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Abstract

In this paper, a received signal strength indicator (RSSI)-based parameter tracking strategy for constrained position
localization is proposed. To estimate channel model parameters, least mean squares method (LMS) is associated with
the trilateration method. In the context of applications where the positions are constrained on a grid, a novel tracking
strategy is proposed to determine the real position and obtain the actual parameters in the monitored region. Based
on practical data acquired from a real localization system, an experimental channel model is constructed to provide
RSSI values and verify the proposed tracking strategy. Quantitative criteria are given to guarantee the efficiency of the
proposed tracking strategy by providing a trade-off between the grid resolution and parameter variation. The
simulation results show a good behavior of the proposed tracking strategy in the presence of space-time variation of
the propagation channel. Compared with the existing RSSI-based algorithms, the proposed tracking strategy exhibits
better localization accuracy but consumes more calculation time. In addition, a tracking test is performed to validate
the effectiveness of the proposed tracking strategy.

Keywords: LMS, RSSI, WSNs, Trilateration, Tracking

1 Introduction
Localization is a hot issue in wireless sensor networks
(WSNs) [1]. In some position sensitive applications, node
localization is essential to the whole network. Gener-
ally, localization algorithms in WSNs can be divided into
two categories: range-based localization and range-free
localization. Compared to range-free localization, range-
based localization provides higher precision. There are
many range-based localization techniques, such as those
based on time of arrival (TOA) [2, 3], time difference
of arrival (TDOA) [4–6], and received signal strength
indicator (RSSI) [7–9]. RSSI-based algorithms have the
following characteristics: low power consumption, simple
hardware, and high sensitivity to environment. RSSI value
heavily depends on the propagation channel. Signal reflec-
tion, multipath propagation, noise and signal scattering
have great influence on the received RSSI. Therefore, in
practical applications, establishing an accurate relation-
ship between the distance and the received RSSI value is
crucial to the performance of localization algorithms.
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There exist mainly two types of RSSI-based methods in
the open literature. One is calibrating the channel model
by RSSI value, with the help of some reference nodes. The
other is building a RSSI fingerprint of the localization area.
In [10–14], the authors developed localization algorithms
based on parametric channel model with the help of some
known reference positions. In [15–18], the authors tried
to design localization algorithms by drawing the rela-
tionship between the radio map and time dimension to
reduce the influence from the external environment vari-
ability. Both methods have advantages and disadvantages.
In order to calibrate the channel model, the algorithm
requires multiple iterative computations, so large amount
of energy is consumed. On the other hand, pre-established
RSSI fingerprint does not need a large number of online
operations. Therefore, the localization efficiency is better.
However, this fingerprint method heavily depends on the
related wifi infrastructures and huge database is needed.
The main challenge for RSSI-based methods is that RSSI
value is vulnerable to the environmental changes. When
the environment changes drastically, large error emerges.
Due to the variation of environment with the move-

ments of objects or people, the real channel exhibits space
and time variations. Inaccurate distance measurement
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caused by the channel model parameters variation and
noise will result in localization error. Many RSSI-based
localization algorithms have been proposed to deal with
this problem. The maximum likelihood (ML) [19] esti-
mator and linear least squares (LLS) [20, 21] estimator
are proposed to improve the inaccurate distance measure-
ment and estimate the optimal position. The performance
of ML estimator is determined by the iterative solver and
the selected initial point. Due to its non-convexity, the
global minimum is hard to achieve which reduces the
localization accuracy. Although LLS estimator can calcu-
late the position in a computational efficiently way, the
error is large which is caused by transforming the initial
non-linear relationship of the distance between the target
and anchor nodes into linear relationship. To overcome
this drawback, non-linear least squares (NLS) [22, 23] are
proposed. NLS techniques give a higher accuracy than
LLS but has a higher computation overhead. Some schol-
ars have introduced semidefinite programming (SDP)
[24, 25] into this issue to relax the non-convex prob-
lem into convex one. The localization performance is
improved by adopting convex optimization techniques.
In [26], the authors deal with RSSI-based localization in
an unknown path loss model and the proposed method
exhibits better performance at low signal-to-noise ratio.
In [27], a weighed least squares (WLS) is derived to local-
ize the target with unknown transmission power and path
loss exponent. Simulation results show the effectiveness of
the proposedWLS approach. However, when the distance
measurement noise is high or the channel model param-
eters are varying, the aforementioned methods cannot
provide a good accuracy. Designing a robust localization
algorithm to resist the complex environment is a challenge
in this field.
In our work, we consider the localization of the target

when the environment changes frequently and RSSI chan-
nel model parameters have variation. Different from the
existing channel model-based algorithms, we reduce the
localization error due to the parameters variation by a
grid-based tracking strategy. This tracking strategy is suit-
able for applications where the eventual positions of the
node are constrained to some pre-determined positions,
specified by a grid. Localization is inevitably affected by
the inaccurate parameters in the first parameter acqui-
sition. So it is necessary to adjust the channel model
parameters according to the environmental influences.
In the proposed tracking strategy, we focus on calibrat-
ing RSSI channel model based on the known constrained
positions of the unknown node. Similar as in [28, 29], least
mean squares method (LMS) is adopted to estimate the
relevant parameters for establishing the channel model.
In order to track the variation of channel parameters, a
novel tracking strategy with grid correction is proposed in
this paper. Simulation results show the effectiveness and

the performance superiority of the proposed algorithm
over SDP and WLS algorithms in terms of localization
accuracy.
The rest of the paper is organized as follows. The pro-

posed parameter tracking strategy and localization algo-
rithm are presented in Section 2. Section 3 provides the
localization and tracking results for assessing the perfor-
mance of the proposed technique and analyzing its limi-
tation. Localization performance comparison between the
proposed tracking strategy and the existing methods SDP
and WLS is also presented in this section. Furthermore, a
large number of measurements are performed to test the
tracking strategy. Finally, the main conclusions are drawn
in Section 4.

2 Proposed tracking strategy
In this section, a localization scenario with some con-
strained positions is described to show the applications
of the proposed tracking strategy. An experimental RSSI
channel model is constructed to provide the RSSI val-
ues and evaluate the tracking strategy. The localization
algorithm based on the trilateration algorithm and LMS
is presented. The principle and process of the proposed
tracking strategy are detailed.

2.1 An example of localization scenario
In many industrial production applications, such as in an
indoor workshop, a set of devices is arranged in the indoor
space, as shown in Fig. 1. The position of each device is
precisely defined, and generally, these devices are regu-
larly deployed on the ground following a certain rule. A
robot is moving along the predefined lines in this work-
ing space and will stop at one of the predefined positions
to check each device. This scenario can be modeled as a
grid as shown in Fig. 2, where we suppose that the mobile

Moving robot (wire guided trolley or robot)

Fig. 1 An application scenario about indoor environment with a set
of devices in it
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Fig. 2 Grid defining the possible positions

robot can only stop at one of the intersection dots of a
grid. So the localization problem consists only in making
a choice between the intersection points. The proposed
technique, exploiting the a prior knowledge of the possible
locations of the devices, allows localizing the robot in one
of the intersection dots and tracking the trajectory of the
robot and the variation of the channel parameters due to
the changement of the environment. RSSI-based localiza-
tion method is a good option for this specific application
but we have to check that:
(1) Errors due to the channel model inaccuracy are less

than the grid resolution.
(2) Small position error correction is possible and can

be used to track in real time the channel variations.
These two conditions will be developed later in the

paper. Without loss of generality, we consider in this study
that the size of the grid is 10 m×10 m. Anchors are placed
on three dots, whose coordinates are (0, 0), (0, 10), (10, 0),
respectively. In Fig. 2, 1 denotes 1 m. A reference node
is placed in the center of this region, whose coordinate
is (5, 5).

2.2 RSSI channel model
Model-based RSSI localization techniques have been pro-
posed in the literature for different radio technologies.
Among a number of channelmodels proposed for outdoor
and indoor environments (Nakagami, Rayleigh, Ricean,
etc.), the most popular channel model for RSSI-based
localization, thanks to its simplicity, is the lognormal
shadowing path loss model [30, 31], which expresses the

following relation between the received power and the
transmitter-receiver distance:

RSSI(k,i) = Ak − 10ηk log(dk) + v(k,i) (1)

where dk is the distance from the unknown node to the
kth anchor node, Ak and ηk are the model parameters of
the kth anchor, and v(k,i) is a zero-mean white Gaussian
random variable with standard deviation σk . Suppose that
the distance estimation is based onM samples of RSSI(k,i),
which represents the ith RSSI sample measured by the kth
anchor node. For getting a good performance, the median
value of RSSI(k,i) is used to obtain the distance estimate:

d̂k = 10
Ak−RSSIk

10ηk (2)

where RSSIk , the median RSSI value measured by the kth
anchor, is given by:

RSSIk = Median
{
RSSI(k,i), i = 1, · · · ,M}

(3)

To characterize the RSSI model in an indoor environ-
ment, measurements have been realized. The experiment
has been done in a large hall. The testing scene is shown
in Fig. 3. The experimental testbed has been build using
three wifi access points (AP) and a mobile wifi point. The
three wifi access points represent the three anchor nodes,
and the mobile wifi point is considered as the unknown
node.
To establish the practical channel model in this hall,

many measurements have been performed on diffierent
positions. In the measurement, to acquire a large number
of RSSI values in each distance, we give a same distance
value between each access point and the mobile point, for
example 1 m. Then in the process of measurement, the
mobile point is changed for 30 directions but its distance
with the three APs is not changed. So, the mobile point
receives 30 RSSI values from each AP, and 90 diffierent
RSSI values are measured for distance 1 m. Repeating this

AP AP

Mobile point

AP

Fig. 3Measurement scenario
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measurement process, a large number of RSSI data are
obtained by changing the distance from 1 to 10 m with
interval 0.5 m.
Based on the measured RSSI data, the median RSSI

is calculated for one distance. Figure 4 presents the
measured median RSSI as function of the distance.
As expected, we can find that the median RSSI value
decreases with the distance. From these results, we can
deduce the following parameters in (1): Ak = −9.39,
ηk = 2.27.
Meanwhile, the standard deviation of the noise for each

distance can be estimated by:

σ̂k =
√√√√ 1

M

M∑

i=1
[ RSSI(k,i) − RSSIk]2 (4)

where RSSIk is the mean value of RSSI(k,i), given by:

RSSIk = 1
M

M∑

i=1
RSSI(k,i) (5)

The obtained results are shown in Fig. 5. From the
experimental results, the standard deviation of the noise,
in terms of the distance from 1 to 10 m, can be expressed
as:

σ(d) = −0.1108d2 + 2.1836d − 0.3821 (6)

The variance model defined by (6) is of course specific
to our measurement condition but indicates that the RSSI
variance tends to increase with distance which has been
already observed in some work [32]. It is worth noting that
the relationship between the noise variance and distance
depends on the environment size and complexity.
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measured data

2.3 Trilateration algorithm
The trilateration algorithm is a basic positioning method,
widely used in many localization systems [33, 34]. In this
algorithm, at least three anchor nodes are needed for
positioning the target. The position of the anchor nodes
is assumed to be known. The relationship between the
unknown nodes position and three anchor node positions
can be expressed as:

⎧
⎪⎨

⎪⎩

(x − x1)2 + (y − y1)2 + (z − z1)2 = d21
(x − x2)2 + (y − y2)2 + (z − z2)2 = d22
(x − x3)2 + (y − y3)2 + (z − z3)2 = d23

(7)

where (x, y, z) are the coordinates of the reference or
unknown nodes, (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3) are
the coordinates of the three anchors. Equations (7) can be
written into the following matrix form:

Qx = b (8)

whereQ is a matrix of dimension r× r, x is the coordinate
vector, b is a vector of dimension r, and r is the dimension
of position coordinates.
For two-dimensional problem considered in this study,

Qwith dimension 2×2 and bwith dimension 2 are written
respectively as:

Q =
[
2(x1 − x2) 2(y1 − y2)
2(x1 − x3) 2(y1 − y3)

]
(9)

b =
[
x21 − x22 + y21 − y22 + d22 − d21
x21 − x23 + y21 − y23 + d23 − d21

]
(10)

Whether Q is invertible or not will depend on the deter-
minant value of Q. Making a good choice of the anchor
positions can guarantee that the matrix is invertible. In
our localization scenario, three anchor nodes are placed
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at (0, 0), (0, 10), (10, 0), respectively. Under this deploy-
ment, it is easy to show that |Q| �= 0, then Q is invertible.
Consequently, the estimated position is given by:

x = Q−1b = Pb where x =
[
x̂
ŷ

]
(11)

where (x̂, ŷ) is the estimated position obtained by the
trilateration method.

2.4 LMSmethod
LMS algorithm can be considered as a basic machine
learning algorithm, widely used for parameter estimation
[35]. LMS allows finding the values of parameters of a
function after several iterative calculations in a computa-
tionally efficient way [36]. It is based on approximating
the true gradient of the squared error of estimation by its
instantaneous estimate. In the proposed tracking strategy,
the error is minimized by recursively modifying A and η

of the channel model. As illustrated in Fig. 6, RSSI val-
ues related to the three anchor nodes are acquired by the
reference or target node. At each iteration t, the related
distances are measured by (2) with A(t − 1) and η(t − 1)
estimated at iteration (t − 1). Then, the trilateration algo-
rithm calculates the estimated position (x̂(t), ŷ(t)). With
the known real position of reference point (x, y), the local-
ization error is calculated as:

ε(t) =
√

(x̂(t) − x(t))2 + (ŷ(t) − y(t))2 (12)

where t denotes the iteration number.
This error serves as the input to the LMS algorithm, and

by adaptively minimizing the localization error, we obtain
η as follows:

η(t) = η(t − 1) − μη

∂ε(t)2

∂η
(13)

Similarly, we can get A from the following equation:

A(t) = A(t − 1) − μA
∂ε(t)2

∂A
(14)

where μη and μA are the adaptation step sizes, which can
be adjusted experimentally. The detailed derivation pro-
cess and related calculation equations are given in the
Appendix.

2.5 Tracking strategy
The whole proposed tracking strategy and localization
process are illustrated in Fig. 6. In the proposed algorithm,
this task is done in two steps: an initial channel estimation
using a reference node followed by a tracking proce-
dure using a grid correction based on the constrained
positions.
In the first step, the mobile robot is positioned at a

reference point whose position is known. Then, the tri-
lateration algorithm is used to estimate the location and
LMS is employed to find the channel parameters Â and η̂

which minimize the positioning error.
After the acquisition step, a grid correction strategy is

adopted for the localization and channel variation track-
ing. We subdivide this step into the following procedures.
1. Based on Â and η̂ obtained in the acquisition step, we

estimate the unknown node position denoted by (x̂, ŷ).
2. After getting (x̂, ŷ), we calculate all the distance val-

ues between (x̂, ŷ) and the intersection points in the grid.
The nearest intersection point will be selected as the most
likely position, whose coordinates are (ẋ, ẏ).
3. Knowing the most likely position (ẋ, ẏ), we use LMS

to track the space and time evolution of the channel
parameters, the tracked parameters are denoted by Ȧ
and η̇.
4. These procedures can be repeated in real time.
The process can be easily extended to a scenario where

there are also non-anchor nodes in fixed positions that
first localize themselves and then contribute to the track-
ing.

3 Simulation and analysis
3.1 Localization results
After acquiring the channel model from the experimental
data, we can assess the localization process using simu-
lation. In the simulation, the unknown node position is
randomly selected from the intersection points of the grid.
Then, for each position we calculate the RMSE value of
the estimated localization, defined as [37]:

RMSE = 1
T

T∑

t=1

√
(x̂(t) − x(t))2 + (ŷ(t) − y(t))2 (15)

Fig. 6 Diagram of tracking principle
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where (x(t), y(t)) is the actual selected position. (x̂(t), ŷ(t))
is the position estimated by the trilateration method. T
is the number of randomly chosen positions. In all the
following simulations, T is taken as 500.
As illustrated in Table 1, with the increase of sample

number M used to calculate the median RSSI value, the
RMSE values of the estimated location decrease, which
indicates that the accuracy of localization gets better. To
guarantee the efficiency of the tracking strategy, in the fol-
lowing tracking step and simulations, the sample number
M is set to 300.

3.2 Parameter convergence
In the acquisition step, the actual values of A and η are
− 10 dBm and 2.24, respectively, and the initial values are
− 9 dBm and 2.28. As illustrated in Figs. 7 and 8, after the
acquisition step, with the help of trilateration and LMS
methods, we can obtain A value very close to − 10 dBm.
Similarly, the obtained η value is very close to 2.24. Fur-
thermore, in the tracking step, we suppose that the true
value of A is − 11 dBm and the true value of η is 2.20.
In the same manner, we can get A value very close to
− 11 dBm and η value very close to 2.20, so the proposed
strategy can track the variation of the parameters in the
monitored region.

3.3 Limitation analysis
However, there exists a limitation in the grid correction.
If the localization error is larger than the grid step size, it
is no more guaranteed that the correction strategy will be
efficient. Therefore, we need to analyze the relationship
between the step size and parameter variation which gives
us a criterion to choose an appropriate step size value.
As shown in Fig. 9, the real position (x(t), y(t)) is located

in the center. The distance from (x(t), y(t)) to its four pos-
sible nearest positions is equal to the grid step size s. If the
estimated position (̂x(t), ŷ(t)) is located in the dark region,
we can get a right correction. This region is defined by the
following relationships:

{
(̂x(t) − x(t))2 < s2

4
(̂y(t) − y(t))2 < s2

4
(16)

where s is the step size.
If the localization error ε(t) < s

2 , the estimated posi-
tion (̂x(t), ŷ(t)) is located inside the circle. We are sure
that the grid correction strategy is effective and it guaran-
tees a satisfactory position correction. In the simulation,
we perform 1000 estimation iterations in the predefined

Table 1 Localization accuracy

Sample number M 30 50 200 300 500 1000

RMSE (m) 0.78 0.56 0.33 0.25 0.14 0.10

0 50 100 150 200 250 300 350 400 450
2.18

2.2

2.22

2.24

2.26

2.28

2.3

N(localization times) 

η

Fig. 7 Convergence process of η

region and find grid step size s which meets the following
probability relationship:

P
(
ε(t) <

s
2

)
> 0.95 (17)

We define the parameters variation: �η and �A
between the acquisition step and tracking step as follows:

�η = |η̇ − η̂| �A = |Ȧ − Â| (18)

In the simulation, η̂ is set to be 2.27 and �η increases
from 0.02 to 0.22 with interval 0.02. Similarly, Â is set to
be − 9.39, and �A increases from 0.5 to 4 dB with inter-
val 0.5 dB. The relationship between s and �η is shown
in Fig. 10. With the increase of �η, the needed step size
becomes larger and larger. According to these simulation
results for three different η̂ values, for a same �η value,
the needed step size increases inversely with η̂. When the
value of �η is determined, we can find a threshold value
of step size sthreshold. As long as s is larger than sthreshold,
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m

)

Fig. 8 Convergence process of A
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Fig. 9 Relationship of step size and localization error

we can get a right correction. Similarly, the relationship
of step size s and �A is shown in Fig. 11. These results
provide a criteria to guarantee that the proposed track-
ing strategy is effective by making the trade-off between
grid step size s and parameter variation. In practice, the
grid step size is fixed by the application, this calculation
could give us amean tomake an alarm on the possible fail-
ure of the tracking strategy by estimating the variation of
parameters �η and �A in the monitored region.

3.4 Performance comparison
In this part, the localization performance of the proposed
tracking strategy is compared with SDP [24] and WLS
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Fig. 10 Relationship between s and �η
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Fig. 11 Relationship between s and �A

[27] in terms of accuracy and computational complexity.
The channel model parameters in (1) and the standard
deviation of noise in (6) deduced from the experimen-
tal data are used to provide RSSI values for assessing the
compared algorithms. In the simulation, we suppose that
the channel parameters are varying between the acqui-
sition step and tracking step. In the proposed tracking
strategy, the positioning is performed by trilateration after
obtaining the tracked parameters Ȧ and η̇. The number of
iterations is set to be 50 for the proposed tracking strat-
egy in these accuracy comparisons. In the simulation, the
unknown node position is randomly selected from the
intersection points of the grid, as illustrated in Fig. 2.
In the simulation, �η varies from 0.004 to 0.04 with an

interval of 0.004. As shown in Fig. 12, the RMSE value of
the proposed method is noticeably smaller than that of
SDP and WLS. When �A varies from 0.1 to 1.0 dB with
an interval of 0.1 dB, the simulation results are shown
in Fig. 13. Similarly, the proposed method exhibits better
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Fig. 12 Localization accuracy for three compared methods when �η
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Fig. 13 Localization accuracy for three compared methods when �A
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performance than SDP and WLS. The simulation results
show that SDP and WLS give low localization accuracy in
case of parameter variation. In fact, the localization error
increases with �η and �A, due to the increase in the esti-
mated distance error. By inversing the channel model, the
distance is estimated from (2). We can find that the esti-
mated distance error increases with the increase of the
variation of model parameters. So, the localization error
also increases with �η and �A. Therefore, the SDP and
WLS cannot provide good localization accuracy when the
model parameters are changed. On the contrary, the pro-
posed tracking strategy can track the parameters firstly
and then perform the localization by trilateration. There-
fore, the proposed method can give a higher accuracy.
In order to compare the computational complexity of

the three methods, the execution time is evaluated by a
computer with a processor unit (CPU) of 2.6 GHz and
16 GB of RAM. In the proposed method, the position is
calculated by trilateration directly. So, the computational
overhead is mainly due to the number of iterations in the
tracking step. A larger iteration number will give a higher
accuracy butmore localization time. The relation between
the tracking time and number of iterations is given in
Table 2. It indicates that the tracking time increases with
the number of iterations.
Based on the observation of parameters convergence

process, the number of iterations in the tracking step is
set to 50 in the performance comparison. The calculation
time for three compared methods is shown in Table 3.

Table 2 Relationship between tracking time and number of
iterations

Number of iterations 30 50 80 100 150 200 300

Tracking time (s) 0.205 0.382 0.617 0.846 1.287 2.133 2.907

Table 3 Calculation time for three compared methods

Method Proposed method SDP WLS

Average time (s) 0.384 0.032 0.024

The average time for a single localization of the proposed
method is 0.384 s, while the corresponding values for
SDP and WLS are 0.032 and 0.024 s, respectively. We can
find that the proposed method requires more calculation
time than SDP and WLS, due to the tracking step. More
tracking iterations will cause more calculation time. The
trade-off between the localization accuracy and the cal-
culation time can be made according to the performance
requirement.

3.5 Tracking test
In the tracking test, a large number of measurements
have been done in the indoor hall as shown in Fig. 3.
Firstly, the mobile point is placed on (5, 5). Position (5,
5) is considered as a reference point and 300 RSSI sam-
ples are acquired in this position. Based on these RSSI
data, the acquired parameter values are Â = − 9.39 and
η̂ = 2.27. Hereafter, we placed the mobile point in posi-
tions (6, 5), (7, 5), and (8, 5), and 300 RSSI values are
acquired for each position. In the data collecting pro-
cess, signal transmission path is changed by modifying the
device direction or putting obstacles in the measurement
scenario.
Based on the acquired RSSI data for each position, the

estimated positions and tracked parameters by the pro-
posed method are given in Table 4. As shown in Table 4,
for position (6, 5), the estimated position is (6.12, 5.26).
This estimated position meets the grid correction and
tracking condition. By using LMS method, the tracked
parameters are Ȧ = −9.35 and η̇ = 2.26. Further-
more, similar results are obtained for positions (7, 5) and
(8, 5). These results show that the proposed tracking strat-
egy can be effective. When the mobile point is moving
from position (6, 5) to position (8, 5), parameters A and η

are changing. In this specific tracking test, the parameters
variation is not very large. If the parameters are changing
largely, the grid step size should be increased to guaran-
tee the effectiveness of the proposed tracking strategy, as
shown in Section 3.3.

Table 4 Localization results and tracked parameters

Real position Estimated position Ȧ η̇

(6, 5) (6.12, 5.26) -9.35 2.26

(7, 5) (6.98, 5.13) -9.41 2.28

(8, 5) (8.20, 5.08) -9.32 2.25
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4 Conclusions
In this paper, a RSSI-based parameter tracking strategy
for constrained position localization is proposed. Median
RSSI is calculated for distance estimation, and the tri-
lateration algorithm is adopted to estimate the position.
To track the variation of channel parameters, a novel
tracking strategy with grid correction based on LMS is
developed to obtain the actual parameters in the mon-
itored indoor region. Based on practical data acquired
from a real localization system, an experimental chan-
nel model is constructed to evaluate the tracking strat-
egy. The relationship between the localization accuracy
and sample number of RSSI is discussed. The simulation
results show the good behavior of the proposed track-
ing strategy in presence of space-time variation of the
propagation channel. To deal with the limitation of the
proposed grid correction, the relationship between the
grid step size and parameter variation is analyzed. Com-
pared with the existing SDP and WLS, the proposed
tracking strategy exhibits better localization accuracy but
higher computational complexity. Moreover, the tracking
test validates the effectiveness of the proposed tracking
strategy.

Appendix
This appendix gives the detailed calculation process for
LMS.
For parameter η, iterative calculation is given by:

η(t) = η(t − 1) − μη

∂ε(t)2

∂η
(19)

The derivative of ε(t)2 with respect to η is:

∂ε(t)2

∂η
=

∂
[(
x̂(t) − x(t)

)2 + (
ŷ(t) − y(t)

)2]

∂η

= 2
[
x̂(t) − x(t)

] ∂ x̂(t)
∂η

+ 2
[
ŷ(t) − y(t)

] ∂ ŷ(t)
∂η

(20)

The derivatives of the estimated position x̂(t) and ŷ(t)
with respect to η are given by:

∂ x̂(t)
∂η

= −2P(1, 1)d̂1
∂d̂1
∂η

+ 2P(1, 1)d̂2
∂d̂2
∂η

− 2P(1, 2)d̂1
∂d̂1
∂η

+ 2P(1, 2)d̂3
∂d̂3
∂η

(21)

∂ ŷ(t)
∂η

= −2P(2, 1)d̂1
∂d̂1
∂η

+ 2P(2, 1)d̂2
∂d̂2
∂η

− 2P(2, 2)d̂1
∂d̂1
∂η

+ 2P(2, 2)d̂3
∂d̂3
∂η

(22)

∂d̂k
∂η

= ln(10)10
A−RSSIk

10η
A − RSSIk

10
−1
η2

(23)

Similarly, the iteration equation on A is given by:

A(t) = A(t − 1) − μA
∂ε(t)2

∂A
(24)

The derivative of ε(t)2 with respect to A is:

∂ε(t)2

∂A
=

∂
[(
x̂(t) − x(t)

)2 + (
ŷ(t) − y(t)

)2]

∂A

= 2
[
x̂(t) − x(t)

] ∂ x̂(t)
∂A

+ 2
[
ŷ(t) − y(t)

] ∂ ŷ(t)
∂A
(25)

The derivatives of the estimated position x̂(t) and ŷ(t)
with respect to A are given by:

∂ x̂(t)
∂A

= −2P(1, 1)d̂1
∂d̂1
∂A

+ 2P(1, 1)d̂2
∂d̂2
∂A

− 2P(1, 2)d̂1
∂d̂1
∂A

+ 2P(1, 2)d̂3
∂d̂3
∂A

(26)

∂ ŷ(t)
∂A

= −2P(2, 1)d̂1
∂d̂1
∂A

+ 2P(2, 1)d̂2
∂d̂2
∂A

− 2P(2, 2)d̂1
∂d̂1
∂A

+ 2P(2, 2)d̂3
∂d̂3
∂A

(27)

∂d̂k
∂A

= ln(10)10
A−RSSIk

10η
1

10η
(28)
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