ECG is known as ‘QRS’
complex that, in general, comprises three deflections ‘Q’
(the first negative deflection) ‘R’ (the first positive deflec-
tion), and ‘S’ (the negative deflection following the ‘R’
wave). Another important modality is photoplethysmog-
raphy (PPG) that employs light-based sensors to estimate
the rate of flow of blood by measuring the changes in the
reflected/transmitted light. Like ECG, PPG can also be
used to monitor various cardiac conditions. Figure 1 illus-
trates an example each of ECG and PPG signals [2]. A wide
range of computerized systems have been proposed over
the years for automatic analysis of ECG [3, 4] and PPG
[5] signals as well as the combination of these and other
modalities [6].

In addition to ECG and PPG, phonocardiogram (PCG),
the recording of the sounds and murmurs made by heart
during a cardiac cycle, can be effectively employed to
study and monitor the activities of heart. Such sounds
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Fig. 1 Examples of ECG and PPG signals

are typically recorded using a device called phonocardio-
graph. The mechanical activity of heart due to its physical
movement produces four distinct sounds or beats which
are named as first normal heart sound (S1), second normal
heart sound (S2), third abnormal heart sound (S3), and
fourth abnormal heart sound (S4). S1 and S2 are normal
sounds while S3, S4, murmurs, and certain other sounds
usually refer to some disease or anomaly. Murmur is a
noisy heart sound that can be heard when the heart valve
is shut but the blood continues to flow. S1 is usually low
frequency and high-amplitude signal while S2 has high
frequency and low amplitude. In some cases, it is also pos-
sible to encounter S1 having low amplitude than S2 as
elaborated in [7].

ECG, PPG, and PCQG, all represent a cyclostationary
signal, i.e., a signal in which the statistics of the signal
vary but are repetitive with a period. ECG and PCG are
highly correlated signals [8] and are known to contain
more information than the PPG signal. PCG, however,
enjoys a distinct advantage over ECG and PPG signals as it
records the acoustic properties of the signal. These prop-
erties are better suited for murmur detection which repre-
sents abnormal heart sound [9]. Furthermore, PCG signal
also has an excellent starting trigger in the form of S1
wave [10, 11].

The mechanical activity of the heart can be heard using
a traditional or an electronic stethoscope. Auscultation
or listening to heart is an old but very effective method
of diagnosis for a number cardiovascular diseases. The
recording of these sounds (PCG signal) has the same
spectrum as that of audio signals. The recording process,

however, also picks noisy sound signals from the envi-
ronment which distort the periodicity of the PCG signal
making its analysis a challenging task. A sample PCG sig-
nal is shown in Fig. 2 where it can be seen that the first
heart sound S1 has lower amplitude than the second heart
sound S2. Moreover, the amplitudes of S1 and S2 are both
varying. The time duration from S1 to S2 is known as sys-
tole and the one between S2 and S1 is known as diastole.
Systole and diastole shown as t12 and t21, respectively, in
Fig. 2 serve as important beat classification features. The
time durations t12 and t21 are also varying.

PCG, though a very complex signal, divides the nor-
mal heart sound signals into two beats (S1 and S2) and
offers important details about a number of heart-related
diseases [12—14]. With the advancements in technology
as well as different areas of pattern classification and
machine learning, efforts have been made to automate the
analysis of PCQG signals. The automatic analysis of these
signals involves two primary challenges, localization and
classification. In localization, the objective is to correctly
detect the positioning of beats in the signal while classi-
fication deals with the categorizing the beats into S1 and
S2 in case of normal heart sounds and into S3, S4, and
murmurs etc. in case of abnormal sounds.

Localization algorithms are generally peak-based algo-
rithms where candidate peaks are localized in a signal and
windows are constructed around these potential peaks.
Features are then calculated from each window, and the
peaks are classified. Another approach is not to precisely
localize the peaks for classification. Springer et al. [15] for
instance, divides the signal into a sequence of segments
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Fig. 2 An example of a PCG signal
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which are classified and later processed for a precise local-
ization. Heart beat is a repetitive or cyclic process (Fig. 2)
and a normal PCG signal can be divided into four seg-
ments. These include the time window containing S1,
the silence window, the segment containing S2, and again
the silence window. A normal heart beat can hence be
modeled using these states. However, since the sequence
and duration of each state within the cycle can vary,
probabilistic modeling is better suited for such scenarios
as opposed to deterministic approaches. Hidden Markov
model (HMM), for instance, has been employed for such
modeling in [15-17]. The same idea can be extended
to include the abnormal beats S3 and S4 (and different
other pathologies) as illustrated in Fig. 3. Such techniques
allow pre-classifying these segments into one of the states
while the exact location of beats within these segments are
localized subsequently.

The initial developments and findings in digital pro-
cessing of PCG signals have been summarized in works
by [18, 19]. In a relatively recent survey, Meziani et al.
[20] discussed computerized analysis of PCG signals but
limit their discussion to wavelet transforms-based meth-
ods only. In another short review [21], authors present
a comparative study of EMD and wavelet-based meth-
ods for analysis of PCG signals. The study concludes that
EMD is better suited for PCG as compared to wavelet,

Silence/
Noise

Fig. 3 HMM modeling of human heart cycle

specially, when dealing with noisy signals. Authors high-
lighted the use of machine learning tools for better
classification and suggested that the use of hybrid classi-
fiers serves to enhance the performance. Nabih et al. [22]
review the denoising, segmentation, and classification
techniques for automated analysis of PCG signals. The key
focus of their study is the comparison of different clas-
sifiers (artificial neural network (ANN), support vector
machine (SVM), self-organizing map (SOM), and hybrid
classifiers with the conclusion that while each of the pro-
cessing steps is important, the choice of classifier is the
most critical parameter in enhancing the overall system
performance.

As discussed earlier, the present study is organized as
function of time, frequency, and time-frequency meth-
ods. In time domain, the signal is sampled on time axis
(Fig. 4a) and features (like amplitude, mean, and energy)
are directly computed from signal. In spectral or fre-
quency domain, signal spectra is divided into various
spectral bands (Fig. 4b) and features (for example, spec-
tral flux) are calculated from these bands. Unlike time
and frequency methods, the time-frequency methods rely
on simultaneous sampling on time and frequency axis.
The general representations of time-frequency domain for
fixed and variable time/frequency windows are illustrated
in Fig. 4c, d, respectively. In our discussion, we con-
sidered time-frequency representations (like Wigner-Ville
and its variants, short-time frequency transform (STFT))
and techniques based on EMD and wavelets under the
category of time-frequency methods.

We first introduce the standard datasets commonly
employed by researchers (to evaluate the localization and
classification algorithms) in Section 2. Section 3 details
the time, frequency, and time-frequency methods for
analysis of PCG signals along with a critical discussion
on the presented methods. Finally, Section 5 concludes
the paper.



Ismail et al. EURASIP Journal on Advances in Signal Processing (2018) 2018:26

Page 4 of 27

»
>

==
(]
c
QQ
=
fay
QO
=
time
a
A
Q
e
=
=
£
(1]
time
C

Fig. 4 Signal analysis in time, frequency, and time-frequency domain. a Signal/time domain. b Frequency/spectral domain. ¢ Time and spectral
domain (Gabor transform). d Time and spectral domain (wavelet transform)
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2 Datasets

While many of the initial PCG localization and classi-
fication techniques reported results on private datasets,
a number of publicly available datasets have also been
developed allowing researchers meaningfully compare
their developed systems using similar experimental
protocols.

These public datasets include E-General Medical [23],
PASCAL Heart Sound Challenge (HSC) dataset [24], the
PhysioNet CinC Challenge dataset [25], and the Heart
Sound and Murmur Library [26]. In the following, we
present the key characteristics of these datasets for a bet-
ter interpretation of the quantitative results reported by
different studies (presented later in paper).

PASCAL HSC dataset was first made available in 2011
for two challenges, segmentation (localization), and classi-
fication. The database is divided into two subsets, dataset
‘A’ and dataset ‘B! Dataset ‘A’ has been collected using the
iStethoscope Pro iPhone app while dataset ‘B’ has been
gathered in a clinical setting using the digital stethoscope,
DigiScope. The two datasets have 176 and 656 total aus-
cultations, respectively. Files in both the datasets contain
normal heart beats, murmurs, and extra systoles. In addi-
tion to these, dataset ‘B’ also contains files with artifacts
and extra sounds and is more challenging.

The 2016 PhysioNet CinC database was also devel-
oped as a part of a challenge. Heart sounds in the
dataset are gathered from clinical as well as non-clinical

sources. Healthy individuals as well as those with different
pathologies contributed to data collection. The sound
classes in the challenge include ‘normal, ‘uncertain, and
‘abnormal’ The training set labeled from ‘A’ to ‘E’ has a
total of 3126 files while the validation set comprises 300
recordings. The durations of the files vary from 5 to 120 s.
The test set has not been made publicly available and was
only used to score the participants of challenge.
E-General Medical is a well-known vendor of medical
equipment and datasets. Among other datasets, a part
of the dataset with heart sounds has been freely made
available by E-General Medical. The dataset comprises
64 recordings with normal beats, S3, S4, and different
pathologies. Majority of pathologies are systolic and dias-
tolic in nature. In many cases, only one sample per signal
type is available. Examples of such one sample per sig-
nal type include late systolic, early systolic, normal split,
open snap, pan systolic, late systolic aortic stenosis, severe
systolic aortic stenosis, critical systolic aortic stenosis,
and systolic aortic valve replacement. Other sounds like
diastolic-fixed S2 split, diastolic wide S2 split, systolic
mitral regurgitation, systolic mitral prolapse, systolic split,
and diastolic-fixed S2 split have more than one sample.
Complete details on the dataset can be found in [23].
Heart sound and Murmur Library, University of
Michigan Health Systems, is another public dataset that
comprises normal heart sounds, normal split S1, systolic
click, S4 gallop, S3 gallop, single S2, split S2 persistent, split S2
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transient, and various type of murmurs [26]. A summary
of the databases presented above can be found in Table 1.

3 Methods

As mentioned previously, the techniques proposed for
automatic analysis of PCG signals can be categorized
into time domain, frequency domain, and time-frequency
domain. In the following, we discuss the time and fre-
quency domains followed by the time-frequency domain.

3.1 Time and frequency analysis

The most general method of analysis is based on the time
domain. In time domain, analysis is carried out on the sig-
nal itself. Statistics like peak value, mean, mode, median,
and peak to peak duration of signal are typically employed
for analysis. As indicated in Fig. 5, P1 and P2 are the peak
values of the signal, A1 and A2 are peak to peak values,
and Al and A2 are time periods which may represent fea-
tures of S1 and S2. These and similar features are extracted
either globally from the complete signal or locally from
different segments of the signal. The general representa-
tion of a signal in time domain is presented in Eq. 1; f(£)
represents the signal which is modeled by amplitude A,
frequency w, and phase 6. Each of these parameters as well
as different statistics derived from these parameters have
been used as features for localization and classification.

f(t) = Asin(w x t + 6); 1)

For frequency domain analysis, the signal is first con-
verted from time to frequency domain using fast Fourier
transform (FFT) elaborated in Eq. 2.

F(w) = /f(t)e_jmdt;f(t)= % / Fw)e"dw (2)

Where f(¢) is the signal and F(w) is the fast Fourier
transform of f(¢). After analysis of the frequency spec-
trum, any appropriate spectrum operation (for instance

Table 1 A summary of PCG datasets
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filtering) is applied, and the signal is converted back to
time domain using the inverse fast Fourier transform
(IFFT). Bandpass filtering is usually employed in heart
beat analysis to remove the low and high frequency noise
from stethoscope signals. Figure 6a illustrates a sample
signal before and after filtering. Figure 6b shows the spec-
trum of the signal, filter response, and the frequency
contents after filtering. Since the frequency contents of
various heart signals are different, the frequency spectra
can be exploited for classification of heart beats. Finding
the optimal set of filters (along with cutoff frequencies),
however, can be challenging especially for noisy signals.
Consequently, a number of researchers investigated Mel-
Frequency Cepstral Coefficients (MFCCs) [27] for fre-
quency domain analysis of PCG signals. In MFCC calcula-
tion, pre-emphasis is first applied on the signal to enhance
the high-frequency components of signal. The signal
is then divided into windows (generally rectangular),
and FFT is applied to each window. The Mel filter bank
is then applied and logarithm of all filter bank energies is
computed. The acoustic response of human ear is not lin-
ear to all frequencies. Mel scale uses this non-linearity and
maps frequencies (f) linearly below 1000 Hz and logarith-
mically above 1000 Hz. Conversion from frequency to Mel
scale is given in Eq. 3.

f
mel(f) = 1127In (1 + 700) (3)

Finally, discrete cosine transform (DCT) is applied to
get the MFCCs [28]. An overview of the steps involved
in MFCC calculation is presented in Fig. 7. The pre-
emphases, windowing, and FFT calculation in MFCC
computation act as pre-processing steps; hence, a separate
pre-processing is generally not required.

Time and frequency analysis have been widely investi-
gated to localize and classify normal as well as abnormal
heart beats like third and fourth heart sound, clicks and
murmurs. With a few exceptions [29, 30], analysis in the

Dataset Reference Total auscultations Sound categories
PASCAL heart sound challenge [24] Dataset ‘A, iStethoscope, Dataset 'A"; normal
dataset 2011 samples: 176 beats, murmurs, and
dataset ‘B, Digiscope, extra systoles
samples:656 dataset ‘B normal
beats, murmurs, extra
systoles, extra heart
sounds, and artifacts
PhysioNet CinC challenge [25] 3126 Normal, uncertain,
dataset 2016 and abnormal
E-General Medical [23] 64 Normal beats and
different pathologies
Heart sound and Murmur [26] 23 Normal and

Library, University of Michigan
Health systems

abnormal sounds
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Fig. 5 Analysis of PCG signal in the time domain

time domain usually starts with pre-processing which
generally comprises decimation followed by a low pass
filter with a cut-off frequency of around 200 Hz. The dec-
imation decreases the computational load on the analysis
module. Low pass filtering is used as pre-processing step
as heart beat has characteristics of low frequency signal.
Liang et al. [31] and Potes et al. [32] first decimate the
signal and pass it through low pass and band pass filters,
respectively. Chauhan et al. [16] employed low pass and
median filtering along with Hamming window for removal
of noise, ripples, and ringing effects. Likewise, Ari et al.
[33] pass the signal through a low pass filter after decima-
tion while Hussnain et al. [34] simply used the low pass

filtering without decimation. Signal from the decimation
and filtering stages is next fed to the normalization stage.

Normalization removes the amplitude variation for
inter and intra signal classification. The signal is then
converted to a form that is best suitable for localiza-
tion and classification. Shannon energy envelop is most
widely employed method investigated in most of the
time-based techniques [16, 31, 34]. In short, researchers
have mostly employed combinations of decimation, filter-
ing, and Shannon energy for pre-processing in the time
domain.

The signal after pre-processing has peaks at regular and
non-regular intervals. Candidate peaks can be used for

Fig. 6 Signal analysis in frequency domain. a Signal before and after filtering. b Signal spectrum before and after filtering
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Fig. 7 Calculation of MFCC

individual beat localization which in turn can be used for
heart rate detection. The time duration between S1 and
S2 (systole) and the one between S2 and S1 (diastole) are
usually exploited for the localization and classification of
candidate peaks [16, 31, 33].

Another common approach is to employ machine
learning-based techniques for localization and classifica-
tion. Signals represented in an appropriate feature space
are used to train a learning algorithm.

Authors in [35], for instance, use support vector
machine with a modified cuckoo search (MCS) opti-
mizer using features extracted from linear predictive
coding (LPC) for classification. Similarly, Chen et al.
[36] investigated deep neural networks for recognition of
heart sounds S1 and S2. In another study, Potes et al.
[32] applied AdaBoost-abstain (modified version of con-
ventional AdaBoost) and convolutional neural networks
(CNN) to detect abnormal heart sounds.

As discussed previously, MECC is usually used in the
frequency-based methods and is found to be effective
in speech processing including speech recognition and
speaker identification [36]. MFCC has been used in the
feature extraction process in [36] and [32] for localization
and classification. Likewise, MFCC-based features were
used to train HMM classifiers in [16] and reported high
classification rates.

As discussed earlier, heart beat signal is a time series
data composed of different events (occurrence of S1, S2,
etc.). The sequence of these events varies in case of
abnormal signals. Human heart beat has therefore been
modeled using HMM (Fig. 3) in a number of studies
[15-17] where each state represents an event (silence, S1,
S2, murmur, etc.). Although HMMs exploit this tempo-
ral dependency, the features fed to these HMMs can be
extracted in the frequency domain. MFCC-based features,
for instance, have been employed to train HMMs [17].
Such modeling has been applied to simple two class prob-
lem (normal and abnormal heart sound) as well as for the
detection of different pathologies like ventricular septal
defect (VSD), mitral regurgitation (MR), aortic stenosis
(AS), aortic regurgitation (AR), patent suctus arterio-
sus (PDA), pulmonary regurgitation (PR), and pulmonary
stenosis (PS) [17].

Ajit et al. [37] used simple FFT for localization and
classification without any further processing as frequency

contents of different heart sounds have different spec-
trum contents. Authors in [29] used both frequency- and
energy-based features for classification while Mandeep
and Cheema [30] used time, frequency, cepstrum, and
statistical features for localization as well as for classifica-
tion. Features were evaluated using Ranker and Info Gain
Attribute Evaluation algorithm, and multiple classifiers
were investigated to recognize the beats. Among other
notable studies, Samit et al. [33] after pre-processing, used
wavelet decomposition for localization and least square
SVM with least mean square (LMS) for classification. In
another study, Nogueira et al. [38] exploited MFCC with
time features of systole and diastole durations, and the
relationship between ECG and PCG signal for heart sound
classification. Ortiz et al. [39] employed dynamic time
warping (DTW) along with MFCC for heart sound classi-
fication realizing a test score of 84% using SVM classifier.
Tang et al. [40] proposed an ensemble of 324 features pri-
marily composed of time, frequency, kurtosis, energy, and
other features to classify a sound as normal or abnor-
mal using ANN. Rubin et al. [41] converted PCG signal
to heat map using MFCC for abnormal sound detec-
tion using convolutional neural network (CNN). It can
be noticed from the discussion of the presented tech-
niques that classifiers like ANN, SVM, and HMM have
been commonly employed in time- and frequency-based
methods. While HMM exploits the temporal dependen-
cies in the signal, classifiers like ANN and SVM cate-
gories individual beats into one of the beat classes under
study.

From the view point of heart sounds, S1 and S2 are con-
sidered in [30, 31, 36, 37] while [35] and [16], in addition to
S1and S2, also consider split S1, split S2, S3, S4, murmurs,
clicks, and snaps. The work in [34] is focused on discrimi-
nation between normal heart sounds and murmurs. Like-
wise, authors in [32, 39—41] primarily distinguish between
the two broad categories, normal (S1, S2) and abnormal
heart sounds. Similarly, noise or spike detection is stud-
ied in [29] while the work in [33] considers normal heart
conditions as well as pathological problems including aor-
tic insufficiency, aortic stenosis, atrial septal defect, mitral
regurgitation, and mitral stenosis.

Table 2 summarizes the research in explicit time
[29-31, 33-35, 38—41] and frequency [16, 17, 32, 36, 37]
domains. All studies except [30, 32, 34, 38—41] consider
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private datasets for evaluation of the proposed techniques.
These private datasets were recorded at various settings,
for instance, authors in [29] and [33] used clinical set-
tings while 3M Poland microphone samples are employed
in [35]. Likewise, for public datasets, different subsets
have been employed by different authors making a direct
comparison of these techniques difficult.

The evaluation protocol in different studies also varies
. Techni-ques proposed in [16, 17, 30-32, 35, 37-41]
considered signals, [33] used cycles while [36] used beats.
The general evaluation metrics include accuracy, speci-
ficity, sensitivity, and positive predictive value (PPV) as
elaborated in the following:

TP + TN
Accuracy = + (4)
TP 4+ TN + FP + EN
TN
Specificity = ——— 5
pecificity TN £ P (5)
. TP
Sensitivity = ———— (6)
TP + EN
TP
PPV = ?)
TP + FP

Where ‘TP’ represents true positives or correctly iden-
tified, ‘TN’ represents true negatives or correctly rejected,
‘FP’ for false positives or incorrectly identified, and ‘FN’
represents false negatives or incorrectly rejected. Most of
the studies [17, 29, 30, 32, 35, 36, 38—41] used these mea-
sures; authors in [16, 31] employed correct and incorrect
cycle detection while [33] employed classification rate for
quantifying the results.

Comparing different time-based methods, it can be
observed from Table 2 that a number of studies achieved
an overall score of above 90% on public datasets [24, 25].
On private datasets, classification accuracies of as high
as 100% have also been reported [33, 35]. Springer algo-
rithm [15] has been employed for localization in most of
studies [38, 40, 41]. For classification, peak to peak time
duration has shown to be a discriminative feature [31, 34].
A similar trend is observed for frequency based methods
which report, on the average, accuracies of more than 80%
on the public PASCAL challenge dataset while a classifi-
cation rate of 100% is claimed on a private dataset [16].
Features based on MFCC have been commonly employed
in combination with variety of classifiers. In some cases,
time- and frequency-based features have been combined
[16, 30, 32] to further enhance the localization and classi-
fication performance. Furthermore, it is also common to
employ time domain for classification frequency domain
for classification [38—41].
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3.2 Time-frequency analysis

Due to cyclostationary nature of PCG, a signal cannot
be localized both in time and frequency due to uncer-
tainty principle limitation. Consequently, time-frequency
analysis of PCG signals is investigated in a number of
studies. Such methods generally employ short-time fre-
quency transform (STFT), time-frequency representa-
tions like Wigner-Ville, wavelet transform, and empirical
mode decomposition (EMD).

3.2.1 Time-frequency representation
These methods rely on taking the Fourier transform of
auto-correlation of signal as indicated in Eq. 8 [42].
o0
T T\ _;
WD(t, w) = / x (t+ 5) * <t+ E) e dr (8)
—00

Where WD stands for Wigner distribution, x is the
signal, x* represents the conjugate of x while 7 is the
time delay and w is the frequency. For a mono compo-
nent signal, Eq. 8 produces a frequency component that is
representative of signal frequency. However, for multiple-
component signal, this autocorrelation produces extra
components known as ‘cross-terms. As an example, we
consider a two-component signal x(¢) = x1(¢) +x2(¢). The
autocorrelation of signal x(¢) will be composed of terms
x(t) %x(t) = 1 (£) %x1 (&) +x2 () xx2 (£) +x1 (£) *2x2 (). While
the first two terms represent the power components of
signal under study, the third term is an additional undesir-
able component (cross-term). Since WD computes FFT of
the autocorrelation of signal, the contribution from cross-
terms also appears; hence, corrupting the spectrum. To
minimize the impact of cross-terms, a windowed version
of above equation is normally used as presented in Eq. 9.

PWD(t, w) = ]o w(T)x (t + %)x* (t + %) e M dr
—00

9)

Where w(t) represents the smoothing window.
Equation 9 is known as pseudo Wigner-Ville distribution
[43]. Figure 8 shows the output of the pseudo Wigner-
Ville representation of heart beat signal from a sample
file in the Pascal DigiScope dataset (Table 1). The peak
at 1000th sample represents S1, and the one at 2000th
sample represents S2. All other structures represent
noise resulting from cross terms due the TFR manipu-
lation. The noise samples result from autocorrelation of
multi-spectral signals.

Vargas et al. [44] demonstrated that time-frequency
methods can be used for analysis of non-stationary signal
like EEG and PCG. Zhang et al. [45] used matching pursuit
(MP) that works both in time and frequency domains, for
PCG signal decomposition. For time scaling, the signal is
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Fig. 8 Pseudo Wigner-Ville representation (time-frequency) of PCG signal
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expanded in a way that the frequency components remain
the same. Likewise, for frequency scaling, the frequency
contents are compressed and expanded while keeping the
temporal contents intact. In frequency scaling, the fre-
quency band may be shifted towards higher frequencies
or towards lower spectrum. Despite the shift, the contents
in time remain the same. It is not uncommon to use both
time and frequency scaling. The MP method converts
the signal into time-frequency atoms with time and fre-
quency parameters. The summation of atoms gives back
the original signal with error. Making use of these param-
eters, the signal can be transformed. This transformation
results in a modified version of the signal which cannot be
directly compared with original signal. An inverse scaling
is therefore used for comparison. The time-frequency rep-
resentations (TFR) can be calculated from original, scaled,
and inversed versions. The sum of Wigner distribution
of all atoms of a signal is termed as MP-based Wigner
distribution. MP-based Wigner distribution has the dis-
tinct advantage of automatic removal of cross terms over
conventional Wigner distribution when applied to signal.
Also, MP-based Wigner distribution gives much clear pre-
sentation than the spectrogram. The time and frequency
resolution of both spectrogram and MP-WYV distribution
is higher than original, and components are much clear in
case of normal heart sound as well as aortic regurgitation.

In another study [46], authors employed spectrogram
along with Renyi entropy for localization and classifi-
cation. First, TFR using spectrogram is calculated, the
optimal value for window length is then calculated using
Renyi Entropy Measure (RME). The RME (Eq. 10) is also
used for localization of the end of normal heart sound and

start of any pathological sound based on a threshold. The
method was tested for normal PCG, early aortic stenosis,
late aortic stenosis, and pulmonary stenosis.

LI / / C(t,f)dtdf

l—«o

R, = (10)

Debbal and Bereksi-Reguig [47] compared time-
frequency methods of STFT (short-time frequency
transform), CWT (continuous wavelet transform), and
Wigner-Ville (WV) distribution primarily for the analy-
sis of second heart sound. Analysis was also carried out
for normal and pathological cases of early stenosis aor-
tic analysis, late aortic stenosis, and pulmonary stenosis,
etc. Authors concluded that for second heart sound, WV
suffers from cross-term limitation while STFT joins the
split. CW outperforms the other two techniques both
in terms of localization and split. Gavrovska et al. [48]
used affine PWVD along with Shannon envelope, ACF,
and Haar wavelet lifting for S1 and S2 localization and
classification. The basic difference between the normal
TER (time frequency distribution) and affine distribution
(time-scale distribution or TSD) is that TFR is covariant to
time and frequency of signal while TSD is covariant with
time and scale of the signal [49]. The developed technique
relies on three main steps. The signal is first down sam-
pled, and coarse detection is performed using PWVD fol-
lowed by fine detection using Haar wavelet lifting scheme
and normalized average Shannon energy (NASE) algo-
rithm. The Haar wavelet-based lifting scheme emphasizes
more on low frequency components of the PCG signal
under consideration. Finally, identification of S1 and S2 is
carried out.
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Singh and Dutta [50] used time, probability, and spec-
trogram for automatic analysis of PCG for cardiac dis-
orders. Barma [51] considered decomposition method
called Hilbert Vibration Decomposition (HVD) along
with time-frequency representation of smoothed pseudo
Wigner-Ville distribution (SPWVD) for detection of third
heart sound. HVD was proposed to overcome the limi-
tations associated with Hilbert-Huang transform (HHT).
HHT is unable to separate low-energy noise from heart
sound which has major energy in low frequency spectrum.
It also generates low amplitudes at low frequency which
has no physical interpretation. In another work, Zhang
et al. [52] proposed a method based on spectrogram and
partial least squares regression to classify heart sound
into normal, murmur, extra heart sound, extra systole,
and artifacts. In an extension of this work [53], authors
employed a number of machine learning algorithms for
classification of heart sounds.

A summary of TFR-based localization and classifica-
tion techniques is presented in Table 3. It should be noted
that the evaluation datasets considered in [45, 48, 50]
are private datasets comprising 11, 70, and 90 signals,
respectively. The technique proposed in [46] is evalu-
ated on the E-general Medical dataset with six signals,
while no explicit details about the signals used for eval-
uations is given in [47]. Public datasets PASCAL CHSC
2011, 2016 PhysioNet Challenege, E-General, and Michi-
gan Library data have been employed for evaluations in
[51-53]. Gavrovska et al. [48], Zhang et al. [53], and Barma
et al. [51] employed precision, efficiency, and recall to
quantify the system performance. Among notable contri-
butions, recall of more than 90% and precision of 96.39%
is reported in [48]. Likewise, Barm et al. [51] realize an
efficiency of 93.9% while Zhang et al. [52, 53] report a
varying sensitivity of 50-100% depending upon the num-
ber and types of heart sound classes considered in the
experiments.

3.2.2 Wavelet transform

Wavelet is a popular method of choice in many fields
because of the flexibility it provides in terms of choice of
kernel selection which in turn reflects different time and
frequency resolutions. Wavelet transform divides the sig-
nal into wavelet and scale factor. The formation is given in
Eq. 11 [54].

& =Y co®pjp, @ + > > dik)yek) (1)

k j=jo k

cjo and d; are coefficients while gjox and v, are scal-
ing and wavelet functions, respectively. Haar, Mexican hat,
Morlet, Daubechies, and Symlet wavelets are a few of
the well-known functions from a very long list of wavelet
functions. The different time and frequency resolutions
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are usually achieved by using filter banks, an example
illustrated in Fig. 9 for S1 beat selected from the PASCAL
dataset. In Fig. 9a, first the beat S1 data was converted to
Hamming data which was then fed to wavelet transform
converting it into one scale and 12 coefficients. The aver-
age signal is presented in Fig. 9a while Fig. 9b—d present
the low-band, mid-band, and high-frequency band of the
beat.

Wavelet transform is a powerful tool that has been
employed for pre-processing, localization, and classifica-
tion. Song et al. [55] denoised the signals in two phases.
Environment noise in the heart sounds was removed using
the LMS algorithm, while a second step of denoising was
carried out using db3 wavelet. Wavelet analysis using db6
order 4 filter was performed for signal reconstruction.
The authors concluded that the reconstructed signal gives
better characteristics for classification between normal
heart sound and murmurs. Features were computed using
NASE algorithm, and fuzzy neural network with structure
learning classifier was employed for classification [55].

In another study, Sepideh and Geranmayeh [56] consid-
ered modeling of the normal heart sound and three patho-
logical disorders, namely, aortic insufficiency, the aortic
stenosis, and the pulmonary stenosis sounds. Wavelet
db4, order 5 analysis was then carried out on the signals
producing statistical features of mean and standard devi-
ation to train an ANN. Features were modified, and the
inverse wavelet analysis using the same db4, order 5 was
performed which produced the modeled sound [56].

Liang and Hartimo [57] segmented the PCG signal into
four parts, ie., systole, diastole, first heart sound, and
second heart sound using wavelet decomposition and
reconstruction. Feature vector is then constructed from
the original PCG as well as from the third, fourth, and
fifth coefficient of db6 order 5. The feature vector based
on systole and diastole duration is normalized and fed to
ANN classifier for classification of innocent murmur and
pathological murmurs [57]. The study was later extended
to consider wavelet packet decomposition for heart beat
classification [58].

Tu et al. [59] denoised the signal using soft and hard
thresholding method with the aim to remove the murmur
and environmental noise. The signal was then recon-
structed using wavelet db6 and channels 5, 6, and 7. Sound
envelop was then extracted using Hilbert transform, and
features mainly based on time duration of systole and dias-
tole were used for classification. Gupta et al. [60] proposed
a segmentation algorithm based on homomorphic filter-
ing and K-means clustering. The signal was first passed
through pre-processing stages comprising normalization
and low pass filtering. Segmentation was performed for
complete and missed cycle using db2. Features extracted
from the segmented signal were then used for classifica-
tion of normal, systolic, and diastolic murmur.
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Fig. 9 Low-, mid-band, and high-frequency band extraction of S1 using wavelet transform. a S1 beat extracted using rectangular and hamming
window with approximation. b S1 beat: high-frequency component extracted using wavelet transform. € S1 beat: mid-band frequency component
extracted using wavelet transform. d S1 beat: low-frequency component extracted using wavelet transform

Among other wavelet based contributions, Naseri and
Homaeinezhad [61] proposed a framework for classifi-
cation of heart sounds S1, S2, S3, S4, murmurs, and
scuffles. The authors first carry out signal normaliza-
tion followed by wavelet packet decomposition for noise
removal and finally bias removal using Gaussian smooth-
ing filter. Frequency- and amplitude-based features were
employed for the detection of different heart sounds.

Pedrosa et al. [62] divide their work into two parts, first
is to segment the signal into periodic and non-periodic
(noisy) parts, and second is to classify the segmented
parts into murmurs or normal beats. Morlet-based pre-
processing is used in the segmentation stage and autocor-
relation function (ACF) is used for detection of periodic
and noisy parts. Any periodic parts are then classified as
S1 or S2 using time and time-frequency features. Murmur
detection is based on features extracted from Shannon

energy, CWT, DWT, singular value decomposition (SVD),
MEFCC, bispectrum, variance fractal dimension, and Lya-
punove exponents. Zheng et al. [63] carried out patholog-
ical signal detection based on DWT, MFCC, and dynamic
time warping (DTW). First, DWT is used for envelo-
gram segmentation followed by feature extraction using
MECC. Finally, DTW is employed to measure the dis-
tance between the signal under test and signal with known
pathologies. In another work, Marques et al. [64] investi-
gated stationary wavelet transform followed by hierarchi-
cal clustering for localization S1, S2, systole, and diastole.

Deng and Bentley [65] aimed segmentation of normal
heart sounds and detection of murmurs. The signal is first
down sampled and db4 order 6 is used to extract the beats.
Peaks are identified based on the time between the identi-
fied systole and diastole periods. The identified peaks are
then classified using the time duration between peaks as
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feature. Gupta et al. [66] preprocess the signal using nor-
malization and low pass filtering. Segmentation is carried
out using homomorphic filtering and K-means cluster-
ing. Once segmented, wavelet coefficients using db2 are
computed to serve as features. The dimensionality of the
feature vector is reduced using PCA. Classification for
normal, systolic murmur, and diastolic murmur is carried
out using multilayer perceptron-back propagation neural
network (MLP-BP).

Abo-Zahhad et al. [67] proposed a human authenti-
cation algorithm based on discrete wavelet transform
(DWT) for PCG signals. Jain and Tiwari [68] used adap-
tive thresholding method for denoising of PCG signals.
Later, in an extension [69] to this work, adaptive algo-
rithm was used for shrinking of wavelet coefficients for
PCG denoising. Goda et al. [70] combined DWT, time fea-
tures, and other features for classification of heart sounds.
Abdollahpur et al. [71] used DWT with MFCC for heart
sound classification while Boussaa et al. [72] compared
MECC with DWT for PCG classification. Likewise, Kay
and Agarwal [73] used MFCC and continuous wavelet
transform (DWT being the discrete counterpart) for heart
sound classification.

There is a growing trend towards using wavelet in com-
bination with other operators like Teager energy opera-
tor (TEO) and non-negative matrix factorization (NMF).
Sattar et al. [74] used NMF for PCG segmentation.
Ramovic et al. proposed a system for human authenti-
cation based on wavelet and TEO [75] while fetal heart
sound detection is carried out by Koutsiana using wavelet
and fractal dimensions [76].

A summarized overview of the wavelet based meth-
ods discussed in this section is presented in Table 4.
Among the studies discussed, classification of normal
(S1 and S2) and abnormal heart sounds is considered in
[55, 61, 62, 68, 69, 71, 73, 77]. Murmurs were focused in
[57, 58, 60-62, 64, 65, 67, 72], while special heart
sounds like heart pathologies, scuffles, and artifacts
are considered in [56, 63, 65]. Both private and pub-
lic datasets have been employed for evaluations. Sys-
tems presented in [55-61, 66] have been evaluated on
private datasets, while works reported in [63, 69] con-
sidered a major proportion of the E-General Medical
PASCAL 11, 2016 PhysioNet challenge, Egeneral, MIT
BIH, and BIOSec public datasets. Likewise, studies pre-
sented in [62, 64, 65, 67, 71, 73, 77] employed differ-
ent subsets of the PHSC 2011 dataset and 2016 Phy-
sioNet challenge. Among evaluation metrics, classical
measures including accuracy, PPV, specificity, sensitivity,
precision, and classification rate have been mostly used
[55-58, 60-62, 65, 71, 73, 77]. Varying results have been
reported in these studies ranging from as low as 50% to
as high as 100%. Techniques based on wavelets report
quantified results even in the earlier studies like [57, 58]
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where accuracies of 74.4 and 85% are reported (respec-
tively) on private datasets. On public datasets, accuracies
of 85 and 98% are reported in [71, 73] respectively on the
PhysioNet database. Among other studies, Jain et al. [68,
69] realize a 100% accuracy on E-General and a private
dataset while the work presented in [72] also reports an
accuracy of 100% on the MIT BIH dataset. In general, in
terms of performance, wavelet-based techniques exhibit a
trend similar to that of other techniques where high accu-
racies are reported on private datasets while the publicly
available and more difficult datasets still offer a number of
challenges.

3.2.3 EMD and Hilbert-Huang transform

EMD has been a popular choice for the time-frequency
analysis in many fields. Unlike other time-frequency algo-
rithms, EMD operates in time domain and operates
directly on the signal.

EMD was introduced by Huang et al. [78] along with
2D graphical representation known as Hilbert spectrum
for non-linear and non-stationary time series analysis.
The algorithm is based on the assumption that each data
series is primarily composed of a finite set of simple oscil-
lations which are AM/FM components called intrinsic
mode functions (IMF) by sifting process [79, 80]. An IMF
must follow the following properties:

e The mean value of an IMF is zero.
e The difference between the number of zero crossings
and the number of extrema is at most one.

The first condition implies that IMF should be a narrow
band signal, and the second refers to IMF being a mono-
component signal [78]. EMD comes in many flavors like
bivariate EMD, complex EMD, and multivariable EMD. In
our discussion, we will focus only on the standard EMD
algorithm [81, 82] which is outlined in the following.

The signal x(£) decomposed by EMD can be represented
as follows:

N
x(t) =Y _ci(t) +7(t)

i=1

(12)

Where ¢;(¢) are IMF and r(¢) is the residue. Since ¢;(¢)
is monocomponent, by taking its Hilbert transform, it
can be converted to an analytical signal. The derivation is
given in the following:

N N
Xt =) Xi@®)+r@®) =Y c®)+jHlc(®)]  (13)

i=1 i=1

X;i(t) can be represented with amplitude and phase as
given below:

Xi(t) = a;(t).¢" (14)



Page 16 of 27

Ismail et al. EURASIP Journal on Advances in Signal Processing (2018) 2018:26

swoidwAs
[eo1bojoyied
Y1IM SpUNos
218l 1Je3y pue Spunos UOoMdeIIXd UOoMdeIIXd weibojaAu [€9]le1s
- uoneluswhas sjeubis 09 |BDIP3N |el2UdD)-] 1esy [ewloN 2IN1e9) PASeG-DDHIN  2IN1e9) Paseq-DD4IN  PuUe |MJ ‘UOReZIBWION €107 buayz
%016/ Apyads
-169% pue AlAISUSS
Jo  pue ANWUNW 10§ siskjeue
'%/969 pue ‘aAdipaid g pue v 19s5e1ep sisAjeue paseq-soeyd paseq-soeyd pue
—-8¢'CS 1 10Z DSHD 1vOSvd pue esull-uou  seaulj-uou ‘siskjeue
pue pue AuAnl 1 LOZ DSHD 1¥DSVYd pue |1zeig ‘94129Y Ul siInwunw ‘sisAjeue [enidadiad |enidasiad ISlouap
969'86 :uoneuawbas wouj sjeubls | | | pue sanbnuod [eudsoH pue spunos ‘ulewop Aouanbaiy  ‘utewop  Adusanbaiy 19[9ABM SNONUIIUOD [c9] e s
pue 7’68 104 sleubis adodsibig 7/ |y 1e paplodal eleQ 1esy [ewloN -9WI} 'UlBWIOP SWI|  -9WI} ‘UleUIOp SWl| Paseq-IoYIoW IO 10T 2S0IP3d
L LOZ DSHD 1¥DSVd g pue
woly sjeubls v 13se1ep | 107 DSHD siInuunwi sain1es} DD4IN
11 uoniubod3l 90¢ pue 1oseiep TvOSVd pue [sOlL] puespunos  pue DDdM DD41DD4N VASINLRE
- 102110D) 9Dd "9501g Wolj |7 195e1Bp DD 35019 1eay [eWION U0 paseq UORBDYISSED - Buisiousp pased-1Md  910C peyyez
siInuuNWw Sainies)
o1el 195e18p HIg puespunos |Md pue DD4N Buisn [c/]e1®
%001 UoISIDOP 19940)  LIW Woy sjeubis g [€OLT HIg LIW leay [eUWION  UONedYISSe|D Paseq-NNY - - 910¢ eessnog
exep 50d
3JI| |B3J puUe pPate|NWIS Buisiousp 1oy uondNpal
%001 7S pue Jo pasodwod spunos 1UIDIYR0D | M [89] ‘e 19
-9'98 |G JO UONDAIP % - 195e1EP 31PAl 1Jeay [ewloN - - Jjo buipjoysaiyr aandepy 9107 uler
%86
-1'v8
pue
%96 [v01] wypuoble
-1'18 21025 |[e J9AO Spunos [S1] wyiobe |eAoulal 9y1ds 1pIWydS
'%/6 pue ‘AUAILISUDS abua|eyd 1eay [eulouge UOIIBDIISSE|D Paseq uoeIUWHS pue ‘bupiay ssedpueq [IVANLRE
-7/8 ‘Apyoads S|leubis osyy 19NOISAUd 9102 pue [euwloN -Bunoa pue NNV Va4 s abuldg ‘Budwesumoq 9107 2JRISOIN
52d
papi0d3l Buisiousp 1oy uondNpal
%001 7S pue Aj21eAud [eUBIS 0| puR Spunos JUPIY0D |MA [69] ‘e 12
—-1'GG 1S JO UOIDAIP % - |BDIP3I [BIDUSD-] 1Jeay [ewloN - - 10} poylaw aandepy /107 uer
Qyd g puey isseied spunos Imdipue 1Md VZANIRE)
- pue ‘JSWY UNS 01 110Z DSHD 1vDOSvd Hesy [ellIoN NNV 19pPABM 0L qd  UO Paseq UoRdNAISUOISY  /10¢ yigeN
Spunos  sainjea) Alxa|dwod pue wyiLoble
abugjeyd>  ueay [ewlouoge IMD DD4W ‘uoneinp uoneluswhas [e/]712 319
%7'S8 AoeINDDY - 19NOISAUd 9107 pue [eulloN 1e3q BuISN NNV s obundsg - /10T Keyf
[SINENT sanbiuydal sanbiuydal
S NsaY uolien|eay SD1351381S S[euUbIS 195 p1e(] sadA1ieag  sanbiuyda) uonedyisse|d UOJ1eZ/|ed07 Bujssadoid-ald  Jeaj Apnig

UleWOP 12|98/ ¥ 3]qeL



Page 17 of 27

26

Ismail et al. EURASIP Journal on Advances in Signal Processing (2018) 2018,

sinwinw pue

NNV pue
‘UoreINp swn sjoIselp
‘uoljeinp awil 9|0ISAs

uonexo|

7S pue | paseg-dojaaus

19]9ABM
salydagneq buisn
[eubis 1oN1Isu0d3)

[£9]

%t/ Aoeindoy sbuipioda1 g/ 19SB1BP 1PALlJ  SPUNOS Leay [BULION U0 Paseq J01D9A 2In1ea ABIaua uouueys pue asodwodag 8661 ‘B 1 DBulAinH
siInwunw
szl-/ [ea1bojoisAyd uonisodwodap uonisod [85] e 19
%G8 Aoeindoy Jo [eubis 68 - pue |es1bojoyied 19¥0ed 19]9ABA\  -WOD3P 19¥ded 13j9ABM - 8661 puni
Aoeindoe 2Jjodebuls ‘|endsoH Inwunul ojjoiselp SueIW-Y| pue
uopeIURWHS [eJ2uUD) ai0debulS pue INwINW Ij0ISAS dg9-dTW pue sainies;  Bulal|y dlydiowowoy [99] ‘e 13
%506 PUB GG PUB UOIRDYISSE|D S9AD OpE 1e PapI0dal BIR ‘SPUNOS 13y [eULION paseg-19[9AeM Zg@ U0 paseq UOND1ap yead  UOIeZIeulou [eublS 5007 e1dno
S9A OpE InuNW Jijoiselp dg-4IwW sueaw-y  Uoljezijewsou [eubis
Jo pasodwod  aiodebuls ‘|eudsoH  pue NN d1j01sAS pue Ty ‘sainieay pue uoleINP 3wl pue bulal|y ssed mo| [09] ‘e 12
%6206 9¥el UO[BDYISSe)D Sjeublis |4 ‘|elausD) alodebuls ‘SpUNOS LSy [eULION paseq-zqQ ivjerep  ‘Bunsyy diydiowowoH ‘uonewap [eubis /00 e1dno
SISou)s Areuow|nd
pUE ‘SISOUS1S DI1oe 121JI55€PD
uel| ‘Aouadiynsul d1oe [eD13S11BIS pUB NNV [CONERE
%Y 76 Aoeindoy S9DAD 7/€ 491U LeSH URIYS| ‘SPUNOS 1eay [ewloN ‘pqQ 9sioAul pue +9d $QQ 3SI9AUl puUe $aJ - 6007 |19eqeg
92IA9P SWII-|eal
d1el WOl 00| PUe  3DIASP SWil-[eal pue
uoneIUaWHIS 95eqelep Wolj  aseqeiep AUSISAIUN UOoeDIISSe|D [65] e 19
%0916 122110D) sbulpiodal €71 Buopueys  SPUNOS 1eay [eWION Paseq-Wioysuel} LUSG|IH UOIRIND SWil 183q HeaH 1AM 9qd  010T nl reyiyz
s39sqns olgnd (ISNN4H) uonewlioy
|ewiouge Joy pue a1eald Buluies| 21N3ONIIS YIM dojaAua uouueys
%05 pue [ewliou Jo pasodwiod SpUNoS 1eay soMIBU [eINSU AZZny ‘pazi[euliou WO} SETENEIN [sS]eae
10} 95001 91eJ uonedyIsse]D sjeubis | — |PWIOUQe PpUB [eWION ‘PISeq UOIBIND pUBYedd Pa1deIIXa SUO[RIND Wl | €qg pue SN 10z puog
uel|
"J23U3D) Yoieasay uonezijeullou
anjeA aAlRdIpald Ui pue [eJIpaN S9|HN0dS syead Usam1aq syead usamiaq pue ‘|eAOWSI
aalsod 76 Jo uoneinp 'Je[N2SeAO pUB ‘SINUINW  UOIIRIND SUWII} PUB ‘SNjBA  UONRIND Wi} PUB ‘ONjBA  3SI0U 3SBJ 13]9ABM [19] 1319
9%09'86 PUB 0066 pue AJARISUSS  |e10} Jo seubis g -IpleD 19efey  ‘SPUNOS 1eay [PWION siead ‘uonelnp awil| sead ‘uolelnp swi| ‘leAOWRl aul[9seq 10T PENN
wesboudads buisn
[eubIs a1 41|21 pue
$19114 994 [PA9] ¥
Buisn uonisodwodap
%8S i pue Audypads 1oBJI1IE PUB SPUNOS apnyidwe apnidwe 19[9ABM [59] A3jauag
‘%58 055/ € pue ‘ANAIISUSS g19se1ep 2J1X3 ‘SINULINW sead pue syead sead pue syead Bulsn 1oNIISUOILI [ 19194
'%Eg'Sy pue /9// ‘uoisidald pue vy 1aseled L 10Z DSHD TVOSVYd  ‘SPUNOS Leay [BULUON  U99MISQ UOIRINP SWI|  U99MIS] UORRIND Wi | pue asodwodaq 7107 ‘busq 1bIx
g195e1ep
wloJj sjeubis [eubis ay1 uswbas
01 puey 13seiep Spunos 7S pue | S ysinbunsip 01 Wliojsueiy [#9] 1832
- uodNpal 103 wolj sjeubls o€ 110z DSHD TVIOSYd 1ieay [euwloN 03 buuaisn|d [esiydielalH 19]9ABM Aleuonelg - €107 sanbuely
EeINENY] sanbiuyday
S NSy uojeNjeA3  SDIISNRIS S|eubIS 195 p1e(] sadA11eag sanbjuyoay uopedyisse)  sanbiuydal Uoez|edoT Bujssodoid-ald  IBIA Apnig

(Panuu0D) URLIOP 12]2ARA t 3]qel



Ismail et al. EURASIP Journal on Advances in Signal Processing (2018) 2018:26

Algorithm 1: Standard EMD algorithm

1 function Standard EMD algorithm(x(?));

Input :x(¢)
Output: IMF

2 Let x(¢) is original signal and equalize it to x1(¢). Identify all
local minima and all maxima of x(z).

3 Construct a lower envelop ¢;(¢) and upper envelope e, (z)
using interpolation.

4 Calculate the local mean m(£) = (e;(£) +e,(2)) /2.

5 Subtract the local mean from x1(£) and obtain the IMF
(ci(t) = x1(t)—m(¢t)). Where ‘i’ is the order of IMF.

6 If c;(¢) is not an IMF, then x1(£)= c;(£) and go to Step 2 and
till ¢;(t) becomes an IMF.

7 If an IMF is obtained, then calculate residue r(¢)=
x1(2)—c;i(2) . If r(¢) meets the criteria, then signal is
decomposed into IMFs and residue else put x1(¢)= r(¢) and
go to Step 2.

Where

0; = arctan (H[Ci(t)]>

ci(t)

and
ai(t) = /i) + H [ (®)]

If phase 6; is differentiated with the respect to time ¢,
the result is instantaneous frequency w;. The plot of 6;
vs w; is the graphical representation known as Hilbert-
Huang transform [78-80]. Figure 10 shows an actual S1
beat selected from a data file in the iStethoscope dataset.
Two plots are shown, one for the actual rectangular data
and other from hamming-based data of the same rect-
angular window. b—d present the low-band, mid-band,
and high-frequency band of the beat using standard EMD
algorithm.

Among EMD-based techniques, Salman et al. [83] first
filter the signal using low pass filter followed by EMD-
based denoising. Authors claim that EMD offers better
values for a number of noise measures including signal-
to-noise ratio (SNR), root mean square error (RMSE),
and percent root mean square difference (PRD). Cardiac
cycle was calculated using autocorrelation of normalized
Hilbert transformed signal, and segmentation was car-
ried out using Shannon energy. Finally, the time duration
between peaks was used for systole and diastole identifi-
cation from which different beats like S1, S2, S3, and S4
were classified [83].

In another work, Zhao et al. [84] employ two meth-
ods for instantaneous frequency calculation. One based
on Hilbert transform, and the other based on TFD (EMD).
The Hilbert-based approach fails for wide band signals
while EMD reports satisfactory results. Authors claim to
make use of EMD in its basic form to detect coronary
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artery disease based on the instantaneous frequency cal-
culated from diastolic murmurs using EMD and SVM.
In another study [85] by the same authors, signal was
denoised using db5 and, ensemble EMD (E-EMD) was
then applied. EEMD removes the mode mixing problem
in traditional EMD. Marginal spectrum was calculated on
the Hilbert-Huang spectrum of EEMD output followed
by DCT quantization and normalization of the marginal
spectrum. Vector quantizer (VQ) was trained using Linde-
Buzo-Gray algorithm, and classification was carried out
using Euclidean distance.

One of the early attempts to analyze biomedical sig-
nals (including PCG) using EMD was made by Sun
et al. [86]. The authors argued that EMD is a powerful yet
little explored tool for analysis of different biomedical sig-
nals. Later, the authors investigated EMD decomposition
for instantaneous frequency estimation of PCG signals
and concluded that EMD being a physical decomposi-
tion is more useful than mathematical decompositions
like wavelet transform [87]. Likewise, Gavrovska et al. [88]
employed EMD with wavelet for PCG denoising.

Among other contributions, Moukhadem et al. [89] and
Sun et al. [90] proposed algorithms for the classification
of first and second heart sounds. In [90], Sun et al. used a
combination of wavelet and EMD for classification. Signal
is first decomposed using EMD, and the highest frequency
IMF is denoised using db7 wavelet. The output signal is
then reconstructed using denoised channels, and all other
IMFs and NASE algorithm is applied on the resultant sig-
nal. In addition, cross correlation is calculated between
the original signal and all IMFs. The IMF reporting maxi-
mum correlation is chosen and NASE is again calculated.
Using separate thresholds, endpoints of S1 and S2 are
detected from both denoised NASE and maximum corre-
lation NASE signals. In [89], after pre-processing, SVD is
used for feature extraction from the output of EMD and S-
transform. SVD is also applied to the S-Matrix calculated
from S-transform followed by k-NN for classification.

Boutana et al. [91] exploited EMD for heart sound
segmentation and used it for clinical cases of late aor-
tic stenosis, early aortic stenosis, and mitral regurgi-
tation. The method for selection of IMFs is based on
noise-only model which assumes that if the noise is
additive white Gaussian noise, the logarithm-variance of
each IMF varies but the variation is linear and with
a parameter called the Hurst exponent. Papadaniil and
Hadjileontiadis [92] employed ensemble EMD along with
kurtosis for heart sound segmentation. Low pass and
median filtering is first used for noise removal. After-
wards, EEMD-based IMFs are calculated. The IMFs which
do not meet any of the energy criteria, instantaneous
frequency criteria, and bootstrap kurtosis-based criteria
are removed. S1 and S2 are then classified based on the
Kurtosis measure.
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Fig. 10 EMD-based low-, mid-band, and high-frequency extraction of a sample S1 beat .a S1 heart beat signal extracted using rectangular and
hamming window.b ST heart beat: high-frequency component extracted using EMD transform. € S1 heart beat: mid-band frequency component
extracted using EMD transform.d S1 heart beat: low-frequency component extracted using EMD transform

d

Authors in [93] suggested that translated EMD outper-
forms the traditional EMD. Translated EMD takes the
signal, modulates it, applies EMD, and then demodulates
all IMFs. The results are presented for simulated as well as
real PCG data. In a relatively recent study, Jimenez et al.
[94] first normalize and resample the PCG signals. Three
different types of EMD analysis, namely, EMD, EEMD,
and adaptive EEMD are then carried out. Afterwards,
S_MFCC obtained from the signal, ST MFCC calculated
from energy operator in the frequency domain, SW_MFCC
from frequency bands of the spectral energy distribu-
tion, and SWT_MFCC from combination of all previous are
calculated from two signals which are sum of the even
and odd IMFs. Fuzzy rough set (FRS) algorithm is then
employed to reduce statistical moments obtained from
HHT. At the end, classification is carried out using ergodic
HMM.

Banerjee et al. [95] used variational mode decomposi-
tion along with Shannon energy feature for heart sound
localization. Variational mode decomposition was devel-
oped by Dragomiretskiy and Zosso [96] to remove noise
sensitivity and sampling problems that accompany stan-
dard EMD. Salman et al. [97] used EMD for removal
of white, colored, exponential, and alpha-stable noise
and showed that EMD is superior when compared with
wavelet and total variation denoising methods. Heart
murmurs were detected by Jusak et al. [98] using com-
plete ensemble empirical mode decomposition (CEEMD,
another variant of standard EMD) and the Pearson dis-
tance metric. Authors concluded that CEEMD is com-
putationally more complex as it extracts more modes in
comparison to EMD.

Research efforts are being continuously made to
enhance the EMD algorithm and proposition of new
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filtering techniques for EMD. A number of variants have
been proposed to handle the overshoot and undershoot
end effects related to the classical EMD algorithm. These
effects are demonstrated in Fig. 11. The figure shows that
upper envelop is well above while the lower envelop is
fairly below the original signal. Both of these introduce
errors in the mean envelop. Another problem in EMD-
based techniques is associated with the stopping criteria.
If the algorithm stops premature, it will not reveal all the
details in signal, and if it continues for too many iterations,
the physically meaningless IMF would appear. The third
major problem with EMD is its decomposition sequence.
EMD decomposes from high frequency towards lower fre-
quency but not from high energy towards lower energy.
This effect can be minimized by using HHT transform
along with EMD [99].

A summary of the methods discussed in this section
is presented in Table 5. It should be noted that
all types of heart beat have been considered in the
EMD-based research. Normal heart beats of class
S1 and S2 are considered in most of the studies
[83-87, 89, 90, 92-95, 97, 100]. Additionally, S3 and S4
sounds are considered in [83] while S3 an S4 with gallop
are considered in [101]. Studies in [86, 87] focus on abnor-
mal heart sounds whereas various pathological states like
regurgitation and stenosis are investigated in [91, 92, 100].
Likewise, murmurs have been taken into account in [94,
98, 100].

Techniques proposed in most of the aforementioned
studies have been evaluated on private datasets. Only
the works presented in [91, 100] are evaluated on the
publicly available E-General Medical dataset. Likewise,
systems reported in [83, 97, 98, 101] employed the
University of Michigan dataset while PASCAL CHSC
2011 dataset is considered in [95]. Standard metrics of
accuracy, specificity, sensitivity, etc. have been employed
in most cases. Specific measures like mean prediction
power and mean accuracy [92], correct recognition rate

(CRR) [85], correct and incorrect diagnosis [84], and
SNR and ratio R [88] have also been reported. EMD
algorithm is compared with other time-frequency algo-
rithms like wavelet and DWT in [87, 88, 101]. Studies
reported in [97, 98] used SNR and ASNR while [95]
employed the average detection rate. Gavrovska et al. [88]
compared DWT, EMD, and EEMD, and concluded that
EEMD reports the best performance among the three.
Similarly, authors in [101] compared EMD with other
denoising techniques and argued that EMD outperforms
other methods. For E-General Medical public dataset,
Varghees and Ramachandaran [100] reported average sen-
sitivity and positive predictivity of more than 90% while
for private datasets, accuracies of as high as 99% are also
reported [90].

3.2.4 Application of multiple time-frequency methods.

A recent trend in automated analysis of PCG signals is
investigation of multiple time-frequency representations
for effective classification and localization. Gavrovska
et al. [48], for example, combined time-frequency rep-
resentation of Wigner-Ville with Haar wavelet for nor-
mal heart beat detection in pediatric patients. Authors
report a precision and recall of more 90% for 90 heart
beat signals collected from 55 patients and 35 healthy
subjects. The idea of multiple time-frequency meth-
ods was also exploited by Sun and Gong [90], and
Gong and Nie [102] where the authors who employ
EMD with wavelets for separation of S1 and S2 from
noisy heart sounds. Both the studies [90, 102] report
high accuracies of more than 99% and demonstrate
the effectiveness of combining multiple time-frequency
methods over single representation. It should however
be noted that although these multiple time-frequency
methods realize high accuracies, they are computation-
ally expensive and hence, could not gain significant
research attention of research community. Furthermore,
the choice of different time-frequency methods and

Normalized signal

=
-

Time (s)

Fig. 11 Demonstration of overshoot and undershoot problems related with EMD algorithm
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their sequence of application also remains a challenging
problem.

Comparing different time-frequency representations, it
can be observed from Table 3, SPWVD outperforms other
representations like spectrogram. Among wavelet-based
techniques, a large number of comprehensive investiga-
tions have been carried out using a variety of wavelet
filters. DW'T, CWT, and Db filters have been most pop-
ular choices reporting high localization and classifica-
tion accuracies. Likewise, EMD along with its various
enhanced variants has remained an attractive choice for
researchers for this problem. Lately, techniques based
on combination of EMD and wavelets have also been
explored and are known to report higher accuracies as
compared to EMD or wavelet-based methods. Further
discussion on comparison of different techniques is pre-
sented later in the next section.

4 Review

This section presents an analysis of time, frequency,
and time-frequency methods discussed in the previous
sections. Time-based methods have been used extensively
in the past and have still maintained their popularity
because of ease with which information can be extracted.
They can provide, in theory, the best localization for beats
in the signal under observation. These methods need pre-
processing steps to make the signal fit for subsequent
steps of localization and classification. With the develop-
ment of machine learning techniques, time domain meth-
ods enjoy a renewed interest which is expected to continue
in the near future. This trend is very well demonstrated by
the recent research worked presented in Table 2. Quan-
titative comparison of results also shows that time-based
methods, in general, are able to localize and classify beats
with more than 70% specificity.

The frequency-based methods for localization and
classification usually start with MFCC which employs pre-
emphasis, windowing and FFT to make the signal appro-
priate for classification and localization. An analysis of
the quantitative results reported in Table 2 shows that on
the average, the performance of frequency-based meth-
ods is more or less similar to that of time-based methods.
It should however be noted that frequency-based meth-
ods are best suited for frequency band localization but
fail to extract the time location of the frequency band
under observation. Time-based methods, on the other
hand, provide beat location in the signal but are limited
in the sense that they do not provide explicit information
about the frequency content of the signal.

The time-frequency methods decompose signals into
different time and frequency resolutions and aim to over-
come the limitations of time- and frequency-based meth-
ods. The time-frequency methods investigated in the
literature include wavelets, EMD, and TFR. Although TFR
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in its basic form suffers from noise due to cross terms,
a number of effective techniques based on TER are pro-
posed for heart beat analysis. These methods attempt to
suppress the cross terms while keeping as much frequency
resolution as possible. The recent popularity of TFR meth-
ods is generally attributed to pseudo WV distribution
and HHT which serve to reduce the noise due to cross
terms and allow a better representation of the signal under
study. A comparison from Table 3 shows that the results
reported for TFR methods exhibit high variation, mainly
as a function of the database employed for evaluation.

Among other time-frequency methods, EMD and
wavelets have been mostly employed for PCG analy-
sis. EMD is a data driven decomposition technique that
decomposes a signal from high to low frequencies by
generating lower and upper envelops using spline interpo-
lation. EMD-based techniques suffer from end-effects of
undershoot and overshoot, the modeling errors inherited
in the EMD algorithm. The stopping criteria for EMD are
being continuously researched to extract IMFs which are
of physical significance. EMD has witnessed a number of
variations over the years. In addition to the standard EMD,
noise-assisted EMD, ensemble EMD, multi-variable EMD,
and EMD complemented by HHT have also been investi-
gated. It can be observed from Table 5 that in general, high
accuracies are reported by EMD-based techniques. The
results however are not directly comparable as diverse
datasets have been employed by different researchers.

In addition to EMD, wavelets and their variants have
been a popular as well as an effective choice of researchers
for analysis of PCG signals. Wavelet is a goal-driven algo-
rithm which decomposes a signal using dyadic filter bank.
This decomposition method is limited in the sense as
it does not take into account the parameters of the sig-
nal under decomposition. Despite this limitation, wavelets
have been employed in all stages from pre-processing to
classification.

It can be seen from Table 4 that wavelet-based tech-
niques have been comprehensively studied and evaluated
on wide variety of datasets including all three public
datasets presented in this paper. These methods consis-
tently report high localization and classification accura-
cies on multiple datasets.

Summarizing the key findings of our analysis, the ini-
tial attraction of employing time-frequency based meth-
ods like EMD and wavelets was their ability to represent
the signal at multiple resolutions unlike time and fre-
quency analysis. The complexity of PCG signal, however,
forced the researchers to borrow techniques and features
from the time and frequency domains. Features like sys-
tole and diastole time duration, beat amplitude, and beat
frequency, for instance, are in common use. In general,
all techniques have evolved to an extent where they are
able to successfully model human heart beat under clean
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environment. Nevertheless, automatic analysis of noisy
heart beats still remains a challenging problem. Time
and frequency methods, in most cases, are dependent on
machine learning algorithms to enhance the localization
and classification performance. Features extracted in the
time or frequency domain are typically fed to a learn-
ing algorithm and the choice of the learning algorithm
also influences the overall system performance. The time-
frequency methods (especially EMD and wavelets), on the
other hand, are not too sensitive to the choice of the learn-
ing algorithm. Furthermore, time and frequency methods
have been mostly limited to the two-class problem of
classifying the heart beats as normal or abnormal while
wavelets and EMD present more sophisticated solutions
detecting not only the abnormality but also classifying the
pathology.

Studying the quantitative performance of time, fre-
quency, and time-frequency methods (presented in the
respective tables), it can be seen that a direct comparison
of these methods is difficult due to the different types of
challenges offered by each dataset. A general observation
is that for small datasets and clean signals, time, fre-
quency, and time-frequency-based methods report sim-
ilar accuracies. For larger datasets and noisy signals,
however, the performance of time-frequency methods,
especially wavelets, remains relatively stable once com-
pared to other methods. The PASCAL 2011 dataset
A, for instance, is considered to be a very challenging
set of noisy signals. Only a limited number of studies
[30, 52, 53, 62, 67, 77, 95] have been evaluated on this
set and among these wavelets-based techniques report the
highest accuracies.

Time-frequency representations like Wigner-Ville and
pseudo WV have remained relatively less explored pri-
marily due to the problem of cross terms. Reducing the
cross terms while keeping the maximum possible infor-
mation in signal needs to be further investigated. EMD
and wavelet-based techniques enjoy the advantage over
other techniques in the sense that they decompose the
signal at multiple resolutions hence removing the high-
frequency noise and reducing the energy contribution
from low frequencies. These noise handling capabilities
make such techniques an attractive choice, especially,
when dealing with noisy signals. Despite these charac-
teristics, the problem of computerized analysis of PCG
signals still remains very challenging for noisy environ-
ments. A clear evidence is the performance of different
systems on the noisy signals of the PASCAL 2011 datasets
which offer a great margin for enhancement. Another
interesting direction could be to investigate the combi-
nation of EMD and wavelets, for instance, techniques
like empirical-wavelet decomposition can be employed
for analysis of noisy signals. Likewise, combination of
algorithms and features from time, frequency, and time-
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frequency domains can also be investigated to propose
robust localization and classification techniques which
can deal with different types of signals (clean, noisy,
various pathologies etc.). In our present work, we are
exploring such a combination where EMD or wavelets
(time-frequency domain) are being employed for noise
removal while localization is carried out using Springer
algorithm [15] (time domain). Furthermore, a combina-
tion of features extracted from the three representations
is intended to be fed to different machine learning algo-
rithms for classification. Such rich representations are
likely to enhance the localization and classification accu-
racies of the system.

It is also worth mentioning that the primary focus of
most of the research on automatic analysis of PCG signals
has been on enhancing the localization and classification
accuracies. From the view point of practical applications,
development of computationally efficient solutions which
may work in real time is also a challenging problem
that needs further exploration. In addition, the presently
available PCG datasets comprise a limited number of sam-
ples and do not cover the complete range of pathologies
which are likely to be encountered in clinical settings. This
necessitates the development and labeling of a compre-
hensive dataset of PCG signals encompassing a variety of
signals and covering all major pathologies. Considering
the complexity of the problem, modeling the heart beats
and various pathologies is likely to offer more robust solu-
tions as opposed to the conventional techniques relying
on localization and classification. To the best of authors’
knowledge, very limited efforts have been made in this
direction. Morlet wavelet filter, for instance, has been
investigated to model the heart beat. However, modeling
of such complex signals brings along its own challenges
and requires significant amount of data for each pathol-
ogy, a requirement that is hard to meet in the currently
available datasets.

5 Conclusions

This paper presented an overview of the techniques pro-
posed for computerized analysis of PCG signals which
represent recordings of heart sound. Localization and
classification of beats have been the key research areas
with the objective to discriminate between normal and
abnormal heart sounds. The variation in amplitude,
frequency, and duration of beats makes PCG a very com-
plex signal for automatic analysis. The domain has wit-
nessed more than three decades of research, and this
paper is an attempt to provide an overview of the current
state-of-the-art on this subject. We organized the notable
contributions to automatic analysis of PCG signals as
function of domains of analysis, namely, time, frequency,
and time-frequency methods. An analysis of the review
techniques revealed that, in general, the performance of
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time, frequency, and time-frequency is similar for small
datasets and clean signals. The more challenging sce-
nario is analysis of noisy signals where time-frequency
specially EMD and wavelets has been popular choice of
researchers. These methods, however, bring with them
the additional computational cost and algorithmic com-
plexity. Consequently, simple features like amplitude,
energy, beat duration, and spectral flux extracted from
tine and frequency domain continue to sustain. These
time and frequency methods have been complemented
by using sophisticated machine learning to enhance the
localization and classification performance.
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