
RESEARCH Open Access

Object representation for multi-beam sonar
image using local higher-order statistics
Haisen Li1,2, Jue Gao1,2, Weidong Du1,2* , Tian Zhou1,2, Chao Xu1,2 and Baowei Chen1,2

Abstract

Multi-beam sonar imaging has been widely used in various underwater tasks such as object recognition and object
tracking. Problems remain, however, when the sonar images are characterized by low signal-to-noise ratio, low resolution,
and amplitude alterations due to viewpoint changes. This paper investigates the capacity of local higher-order statistics
(HOS) to represent objects in multi-beam sonar images. The Weibull distribution has been used for modeling the
background of the image. Local HOS involving skewness is estimated using a sliding computational window, thus
generating the local skewness image of which a square structure is associated with a potential object. The ability of
object representation with different signal-to-noise ratio (SNR) between object and background is analyzed, and the
choice of the computational window size is discussed. In the case of the object with high SNR, a novel algorithm based
on background estimation is proposed to reduce side lobe and retain object regions. The performance of object
representation has been evaluated using real data that provided encouraging results in the case of the object with low
amplitude, high side lobes, or large fluctuant amplitude. In conclusion, local HOS provides more reliable and stable
information relating to the potential object and improves the object representation in multi-beam sonar image.

Keywords: Higher-order statistics, Object representation, Side lobe suppression, Multi-beam sonar imaging, Acoustic
image, Skewness, Weibull distribution

1 Introduction
Acoustic images acquired by a sonar system, such as
side-scan sonar, forward-looking sonar, synthetic aper-
ture sonar (SAS), or multi-beam echosounder, are used
for many applications, including survey of the surround-
ing environment [1], obstacle avoidance [2], and under-
water object detection [3]. Typical sonar images are
generally composed of three types of regions [4, 5]: high-
light, shadow, and bottom reverberation (referred to as
the background). In the case of no shadow available, the
highlight area involved in acoustic wave reflection from
an object is the only clue indicating the presence of the
object. Due to small size, similar amplitude with the
background or a large fluctuation of amplitude, a poten-
tial object may correspond with the undistinguishable
highlight area. Thus, object representation [6, 7], which
is characterizing an object with the sonar image infor-
mation, is not easy.

In previous work, a common strategy for object represen-
tation is directly making image segmentation that relates
the highlighted area to an object. D. Y. Dai et al. [8] pre-
sented a method for segmenting moving and static objects
in sector-scan sonar imagery. This method is based on fil-
tering the data in the temporal domain. J. P. Stitt et al. [9]
developed a fuzzy C-means (FCM) algorithm that segments
the echo of an object and its acoustic shadow in the pres-
ence of reverberation noise. M. Mignotte et al. [10] pre-
sented a hierarchical Markov random field (MRF) model
for high-resolution sonar image segmentation. Another
strategy for object representation is based on classification
that extracts some features characterizing the objects to
generate the training set for the learning process of a classi-
fier. G. C. Dobeck [11] implemented a matched filter to de-
tect mine-like objects; after which, both a K-nearest
neighbor neural network classifier and a discriminatory fil-
ter classifier is used to classify the objects as mine or not-
mine. S Reed et al. [12] presented a model-based approach
to mine classification by use of side-scan sonar. D. Williams
[13] proposed a Bayesian data fusion approach for seabed
classification using multi-view SAS imagery. In some cases,
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segmentation and classification are fused [14, 15] together
to represent objects in the sonar image.
Both the strategies of segmentation and classification re-

quire local analysis for revealing trends, breakdown points,
and self-similarities [5]. Thus, the corresponding local fea-
tures are explored for representing the object. Recent re-
search involving local features for sonar image included
local Fourier histogram features [16], local invariant feature
[17], and undecimated discrete wavelet transform features
[5]. Higher-order statistics (HOS) is widely used when first-
and second-order statistics fail to solve in the field of image
processing [18, 19]. Considering the object as discontinu-
ities to local background distribution, local HOS can be
used as local features for object representation. The most
relevant paper regarding local HOS application is proposed
by F. Maussang [20]: a detection method based on HOS is
applied in real sonar SAS data, the influence of the signal-
to-noise ratio (SNR) on the results in the case of Gaussian
is studied, and mathematical expressions of the estimators
and of the expected performances are derived and experi-
mentally confirmed. In this paper, we make further investi-
gation on the capacity of local HOS to represent objects in
multi-beam sonar image. The new contribution of this
paper lies in the development of a set of integrated methods
including choice of statistical background model, choice of
computational window size, and side lobe suppression in
the case of high SNR. Moreover, the influences of objects
with different SNR and with different shape on the results
are studied in the case of a Weibull distribution. The per-
formance of object representation has been evaluated
using real data that provided encouraging results in the
case of an object with low amplitude, high side lobe, or
large fluctuant amplitude.
This paper is organized as follows. Section 2 introduces

the local properties of the HOS for Weibull background.
Section 3 describes the local HOS for object representa-
tion in details. Section 4 provides experimental results on
real data, and conclusions are presented in Section 5.

2 Local higher-order statistics for Weibull background
In order to introduce the local HOS for object representa-
tion, it is necessary to assume a statistical model of the
background in multi-beam sonar image. The classic de-
scription of the background follows a Rayleigh distribution;
however, it usually fails to fit in the case of distributions
with large tails and large deviation-to-mean ratio [21, 22].
Several non-Rayleigh distributions, including log-normal,
Weibull, and K-distributions, have been used to model
background statistics [20, 22–24]. The K-distribution pro-
vides a good description of the background; however, the
estimation of the parameters is computationally complex
and time consuming [21, 25, 26]. A comparison is made
among the log-normal, Rayleigh, and Weibull statistical
models, using a real sonar image. The details of the real

data are included in Section 4. Figure 1a shows the real
sonar image without any object. Figure 1b presents the
normalized amplitude distribution and the estimated distri-
butions. As observed visually, the real background data is
described by a Weibull distribution better than the other
distributions. This is confirmed by the quantitative mea-
sures presented in Table 1, according to the Kolmogorov
distance and χ2 criterion [21, 27]. As a consequence, the
Weibull distribution, which lies between the two extremes
of log-normal and Rayleigh, appears to be a good choice
for modeling the background in multi-beam sonar image.
The statistics of the Weibull-distributed background B

are described by the probability density function:

Fig. 1 A comparison among different statistical models using a real
sonar image. a A real sonar image without any object. b Normalized
amplitude distribution and estimated distributions

Table 1 Kolmogorov distance and χ2 error by approximating
the image of Fig. 1a

Statistical model Kolmogorov χ2

Rayleigh 0.2237 13474.67

Log-normal 0.0211 708.98

Weibull 0.0105 112.95
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where k is the shape parameter and λ is the scale param-
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Setting the object amplitude A, the SNR can be de-
fined as the ratio between the mean power of the object
echo and the mean power of the background echo:

SNR ¼ 20 log10
A−μBj j
σB

��
ð5Þ

To investigate the local property, HOS is estimated
within an image using a sliding computational window, and
α is denoted as the proportion of object within the compu-
tational window. When α = 0, the sliding computational
window is totally composed of the background. The r ‐ th
order origin moment computed within the whole window
mW(r) is defined [20] as:

mW rð Þ ¼ αmO rð Þ þ 1−αð ÞmB rð Þ ð6Þ
where mO(r) is r ‐ th order origin moment computed
within the object region. The mO(r) is

mO rð Þ ¼ Ar ð7Þ
Derived from the third moment, the skewness com-

puted on the computational window is given by:

SW ¼ mW 3ð Þ′

m′3=2
W 2ð Þ

ð8Þ

where m′
W rð Þ is r ‐ th order central moment. The relations

between the origin moment and central moment for 2 ‐ th
and 3 ‐ th are

m′
W 2ð Þ ¼ mW 2ð Þ−m2

W 1ð Þ ð9Þ

m′
W 3ð Þ ¼ mW 3ð Þ−3mW 2ð ÞmW 1ð Þ þ 2m3

W 1ð Þ ð10Þ
Combining the Eqs. (6), (9), and (10), Eq. (8) can be

rewritten as:

According to Eq. (2), mB(r) can be calculated by k and
λ. Substituting Eq. (5) into Eq. (11), the object amplitude
A can be replaced by SNR. Thus, the local skewness SW
is a function depending on α as well as SNR.

3 Local higher-order statistics for object
representation
3.1 Object modeling by local HOS
Let us consider a simulated sonar image with a back-
ground that follows a Weibull distribution, with a size
of 100 × 100 pixels. The scale parameter k = 6.67 and
the shape parameter λ = 0.45 are estimated from the
real dataset. The local skewness SW displayed in
Fig. 2a is a two-dimensional surface with respect to α
and SNR. The local skewness function gets higher
values when α is low and SNR is high, and lower
values when α is high and SNR is around 0 dB. In
the computational window, a zero SW indicates that
the tails on both sides of the mean balance out,
which is the case for a symmetric distribution. Nega-
tive SW indicates that the tail on the left side of the
probability density function is longer than the right
side. Conversely, positive SW indicates that the tail on
the right side is longer than the left side. Therefore, a
large SW can be regarded as a clue to the potential
object, which is disrupted to local background distri-
bution. Along the SNR axis, the α corresponding to
the maximal SW is denoted as α '. The SNR versus α '
is shown in Fig. 2b. As shown in Fig. 2b, α ' = 0 when
SNR is below 3 dB, α ' = 0.005 when SNR is above
25 dB, and α ' between 0.01 and 0.125 when SNR is
between 3 and 25 dB.
Given an object with SNR = 20 dB, the local skewness

SW versus α is shown in Fig. 3a. The local skewness
reaches the maximum SW = 3.53 with α = 0.02, and drops
as the α increases. Modeling a square object SNR = 20 dB
with the size TO = 3, local skewness is estimated using a
sliding computational window of size TW = 7. Note that
the units of TO and TW are pixels throughout this paper.
A bias-corrected estimator of local skewness SW [28] is

ŜW ¼ n2

n−1ð Þ n−2ð Þ

1
n
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1
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where n is the total pixel numbers of the image. In
local skewness image, the object is represented by a
square structure shown in Fig. 3b. The details of the
square structure in local skewness image are shown in
Fig. 3c, where the square structure is composed of lower
values in the middle, higher values on the edge, and the
highest value in the corners. The local skewness reaches
the highest value ŜW = 3.48 corresponding to the case
that one single pixel of the object regions is included in
the computational window, while the theoretical highest
value is SW = 3.53. The special structure is due to the
variation of α shown in Fig. 3a.

3.2 Representing the object with different SNR
The ability of representing the object with different SNR
is investigated by introducing object I SNR1 = 40 dB, ob-
ject II SNR2 = 25 dB, and object III SNR3 = 10 dB to a
simulated image. The size of object is TO = 3 and the size
of computational window is TW = 7. The relations be-
tween the minimal proportion of object within the com-
putational window αmin and the size of computational
window TW can be defined as:

αmin ¼ 1

T 2
W

ð13Þ

According to Eq. (13), TW = 7 derives αmin = 0.02. In
the case of α = 0.02, the local skewness SW versus SNR is
shown in Fig. 4a. The local skewness remains low value
with SNR below 0 dB, and high value with SNR above
40 dB, but grows rapidly with SNR between 0 and 40 dB.
In the simulated image shown in Fig. 4b, object I with
high SNR is clear, object II with medium SNR is a bit

Fig. 2 Local skewness function. a Local skewness function of α and
SNR. b SNR versus α '

Fig. 3 Local skewness for object representation (SNR = 20 dB). a
Local skewness versus α with SNR = 20 dB. b Local skewness image.
c The details of object in local skewness
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obscure, and object III with low SNR is totally mixed
with the background. In the local skewness image shown
in Fig. 4c, all objects are visually characterized by square
structure. The higher the SNR, the larger the maximum
value of the square structure and the more distinct the
outline of the square structure is.
To evaluate the discrimination of the object between

the original image and the local skewness image, the ob-
ject contrast is defined as follows:

C ¼ hT−μB0

A−μB

����
���� ð14Þ

where hT is the maximum value of the square structure.
The mean and standard deviation of background in local
skewness image are μB ' and σB ':

μB0 ¼ 1
n

Xn
i¼1

SW ið Þ ð15Þ

σB0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

SW ið Þ−μB0
� 	2s

ð16Þ

Table 2 presents the performance of object representa-
tion. The object with low SNR (SNR3 = 10 dB) gets C =
5.0513, the object with medium SNR (SNR2 = 25 dB)
gets C = 4.6754, and the object with high SNR (SNR3 =
10 dB) gets C = 0.9650. In addition, hT for all objects are
close to the theoretical values shown in Fig. 4a. Mapping
from the original image to the local skewness image, an
object with lower SNR achieves a higher C, whereas an
object with higher SNR obtains a lower C due to the sat-
urated hT.

3.3 Choice of the computational window size
As suggested by the curve in Fig. 2b and Eq. (13), the
αmin deriving from the size of computational window
TW should correspond to the α ' for a highest hT. For ex-
ample, an object with SNR = 10 dB, the suitable size of
computational window is supposed to be TW = 3. In
order to confirm the assumption, a square object with a
SNR of 10 dB and a size of TO = 3 is inserted in a simu-
lated image shown in Fig. 5a, where the object is com-
pletely unable to distinguish. The local skewness image
with the size of computational window TW = 3, TW = 6,
and TW = 9 is shown in Fig. 5b–d, respectively. The per-
formance with different computational window sizes is
presented in Table 3. The high hT and C are obtained
with TW = 3; however, the distinction between object and
background is obscure due to the high σB ', as shown in
Fig. 5b. On the contrast, the low σB ' is obtained with
TW = 9, but false alarms hinder the object determination
due to the low hT and C, as shown in Fig. 5d. With the
size of computational window TW = 6, the local skewness
image shown in Fig. 5c provides satisfactory results with
a compromise between the contrast C and the standard
deviation σB '.

Fig. 4 Local skewness for multiple objects representation (R1 = 40 dB,
R2 = 25 dB, and R3 = 10 dB). a Local skewness versus SNR with α = 0.02.
b The simulated image. c Local skewness image

Table 2 Performance of object representation (SNR1 = 40 dB,
SNR2 = 25 dB, and SNR3 = 10 dB)

hT C σB '
SNR1 6.7473 0.9650 0.3072

SNR2 5.7620 4.6754 0.3072

SNR3 0.8063 5.0513 0.3072
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Investigating the influences of the object size and
shape, three objects (SNR = 20 dB) including square ob-
ject I with the size TO = 3, square object II with the size
TO = 6, and sphere object III with the diameter TO = 8
are added into a simulated image shown in Fig. 6a. The
local skewness image with the size of computational
window TW = 4, TW = 7, and TW = 10 is shown in
Fig. 6b–d, respectively. One finds that the computational
window size TW = 4, TW = 7, and TW = 10 is best for de-
scribing the structure of object size TO = 3, TO = 6, and
TO = 8, respectively. The performance reported in Table 4
confirms that the size of computational window TW = 7
corresponding to α = 0.02 obtains the highest C and
moderate σB ', which is considered the best result for the
case of SNR = 20 dB. It is concluded that a suitable window
size, which is a bit larger than the object size, is able to rep-
resent this object accurately and the outline of the sphere
object can be described by the high values of the edges.
However, the shape recognition needs to be further studied.
In conclusion, the αmin deriving from the size of com-

putational window TW should correspond to the α ' for a
highest hT; however, a trade-off between the highest
skewness of object hT and the standard deviation of
background σB ' has to be made for selecting a suitable
computational window size. Moreover, the large window
size generally makes it difficult to locate the object.

3.4 Side lobe suppression for object with high SNR
In the case of high SNR, an object can be observed visu-
ally, but the image may be contaminated with high side
lobes, which can occlude nearby objects. A side lobe
suppression algorithm is required to make a reduction
in the directions of arrival (DOA) of strong interfer-
ences, while keeping the desired signal distortionless.
Adaptive beamforming [29, 30], like the minimum-
variance distortionless response (MVDR) beamformer
[31], has shown good performance. However, a com-
promise should be made between resolution and con-
trast with limited computational cost. Therefore, we
develop an algorithm based on background estimation,
which identifies and offsets the high side lobes statisti-
cally. Consider a sonar amplitude image X = {x(i, j)|1 ≤
i ≤U, 1 ≤ j ≤ V}, with a size of U × V pixels. The proposed
algorithm comprises three main stages below and a de-
scription of this algorithm in a pseudocode format is
contained in Fig. 7.

(1) Calculate the normalized amplitude probability
distribution of X, obtaining the max distribution
point lm and the max inflection point lV.

(2) Define XV as the max points along the direction of
sampling number, from which the points larger
than lV are labeled as XS.

(3) Save the object regions between the two valley
points around each point of XS, calculate the
correction factor d by the ratio between the max
side lobe peak ls and the max point lm, then
multiply the side lobe by d for offsetting.

As an illustration, a real multi-beam sonar image con-
taining a metal cube tied with ropes is displayed in

Fig. 5 Local skewness for object representation with different sizes of computational window(R = 10 dB). a The simulated image. b Local
skewness image with TW = 3. c Local skewness image with TW = 6. d Local skewness image with TW = 9

Table 3 Performance of object representation with different
computational window sizes (SNR = 10 dB)

TW hT C σB '
3 1.5792 7.9350 0.5167

6 0.8916 5.4218 0.3393

9 0.6354 4.4079 0.2365
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Fig. 9a. The sonar amplitude image is shown in Fig. 8a,
with the size of 1024 (beam number) × 350(sampling num-
ber), and the corresponding normalized amplitude distribu-
tion is presented in Fig. 8b. As shown in Fig. 8b, the max
distribution point lm = 0.62 and the max inflection point lV
= 0.87 are obtained. The max amplitude for each sampling
number is shown in Fig. 8c. As shown in Fig. 8c, the ampli-
tude points XS, which are larger than lV (dashed line), in-
cluding the highest points N (sampling number 250) are
extracted from the XV. For each point belonging to XS, the
object regions are saved while the side lobe regions are off-
set with the correction factor d. The object regions of N
(between two dashed lines) and the max side lobe peak are
shown in Fig. 8d. The ls = 0.86 derives the d = 0.72.
Local skewness images before and after side lobe sup-

pression are displayed in Fig. 9b, c, using the computa-
tional window size TW = 14. The comparison reveals that
a considerable improvement for object representation
has been achieved with the proposed algorithm. The side
lobes are reduced and the object regions are retained
with a square structure.
Another real multi-beam sonar image (shown in

Fig. 12a) containing two groups of objects is used to

Fig. 6 Local skewness for object representation with different sizes of computational window for three objects with different sizes and shapes.
a The simulated image. b Local skewness image with TW = 4. c Local skewness image with TW = 7. d Local skewness image with TW = 10

Table 4 Performance of object representation with different
computational window sizes for three objects with different
sizes and shapes (SNR = 20 dB)

TW C σB '
Object I Object II Object III

4 4.9057 4.9647 4.9954 0.4075

7 5.8858 6.2262 6.6973 0.2827

10 5.3601 5.7749 6.2597 0.1785
Fig. 7 The side lobe suppression algorithm based on
background estimation
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compare the algorithms’ performance. Figure 10a shows
the side lobe suppression with MVDR beamformer, and
Fig. 10b shows the side lobe suppression with back-
ground estimation. It is clear that both the algorithms ad-
equately reduce the side lobe. A significant SNR
enhancement is achieved by the MVDR beamformer,
whereas the boundary representations for potential objects
are described in greater detail by the proposed algorithm.

Furthermore, the proposed algorithm is about 200 times
faster than the MVDR beamformer. This is a significant
improvement in terms of real-time performance.

4 Results and discussion
The proposed approach is verified on several real sonar
images, which were obtained from multi-beam sonar de-
veloped by Harbin Engineering University. The sonar
covers a region of 140 (vertical) × 2.5 (horizontal), with

Fig. 8 An illustration of side lobe suppression algorithm. a Sonar
amplitude image. b Normalized amplitude distribution. c The max
amplitude for each sampling number. d Amplitude of sampling
number 250

Fig. 9 The side-lobe suppression algorithm for a multi-beam sonar
image. a Original image. b Local skewness image before side lobe
suppression. c Local skewness image after side lobe suppression
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an operating frequency of 300 kHz. The emitted signal is
continuous wave (CW) with a pulse width of 0.1 ms,
while the receiver is 64-element uniform linear array
with a sampling frequency of 48 kHz. A large number of
datasets collected during several trials are processed by
beam forming and scan conversion methods [32–35],
generating the image sequences with a resolution grid of
0.05 × 0.05 m2, and two of them are selected for example
in the following.
Dataset I was acquired from a trial at an indoor tank,

Harbin Engineering University, China. The correspond-
ing image sequence I has the size of 111 × 241 pixels.
Each frame describes the water-column scenes of 7 ×
10 m2, in which a plastic ball and a metal block move to-
gether in horizontal direction. Two typical frames are
presented in Fig. 11a, b, where the objects are hardly vis-
ible due to the small size and the similar amplitude of
the object comparing to the background. The local
skewness is estimated using the computational window
size TW = 12, and the results are shown in Fig. 11c, d.
Both the objects are represented with the square struc-
ture and distinguished from the background obviously.
Table 5 gives the performance results, of which SNR ' is
the SNR in local skewness image. The results show that
local skewness image obtains the higher SNR ' and lower
σB ', in contrast to original image.
Dataset II was obtained from a trial at Songhua Lake,

Jilin province, China. The corresponding image sequence
II has the size of 361 × 601 pixels. Each frame describes
the water-column scene of 20 × 30 m2, in which two
groups of objects move relatively in vertical direction.

Fig. 10 Side lobe suppression using different algorithms. a MVDR
beamformer algorithm. b The proposed algorithm

Fig. 11 Local skewness for multiple objects representation in image sequence I. a Frame 1. b Frame 2. c Local skewness image for frame 1.
d Local skewness image for frame 2
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Each group of object is composed of a plastic ball and a
metal block. A typical frame is displayed in Fig. 12a.
Two groups of objects are distant, of which the object
with low SNR can hardly be identified and the object
with high SNR has high side lobes. Another frame is
shown in Fig. 12b. Two groups of objects are close, of
which the side lobes caused by high SNR objects occlude
the other objects. After side lobe suppression, the local
skewness is estimated using the computational window
size TW = 14. The results are presented in Fig. 12c, d,
where all objects are apparent with the square structure
and the influence of side lobe are reduced. Table 6 gives
the performance results. It shows that object 1 has a
fluctuation of 11.87 dB between the original frames,
whereas the corresponding fluctuation is only 1.99 dB
between the local skewness frames. It confirms that local
skewness is robust for object representation, especially
in case of the object with a large SNR fluctuation be-
tween consecutive frames. Furthermore, the boundary of
the high SNR object is distinct by implementing the pro-
posed side lobe suppression algorithm.

5 Conclusions
This paper investigates the capacity of local higher-order
statistics (HOS) to represent objects in multi-beam
sonar images. Local skewness is estimated using a sliding
computational window applied to a sonar image, thus
generating local skewness image of which a square struc-
ture is associated with a potential object. One finds that:
(1) The Weibull distribution has been proved to be a
better choice for modeling the background of multi-
beam sonar image, by comparing with the log-normal
and Rayleigh distributions. (2) The square structure
composes of lower values in the middle, higher values
on the edge, and the highest value in the corners, and
makes the object easily identifiable. (3) Mapping from
original image to local skewness image, an object with
lower SNR achieves a higher object contrast C, whereas
an object with higher SNR obtains a lower object con-
trast C, thus the robustness of object representation is
improved, especially in case of the object with a large
SNR fluctuation. (4) In order to select a suitable sliding
computational window size, the αmin deriving from the

Fig. 12 Local skewness for multiple objects representation in image sequence II. a Frame 1. b Frame 2. c Local skewness for frame 1. d Local
skewness for frame 2

Table 5 Performance comparisons between the original image and local skewness image for partial frames of image sequence I

Frame 1 Frame 2

SNR(dB) σB SNR ' (dB) σB ' SNR(dB) σB SNR ' (dB) σB '
Object 1 28.63 0.2791 32.73 0.2680 31.54 0.2809 42.30 0.2648

Object 2 29.79 0.2791 36.84 0.2680 25.58 0.2809 35.08 0.2648
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size of computational window TW should correspond to
α ' for a highest hT; however, a trade-off between the
higher skewness of object hT and the lower standard de-
viation of background σB ' has to be made. (5) In the case
of object with high SNR, an algorithm based on back-
ground estimation is able to significantly reduce the side
lobe and completely retain object regions. The local
HOS can provide the local feature relating to the poten-
tial object for segmentation, detection and classification
tasks; however, the robustness of local feature should be
further tested and improved for shape recognition. In
the future, we plan to extend this work to multiple ob-
jects tracking in complex scenes.
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