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Abstract

In this paper, a procedure for the null broadening algorithm design with respect to the nonstationary interference is
proposed. In contrast to previous works, we first impose nulls toward the regions of the nonstationary interference
based on the reconstruction of the interference-plus-noise covariance matrix. Additionally, in order to provide a
restriction on the shape of the beam pattern, a similarity constraint is enforced at the design stage. Then, the adaptive
weight vector can be computed via maximizing a new signal-to-interference-plus-noise ratio (SINR) criterion subject
to similarity constraint. Mathematically, the design original problem is expressed as a nonconvex fractional quadratically

Semidefinite programming

constrained quadratic programming (QCQP) problem with additional constraint, which can be converted into a
convex optimisation problem by semidefinite programming (SDP) techniques. Finally, an optimal solution can be
found by using the Charnes-Cooper transformation and the rank-one matrix decomposition theorem. Several
numerical examples are performed to validate the performance of the proposed algorithm.

Keywords: Robust adaptive beamforming, Similarity constraint, Quadratically constrained quadratic programming,

1 Introduction

Adaptive beamforming has been one of the most sig-
nificant research areas in array signal processing, which
has been widely used in radar, sonar, wireless communi-
cations, and many other fields [1]. The aim of adaptive
beamforming algorithm is to extract the desired signal
and suppress the interference as well as noise at the
array output simultaneously. However, the conventional
beamforming method often suffers severe performance
degradation because of some factors, such as small train-
ing snapshots and imprecise knowledge in many practical
applications [2]. Thus, robust design techniques have been
an active research topic [3, 4]. During the past decade,
various adaptive beamformers have been proposed based
on different principles to improve the robustness against
the desired signal imprecisely [5], such as signal-subspace
projection technique, diagonal loading technique, and
their variants [6, 7]; all of the methods are quite efficient in
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enhancing the robustness of the beamformer. Recently, in
order to remove the desired signal from the sample covari-
ance matrix, spatial power spectrum sampling methods
were proposed to achieve covariance matrix reconstruc-
tion [8, 9].

It is also well known that the adaptive beamforming
is quite sensitive to the nonstationary interference. For
the interference, the model parameters could be deter-
mined or randomized. Its waveform or distribution may
change with the time or location, which can be caused by
the interference quickly moving, antenna platform vibrat-
ing, and propagation channel varying, etc. Moreover, due
to the limited computational resources, in many practi-
cal situations, continuously updating the optimal adaptive
weight vector may be prohibitive. The resulting beam-
former weights are frozen and used for the remainder of
the frame despite changes in real-world scenario, which
considerably degrade the output signal-to-interference-
plus-noise ratio (SINR) performance in nonstationary
environments [10]. Especially for large aperture arrays, the
perturbation of the interference location represents a seri-
ous problem because the directional pattern nulls of them
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are extremely sharp, and interferences may move out of
the nulls very soon [11]; thus, the adaptive beamformer
may degrade rapidly with the change of interference loca-
tion. However, few of the above discussed robust methods
could handle the problem of nonstationary interference.

The nulling broadening algorithms can solve such prob-
lems hereinabove and avoid the additional complexity of
the adaptive weight vector continuously updating. In [12],
the approach to robust beamforming, with null widen-
ing, imparts robustness into adaptive pattern by judicious
choice of null placement and width through introduc-
ing the concept of a covariance matrix taper (CMT),
while the performance degradation of the method is evi-
dent because the relative high sidelobe and the depth
become somewhat shallower when the null width is
broadened. Several null widening techniques based on
matrix tapers have been proposed to overcome the pattern
distortion resulting from the nonstationary interference
[13, 14]. Nevertheless, these methods are somewhat iden-
tical in essence and attain similar performance in output
SINR. In [15], a beamforming framework has been pro-
posed based on a set of beam pattern shaping constraints;
this method enjoys adaptive interference-rejection capa-
bility and controls direct sidelobe, meanwhile, achieves
robustness against steering direction errors with mag-
nitude response constraints. However, these constraints
consume the number of adaptive degrees of freedom
(DOFs) to trade off the output SINR. The multiparamet-
ric quadratic programming for covariance matrix taper
minimum variance distortionless response beamformer is
proposed to resolve null broadening and sidelobe control
problem in [16]. Nevertheless, the sidelobe domain con-
straint is obviously broadening the mainlobe beam pattern
which decreases in array gain.

In this work, we develop a novel null broadening
approach with respect to the nonstationary interference.
The original problem is optimized to maximize the output
SINR and to force a similarity constraint with a quiescent
steering vector exhibiting some desirable properties. We
attempt to reconstruct the interference-plus-noise covari-
ance matrix in order to impose nulls toward the angu-
lar sectors of the nonstationary interference. Meanwhile,
based on the similarity constraint, the proposed method
can obtain lower sidelobe and well-maintained main-
lobe of the beam pattern. The design problem is formu-
lated as a fractional quadratically constrained quadratic
programming (QCQP) problem [17]. The original non-
convex problem can be converted into a convex opti-
misation problem by semidefinite programming (SDP)
techniques [18]. Finally, a global optimal solution can be
found by using the Charnes-Cooper transformation and
the rank-one matrix decomposition theorem [19, 20]. As
a result, the process imposes nulls towards the regions of
the nonstationary interference adaptively. Meanwhile, it
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guarantees that the pattern is extremely close to the quies-
cent pattern through the similarity constraint; the output
SINR can be improved substantially. Theoretical analy-
sis and simulation results show that the proposed method
provides excellent performance.

2 Signal model

Consider a uniform linear array (ULA) comprising M
antennas with interelement spacing d; the narrow-
band snapshot vector is simply modeled and can be
expressed as

x(8) = x5(¢) + x;(¢) + n(?)
. (1)
= so()a(6o) + Y _ si(H)a(6y) + n(1)

i=1

where ¢ is the index of time. x,(¢), X; (¢), n(¢) are the desired
signal, interference, and noise components, respectively.
so(t), si(t) denote the desired signal waveform and inter-
ference signal waveform, respectively. Assume that the
desired signal, interference, and noise are statistically
independent with each other, and the interference is nei-
ther close to nor in the mainlobe beam region of the array.
6o and 6; (i € {1,...,P}) denote the directions of arrival
of the desired signal and the ith interference, respectively.
a(-) denotes the corresponding M x 1 steering vector,
which has the following general form

o ) . T
ad) = [1 P2rdsingn e/271(M—1)dsm0/A] )

where A is the signal wavelength, (-)7 denotes the trans-
pose operation. The adaptive beamformer output can be
written as y(t) = w'x(t), where w denotes the M x 1
complex weight beamforming vectors and (-) stands for
the Hermitian transpose. The weight vector can be found
from the maximum of the output SINR

wiR o2 [wHa(do)[*

SINR = " Raw _ 9¢ [walo)| 3)
wiR;,w wiR;,w

where 002 e E{|s0(t)|2} denotes the desired signal

power, E{} is an expectation operator, and |-| is an
absolute operator. Assume ol.z denotes the ith inter-
ference power. Ry = E{xs (t)xSH (t)} and R;;, =
E {(x,'(t) + n(t)) (x;(¢) + n(t))H} are the desired sig-
nal and the interference-plus-noise covariance matrix,
respectively. Because all the signals are mutually uncorre-
lated, the theoretical covariance matrix of the array signal

can be expressed as follows

R, = R + Ry,
z )
= oga(fo)a” (o) + ) _ola@)a" (6) + o1
i=1
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P
where R, = oZa(fp)a’’ (6p) and Ry, = Y oa(6)al (6)) +
i=1
021, 02 and I represent the noise power and the iden-
tity matrix, respectively. In practical implementations, the
theoretical covariance matrix is hard to be obtained, and
it is usually replaced by the sample covariance matrix ﬁx,
which is calculated from the received signal vectors as
follows

N

R, = % > x@e)xM () (5)

t=1

where N is the number of snapshots. The beamforming
weight vector w can be obtained via maximizing the prob-
lem (3), which is mathematically equivalent to maintain-
ing a distortionless response towards the desired signal
and minimizing the output interference-plus-noise power
problem

min w/Rw st wHa@) =1 (6)

Then, the adaptive weight vector based on minimum
variance distortionless response (MVDR) principle can be
given by

R 'a(6p)

= 7
YT G0 R: a60) @

It should be stated that Ry contains the desired signal
component. Hence, the adaptive weight vector obtained
by using R, is worse than the one using the covariance
matrix without any contribution from the desired signal.
The maximization problem of SINR performance in (3) is
equivalent to the minimum problem of the variance dis-
tortionless response criterion. In practical situations, the
unexpected performance degradation of beamformer may
emerge caused by interference nonstationarity. In order to
measure the performance of the beamformer, the goal of
improving the robustness of adaptive beamforming is to
maximize the output SINR in the following section.

3 Proposed algorithm

As can be seen from (3), maximizing the SINR needs
the exact knowledge of desired signal and interference.
In this section, we focus on the nonstationary interfer-
ence suppression problem, namely, the null broadening
algorithm with interference-plus-noise covariance matrix
reconstruction, and beam pattern similarity constraint
is proposed on the condition that the exact knowledge
of target parameters is known or previously estimated.
When the interference moves quickly or the antenna
platform vibrates, continuously updating of the adap-
tive weight vector can be prohibitive; the mismatching
between adaptive weight and data occurs due to the
change of interference locations. We design a beamformer
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that can flexibly adjust the null width and avoid the addi-
tional complexity of continuously updating. Meanwhile, it
can enjoy low sidelobes and well-maintained mainlobe of
the beam pattern at low snapshots.

3.1 Proposed formulation

The spatial power spectrum is mainly distributed the
neighborhood of the angular sector in where the signal
located. Thus, the interference covariance matrix recon-
struction can be performed based on the Capon spectrum
by integrating over the angular sector where the inter-
ference located. Let us consider the direction of the ith
interference under test is known to lie centered around 6;.
The angular sector of the ith interference can be expressed
via the following formula

D, = [0; — AO;,0; + AG;),i=1,...,P (8)

where A6; indicates the level of angular uncertainty. In
practical situation, Af; can be obtained using low res-
olution direction finding methods [21]. Thus, we will
obtain the beamformer weights by solving the following
optimization problem

o2 |wHa(6o)|?

maximize
w, 0;€®;,i=1,....P

. 9)
wH 3" o2a(0)al (0)w + o 2whw
i=1

In this correspondence, we attempt to construct the
interference-plus-noise covariance matrix in order to
impose nulls towards the angular sectors of the nonsta-
tionary interference. For the covariance matrix, we first
need to know the steering vectors and powers of all inter-
ferences, and the noise power. According to the robust
adaptive beamforming technique in [8], the interference-
plus-noise covariance matrix R;, can be reconstructed as

R|;, = / P®a®)a'v)do

(10)
(C]

where © is the angular region excluding the desired sig-

nal region ® in the whole spatial domain. P(0) denotes

the Capon spectrum as an estimate of the spatial power

spectrum over all possible directions, which is given as

_ 1
al’(O)R; 'a(6)
To achieve the goal of the interference suppression, deep

null notches should be formed towards the spatial direc-

tions, and in order to make sure that each steering vector

of the nonstationary interference can be covered by the

angular sector of the interference, the power of the ith
interference region can be modified as

P®) (11)

1
o}~ max{

— |0 e[ — NGO+ Ae»]}
: a (0)R; 'a(0) oo

(12)
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The convergence of (12) can easily estimate the ith inter-
ference power using the Capon spectral estimator in the
angular sector ®;. Thus, the ith interference covariance
matrix can be formulated as

a(0)a(9)

£ @) = / _ o (13)
o<, min ol ()R 'a(0)

Let 6; € ®; be a chosen grid that approxi-
mates the ith interference area by using a finite num-
ber of angles, which can be expressed as ®; =
{61 ... 6 ...0;}, where iL denotes the number of sam-
pled values. The convergence of (12) can be recast as 5:‘2 =
max { P®a), ... ... , f’(@iL)}, which means that the inter-
ference covariance matrix is reconstructed to create null
notches towards the sampled points in angular sectors
of the nonstationary interference, and thus, the wide null
notches can be formed. Then the ith interference region
covariance matrix can be calculated approximately as

iL
i(0) ~ 67 ) a@pa’ O)

il=1

(14)

The convergence of (14) means that the power of the
neighborhood of the ith interference is modeled as the
same level 67 in the angular sector @;. It is known that
the noise subspace can be found by performing eigen-
decomposition on Ry; nevertheless, the multiplicity of the
noise eigenvalues cannot be accessed. Thus, the noise
power can be approximately estimated by the average
value of the noise eigenvalues as follows

SRR S (S

where X; denotes the ith eigenvalue of matrix R,. Thus,
the beamformer weights can be obtained by solving the
following optimization problem

(15)

2
ag|wHa6)|
P L -
3067 3 awal Ow + GrwHw
=1 =1

maximize
w

(16)

In addition to the aforementioned constraint, one can
also consider other types of constraints that reinforce the
beamformer to be not too different from a desired beam-
former. As noted in [15, 16], the resulting broadening
null technology may cause mainlobe distortion, sidelobe
elevation, and array degradation. Therefore, additional
constraints are necessary in the beamformer design prob-
lem. Usually, the quiescent weight vector is designed to
produce quiescent beam patterns with desired mainlobe
beamwidth and low peak sidelobes. To remedy the beam
pattern distortion caused by adaptive processing, we need
to reduce the perturbation of adaptive weights to the
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quiescent weight settings. Use the similar idea in wave-
form design [22]; a similarity constraint uses a known
waveform as a benchmark, which allows the designed
waveform to exhibit other desired waveform properties.
In order to provide a control on the shape of the beam
pattern, we can formulate the similarity constraint as

[w—w,|* <& (17)

where w; is the weighted quiescent steering vector. ||-||
denotes the Euclidean norm of a vector or the Frobenius
norm of a matrix. For the specific signal direction 6y, w,
is the steering vector of the desired signal. £ is a tunable
positive parameter ruling the extent of the similarity. In
general, £ is a small value which satisfies £ < ||wq|| (to
guarantee a nonzero solution). The constraint is used to
control and mean-squared error between the adaptive and
desired quiescent beam pattern [23]. Finally, the design
problem can be formulated as the following constrained
optimization problem

o2 |wHa(bo)|”

P

maximize
1 w wh 3 50w+ iwhw
i=1

[w—w | < &2

(18)

It is worth observing that p; is a nonconvex fractional
quadratic optimization problem; generally, such problem
is NP-hard. However, this designed original problem can
be solved using semidefinite relaxation (SDR) technique.
Resorting to the SDR framework [24], now, we aim to
design an algorithm able to find in polynomial time solu-
tions with quality guarantee to the NP-hard problem.

3.2 Solution to the optimization problem

In this subsection, we devise a novel method to tackle the
nonconvex fractional quadratic optimization problem p;.
As revealed by the analysis above, the interference-plus-
noise covariance matrix can be computed as

P
Ry, =) i60)+5,1

i=1

(19)
It is evident that the original nonconvex design prob-

lem p; can be transformed to the following equivalent
homogenous reformulation

t( R O] ww'' ws )

maximize r [0 OMW s |S|2}

w,$ f{ WWHWS
S o)

e[ b 0] <0
0 H

()

weCMsecC

(20)
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where s* is the conjugate of s, tr (A) represents the trace of
matrix A. Precisely, p1 and py have the same optimal val-
ues, i.e., v (p1) = v (p2). Next, we can solve p, in order to
get an optimal solution to p1. By applying the SDP relax-
ation procedure to this fractional QCQP p,, we can obtain
the following problem
r(QuG)
tr(Q1G)
p3 | st r(QG) < g2
tr(Q3G) =1
G>0

maximize
G

(21)

We use A > 0 to indicate that A is a positive semidef-
inite (PSD) matrix. Here, the matrix parameters are
defined as follows

R; 0 R;, 0 1 -w
w-[So)e-[T e[y ]

and

00 ww!l ws*
Q3:[o 1}’G:[wﬂs |s|2:|

The SDR problem p3 does not immediately lead to an
SDP. That is to say, the SDR problem p3 is a quasi-convex
problem, due to the linear fractional structure of its objec-
tive function. In order to solve this quasi-convex problem,
the fractional problem p3 can be iteratively solved by the
bisection search. Here we propose an optimal solution by
using the idea of Charnes-Cooper transformation and the
rank-one matrix decomposition theorem. Let us define
the transformed variable X = y G, where y > 0 com-
plies with tr (Q1X) = 1, applying the Charnes-Cooper
transform, we can obtain the solution of p3 by solving the
following SDP problem

ma>)((imizetr (QoX)
Y

s.it. tr(Q1X) =1
pa tr (QX) < y§&?

tr (QsG) =y
X>0,y 20

(22)

We exploit the Charnes-Cooper variable transformation
and a specific rank-one matrix decomposition theorem
[25], which is cited as the following lemma.

Lemma 1 Let X be a non-zero M x M (M > 3) com-
plex Hermitian positive semidefinite matrix and A; be
Hermitian matrix, i = 1,2,3,4, and suppose that
(tr (YA1), tr (YAp),tr (YA3),tr (YAs)) # (0,0,0,0) for
any non-zero complex Hermitian positive semidefinite
matrix Y of size M x M. Then,

e if rank (X) > 3, one can find, in polynomial time, a
rank-one matrix xx'! such that x (synthetically denoted as
x = D1 (X, A1, Ay, A3, Ay)) is in range (X), and

xTAx =tr(XA),i=1,2,3,4 (23)
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e ifrank (X) = 2, for any z not in the range space of X,
one can find a rank-one matrix xx'! such that x (syntheti-
cally denoted as x = Dy (X, A1, Ag, Az, Ay)) is in the linear
subspace spanned by range {z} U range (X), and

TAx=tr XA),i=1,2,3,4 (24)

Summarizing, an optimal solution w* of p; can be
obtained according to Algorithm 1.

Algorithm 1 Procedure for design problem p;
Input:
Initial value: R;,, a (6p), wy, €.
Output:
An optimal solution w” of p;.
1: Solve the problem py, find the optimal solution
(G#, y#) and the optimal value v?;
2 Let GF = X* /y#;
3. if rank (G#) =1 then

4  Perform an eigen-decomposition G* = g#(g#)H,

T .
where g¥ = [w# s#] , getting w*=w* / s* and ter-
minate;

5: else if rank (G#) = 2 then

6 Findg* =D, (G#, Q1,Q2,Q3,Qo — U#Q1);
7: else

8: Find g# = Dl (G#, Ql) QZ) Q3; QO - U#Ql);
9: end

10: Let g* = [w#s#] T; output w* = w” /s#

In this paper, we propose a novel null broadening algo-
rithm design with respect to the nonstationary interfer-
ence, and the design avoids the additional complexity
of the weight vector continuously updating. Consider
one similarity constraint with a quiescent steering vector
exhibiting some desirable properties. Indeed, the pro-
posed framework also achieves wide nulls by trading off
some degrees of freedom (DOFs) of the array. In gen-
eral, a beamformer is expected when more constraints are
imposed but they consume more array’s DOFs and trade-
off the output SINR. For the complex-valued problem, if
the number of constraints is not more than 3, the homo-
geneous QCQP can be efficiently solved in polynomial
time [26]; in other words, the SDP relaxation is tight and
hence, a global optimal solution of the original problem
is achievable. Note that estimating structured covariance
matrices is of particular interest in a variety of applica-
tions. The interference covariance matrix is reconstructed
based on the Capon spectrum in (11), generally, not an
optimal method [27]. The maximum likelihood approach
is a good representative of the covariance matrix esti-
mation techniques, which could yield better estimation
performance [28-30]. Future work will concentrate on
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the advanced estimator design with respect to covariance
matrix estimation.

In our algorithm, the main complexity lies in the
interference-plus-noise covariance matrix reconstruction
problem and the nonconvex fractional QCQP problem.
The computation complexity of the noise power is dom-
inated by the eigenvalue decomposition of R, which is
o (M?’) The computation complexity of the interference
covariance matrix reconstruction is O (M2]), where J is
the number of sampled points in the angular sector of
the nonstationary interference. Generally speaking, J is
larger than M that can improve the performance sig-
nificantly. The computational complexity of Algorithm 1
is dominated by the solution of the SDP, at a com-
plexity cost of O (M*®log(1/n)) (where n > 0 is a
prescribed accuracy, e.g., see [31]), and the complex-
ity of the rank-one decomposition requires operations
0 ().

4 Simulation

In this section, in order to evaluate the efficiency of
the proposed algorithm, several simulated examples are
performed to illustrate the results of our arguments on
the nonstationary interference. Consider a uniform lin-
ear array with M = 20 omnidirectional antenna elements
spaced one-half wavelength apart. The additive noise is
modeled as a complex Gaussian zero-mean spatially and
temporally white process with unit variance in each sen-
sor. Assume that the exact knowledge of desired signal
parameters is known or previously estimated to the array
receiver, which is set to be 0°, and the signal-to-noise-
ratio (SNR) is set to be 0 dB. Consider applications where
frozen weights with nonstationary interference are used.
Two equal-power interference signals are presumed on
the array from the directions of —20° and 30°, respectively.
The interference-to-noise ratio (INR) in each sensor is
equal to 35 dB. For each scenario, 200 Monte Carlo runs
are performed.

The proposed method is investigated and compared
with the sample matrix inverse (SMI) method, the
Mailloux-Zatman covariance matrix taper (MZT) notch-
widening approach in [12], the beamforming framework
based on the use of a set of beam pattern shaping con-
straints (BSC) in [15], and the multiparametric program-
ming (CMT-MP-QP) method in [16]. In [15], the response
ripple of the mainlobe region is set as 1.2 dB and a fixed
mainlobe width of 6° is used. The peak sidelobe levels are
kept below —25 dB and the sidelobe beam pattern area
is given by [—90°, —10°] U [10°,90°] in BSC and CMT-
MP-QP methods. The null levels of beam patterns are
set below —60 dB in BSC, CMT-MP-QP, and proposed
methods. Without loss of generality, the similar factor &
is set to be 0.2 * ”wq ” (i.e, & = 0.2 x M) in proposed
method.
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Example 1: beam pattern of beamformers. In the first
simulation, we test the performance of adaptive beam-
forming in nonstationary interference environments, and
the quiescent array pattern (QUI) is provided for com-
parison. The number of snapshots is 200. After the
frozen weights are applied, a scenario with the random
look direction mismatch of the nonstationary interfer-
ence is considered. Assume the interferences move with
their directions changes from [—4,4]. That is to say,
the directions of the two interferences are distributed
in [—24,—16] and [26, 34], respectively. Then, the taper
parameter equals 0.05 in MZT method and CMT-MP-QP
method to obtain approximate beam pattern null width of
8°. The widths of interference nulls are set as 8° and a uni-
form grid is used to obtain the angles in BSC and proposed
methods. The corresponding results are shown in Fig. 1.
It is found that the SMI method is not able to broaden
the interference nulls and it has very high sidelobe level,
while other methods are robust against the nonstation-
ary interference. It is shown that the proposed technique
can create wide nulls in the nonstationary interference
regions, and the pattern is very close to the quiescent
pattern. However, the MZT method suffers from perfor-
mance degradation with the interference nulls becoming
higher and sidelobe elevation. In BSC and CMT-MP-QP
methods, deep notches can be formed and maintain a
distortionless response for the desired signal, which also
achieves lower sidelobe level and wide mainlobe.

Example 2: SINR versus the number of snapshots.
In this example, the SINR performance of these meth-
ods is tested versus the number of training snapshots, and
the optimal performance (OPT) is provided for compar-
ison. The other parameters remain the same as example
1 except the number of snapshots. From the result shown
in Fig. 2, the algorithms for nulling broadening can obtain
high output SINR and fast convergence rate and much
better than the SMI algorithm. The SMI beamformer is
sensitive to the nonstationary interference and requires a
large of number snapshots to converge. It can be observed
that the proposed algorithm performs best among the
tested beamformers. The performance of the BSC method
is very close to that of the CMT-MP-QP method due
to the similar multiparametric quadratic constraint pro-
gramming. Although the MZT method shows fast con-
vergence rate, it suffers from performance degradation
mainly due to the sidelobe elevation.

Example 3: SINR versus interference mismatch
angle. In the third example, the output SINRs versus
the look direction error of the nonstationary interference
are investigated among the OPT, SMI, MZT, BSC, CMT-
MP-QP, and proposed methods. All parameters are as in
example 1 except the mismatch angle of interference, and
the corresponding results are shown in Fig. 3. As expected,
a wider range of the nonstationary interference leads to
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a worse SINR. One can observe that the SMI method
is quite extensive to the uncertainty and results in dra-
matic performance degradation, while the performances
of other methods tend to stabilize with the mismatched
angle range varying, which means that the nulling broad-
ening algorithm can effectively suppress the nonstationary
interference and avoid the additional complexity of the
adaptive weight vector continuously updating. It is found
that the proposed algorithm has the best performance

among these adaptive beamforming algorithms. There-
fore, the proposed beamforming algorithm outperforms
other methods.

Example 4: the effect of the similarity constraint. In
this section, we analyze the effect of the similarity param-
eter £ on the beam pattern of beamformer. Some values
of the similarity parameter & € {0.1 % M, 0.4 x M, 0.8 x M}
and other parameters remain the same as example 1. The
corresponding results are plotted in Fig. 4. As expected,
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the similarity constraint can effectively mitigate the beam
pattern distortion resulting from the finite sample size
or nonstationary interference. Additionally, when & is
smaller, the pattern is more similar to the quiescent pat-
tern. However, as & decreases, the null depths increase due
to the similarity constraint. It should be noted that when &
converge towards 0, the designed adaptive weight vector w
is approximately equal to the quiescent weight vector wy,
i.e., the beam pattern and the reference QUI are almost

same, but with the notch vanishing. As such, the similar-
ity parameter & selected depends on the current scenario
and several system parameters.

Example 5: SINR versus SNR for desired signal look
direction mismatch. In the previous simulations, we
consider only the perturbation of the interference loca-
tion occurs. Although the proposed method is designed
for solving only the interference mismatch problem, in
this example, a desired signal look direction mismatch is

Fig. 4 The effect of similarity parameter on adaptive beamformer
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studied. All other parameters are chosen as before except
the SNR. After frozen weights are used, the assumed
arrival angle is 0°, but the actual arrival angle is 1.5°.
The SINRs are compared for different SNRs ranging from
—10 to 20 dB. Note that the desired signal component is
not present in the reconstructed interference-plus-noise
covariance matrix, while the sample covariance matrix
of other methods are corrupted by the desired signal.
In Fig. 5, it is clear that the proposed beamformer can
obtain good output SINR in a large range of SNR, which
is not sensitive to the power of the desired signal, thus, it
implies that the proposed method reinforces the desired
signal at the same time. The BSC beamformer maintains
steady SINR with the SNR varying. In addition, due to
the presence of the desired signal in training data, the
output SINR of the BSC beamformer degrades slightly
as SNR becomes larger. It can be observed that both the
MZT and the CMT-MP-QP methods are affected severely
by the desired signal look direction mismatch. The per-
formance of the SMI beamformer is even worse as it
cannot resolve the desired signal and interference mis-
matches. This example shows that the proposed method
has unexpected good performance compared to other
robust methods when a direction mismatches occurs. We
believe that the proposed algorithm is a good candidate
for robust beamforming.

5 Conclusions

We have discussed the problem of beamforming for
the nonstationary interference; the goal of the proposed
method is to achieve interference suppression algorithm

design and avoid the additional complexity of the weight
vector continuously updating. Compared to the pre-
vious algorithms, the proposed method is stable and
effective for the interference nonstationarity. A noncon-
vex formulation for such optimization problem can be
solved using SDR technique, Charnes-Cooper transfor-
mation, and rank-one matrix decomposition theorem.
The proposed approach optimizes the performance via
maximizing a new SINR criterion while maintains a dis-
tortionless response towards the direction of the desired
signal, and deep null notches are formed towards the
spatial directions of the interferences. The simulation
results have demonstrated that the proposed beamformer
can achieve a better performance, and it can be fore-
seen that this field will keep benefiting from advances
in convex optimization theory. The covariance matrix
reconstruction method brings some new ideas for inter-
ference suppression especially for the large aperture
arrays.
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