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Abstract

Acoustic echo cancellation represents one of the most challenging system identification problems. The most used
adaptive filter in this application is the popular normalized least mean square (NLMS) algorithm, which has to address
the classical compromise between fast convergence/tracking and low misadjustment. In order to meet these
conflicting requirements, the step-size of this algorithm needs to be controlled. Inspired by the pioneering work of
Prof. E. Hänsler and his collaborators on this fundamental topic, we present in this paper several solutions to control
the adaptation of the NLMS adaptive filter. The developed algorithms are “non-parametric” in nature, i.e., they do not
require any additional features to control their behavior. Simulation results indicate the good performance of the
proposed solutions and support the practical applicability of these algorithms.

Keywords: Acoustic echo cancellation, Adaptive filters, Normalized least mean square (NLMS) algorithm, Step-size
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1 Review
1.1 Introduction
Hands-free audio terminals are required in many popular
applications, such as mobile telephony and teleconferenc-
ing systems. An important issue that has to be addressed
when dealing with such devices is the acoustic coupling
between the loudspeaker and the microphone. Due to this
coupling, the microphone of the device captures a signal
coming from its own loudspeaker, known as the acoustic
echo. This phenomenon is influenced by the environ-
ment’s characteristics, and it can be very disturbing for the
users. For example, in a telephone conversation, the user
could hear a replica of her/his own voice. Consequently,
in order to enhance the overall quality of the communi-
cation, there is a need to cancel the unwanted acoustic
echo.
In this context, acoustic echo cancellation (AEC) pro-

vides one of the best solutions to the control of acous-
tic echoes generated by hands-free audio terminals. The
basic issue in AEC is then to estimate the impulse
response between the loudspeaker and the microphone of
the device. The most reliable solution to this problem is
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the use of an adaptive filter that generates at its output a
replica of the echo, which is further subtracted from the
microphone signal [1–9]. In other words, the adaptive fil-
ter has to model an unknown system (i.e., the acoustic
echo path between the loudspeaker and the microphone),
like in a “system identification” problem [10–12].
Despite the straightforward formulation of the problem,

there are several specific features of AEC, which rep-
resent a challenge for any adaptive algorithm. First, the
acoustic echo paths have excessive lengths in time (up
to hundreds of milliseconds), due to the slow speed of
sound in the air, together with multiple reflections caused
by the environment; consequently, long length adaptive
filters are required (hundreds or even thousands of coef-
ficients), thus influencing the convergence rate of the
algorithm. Also, the acoustic echo paths are time-variant
systems, depending on temperature, pressure, humidity,
and movement of objects or bodies; hence, good tracking
capabilities are required for the echo canceller. Second,
the echo signal is combined with the near-end signal; ide-
ally, the adaptive filter should separate this mixture and
provide an estimate of the echo at its output and an esti-
mate of the near-end from the error signal (from this point
of view, the adaptive filter works as in an “interference
cancelling” configuration [10–12]). This is not an easy
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task, since the near-end signal can contain both the back-
ground noise and the near-end speech; the background
noise can be non-stationary and strong (it is also amplified
by the microphone of the hands-free device), while the
near-end speech acts like a large level disturbance. More-
over, the input of the adaptive filter (i.e., the far-end signal)
is mainly speech, which is a non-stationary and highly cor-
related signal that can influence the overall performance
of the adaptive algorithm.
In addition, the double-talk case (i.e., the talkers on both

sides speak simultaneously) is perhaps the most challeng-
ing situation in AEC. The behavior of the adaptive filter
can be seriously affected in this case, up to divergence. For
this reason, the echo canceller is usually equipped with
a double-talk detector (DTD), in order to slow down or
completely halt the adaptation process during double-talk
periods [6, 7]. Nevertheless, there is some inherent delay
in the decision of any DTD; during this small period, a
few undetected large amplitude samples can perturb the
echo path estimate considerably. Consequently, it is highly
desirable to improve the robustness of the adaptive algo-
rithm in order to handle a certain amount of double-talk
without diverging.
Many adaptive algorithms were proposed in the con-

text of AEC [1–9, 13], but the workhorse remains the
normalized least mean square (NLMS) algorithm [10–12].
The main reasons behind this popularity are its moderate
computational complexity, together with its good numer-
ical stability. The performance of the NLMS algorithm
is influenced by two important parameters, i.e., the nor-
malized step-size and regularization terms [1, 8, 11]. The
first one reflects a trade-off between convergence rate and
misadjustment of the algorithm. The second parameter is
essential in all ill-posed and ill-conditioned problems such
as in adaptive filters; it depends on the signal-to-noise
ratio (SNR) of the system [14]. Both these parameters
can be controlled (i.e., making them time dependent)
in order to address the conflicting requirement of fast
convergence and low misadjustment. This was the main
motivation behind the development of variable step-size
(VSS) and variable regularized (VR) versions of the NLMS
algorithm, e.g., [13, 15–25]. Even if they focus on the
optimization of different parameters, the VSS-NLMS and
VR-NLMS algorithms are basically equivalent in terms of
their purpose [1, 19]. In general, most of them require the
tuning of some additional parameters that are difficult to
control in practice. For real-world AEC applications, it is
highly desirable to design “non-parametric” algorithms,
which can operate without requiring additional features
related to the acoustic environment (e.g., system change
detector).
In this context, the contributions of Prof. E. Hänsler

and his collaborators represent real milestones in the
field. For example, in [1], Hänsler and Schmidt present a

comprehensive and insightful review of the methods and
algorithms used for acoustic echo and noise control. In
their work, a special interest is given to the performance
analysis of the NLMS algorithm (e.g., see Chapters 7 and
13 from [1]), in terms of developing optimal expressions
for its control parameters, i.e., the normalized step-size
and regularization term. In Section 1.2 of this paper, we
summarize theirmain findings related to the control of the
NLMS algorithm. Also, in Section 1.3, we present another
benchmark solution, i.e., the non-parametric variable
step-size NLMS (NPVSS-NLMS) algorithm [19]. Moti-
vated and inspired by the work of Hänsler and Schmidt [1]
(summarized in Section 1.2), we extend their findings in
the framework of a state variablemodel (similar to Kalman
filtering) [26]. The joint-optimized NLMS (JO-NLMS)
algorithm developed in Section 1.4 brings together three
main elements: a time-variant systemmodel, an optimiza-
tion criterion based on the minimization of the system
misalignment, and an iterative procedure for adjusting
the system model parameter. Consequently, it achieves
a proper compromise between the performance crite-
ria, i.e., fast convergence/tracking and lowmisadjustment,
without requiring any additional features to control its
behavior (like stability thresholds or system change detec-
tor). Simulations performed in Section 1.5 support the
theoretical findings and indicate the good performance of
the presented algorithms. Finally, Section 2 concludes this
work and outlines several perspectives.

1.2 Control of the NLMS algorithm
Let us consider the framework of a system identification
problem (as shown in Fig. 1), like in AEC [1–9]. The far-
end (or loudspeaker) signal, x(n), goes through the echo
path, h(n), providing the echo signal, y(n), where n is
the time index. This signal is added to the near-end sig-
nal, v(n) (which can contain both the background noise
and the near-end speech), resulting the microphone sig-
nal, d(n). The adaptive filter, defined by the vector ĥ(n),
aims to produce at its output an estimate of the echo, ŷ(n),
while the error signal, e(n), should contain an estimate of
the near-end signal.
Summarizing, the main goal of this application is to

model an unknown system using an adaptive filter, both
driven by the same zero-mean input signal, x(n). These
two systems are assumed to be finite impulse response
(FIR) filters of length L, defined by the real-valued
vectors:

h(n) = [
h0(n) h1(n) · · · hL−1(n)

]T ,

ĥ(n) = [
ĥ0(n) ĥ1(n) · · · ĥL−1(n)

]T ,

where superscript T denotes transposition. The desired
(or microphone) signal for the adaptive filter is
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Fig. 1 General scheme. Acoustic echo cancellation configuration

d(n) = xT (n)h(n) + v(n) (1)
= y(n) + v(n),

where

x(n) = [
x(n) x(n − 1) · · · x(n − L + 1)

]T
is a real-valued vector containing the L most recent time
samples of the input signal, x(n), and v(n) (i.e., the near-
end signal) plays the role of the system noise (assumed to
be quasi-stationary, zero mean, and independent of x(n))
that corrupts the output of the unknown system.
Using the previous notation, we may define the a priori

and a posteriori error signals as

e(n) = d(n) − xT (n)̂h(n − 1)

= xT (n)
[
h(n) − ĥ(n − 1)

]
+ v(n), (2)

ε(n) = d(n) − xT (n)̂h(n)

= xT (n)
[
h(n) − ĥ(n)

]
+ v(n), (3)

where the vectors ĥ(n − 1) and ĥ(n) contain the adaptive
filter coefficients at time n − 1 and n, respectively. The
update equation for NLMS-type algorithms is

ĥ(n) = ĥ(n − 1) + μ(n)x(n)e(n), (4)

where μ(n) is a positive factor known as the step-size,
which governs the stability, the convergence rate, and
the misadjustment of the algorithm. A reasonable way to
derive μ(n), taking into account the stability conditions, is
to cancel the a posteriori error signal [27]. Replacing (4) in
(3) with the requirement ε(n) = 0, it results that

ε(n) = e(n)
[
1 − μ(n)xT (n)x(n)

]
= 0 (5)

and assuming that e(n) �= 0, we find

μ(n) = 1
xT (n)x(n)

. (6)

We should note that the above procedure makes sense
in the absence of noise [i.e., v(n) = 0], where the con-
dition ε(n) = 0 implies that xT (n)

[
h(n) − ĥ(n)

]
= 0.

Finding the parameter μ(n) in the presence of noise will
introduce noise in ĥ(n), since the condition ε(n) = 0 leads
to xT (n)

[
h(n) − ĥ(n)

]
= −v(n) �= 0. In fact, we would

like to have xT (n)
[
h(n) − ĥ(n)

]
= 0, which implies that

ε(n) = v(n).
In practice, a positive constant α (with 0 < α < 2),

known as the normalized step-size, multiplies (6) to
achieve a proper compromise between the convergence
rate and the misadjustment [10–12]; also, a positive con-
stant δ, known as the regularization parameter, is added
to the denominator of (6) in order to make the adaptive
filter work well in the presence of noise. Consequently,
the well-known update equation of the NLMS algorithm
becomes

ĥ(n) = ĥ(n − 1) + αx(n)e(n)

xT (n)x(n) + δ
. (7)

1.2.1 Performance analysis
Both the control parameters, i.e., α and δ, highly influ-
ence the overall performance of the NLMS algorithm.
An insightful analysis of their influence was developed
by Hänsler and Schmidt in [1]. To begin, let us define
the a posteriori misalignment (also known as the system
mismatch [1]) as

m(n) = h(n) − ĥ(n). (8)

Assuming that the unknown system is time-invariant,
i.e.,

h(n) = h(n − 1), (9)

the updated equation (7) of the NLMS algorithm can be
used, together with (8), in order to derive an update in
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terms of the a posteriori misalignment. Consequently, it
results

m(n) = m(n − 1) − αx(n)e(n)

xT (n)x(n) + δ
. (10)

Taking the �2 norm in (10), we obtain

‖m(n)‖22 = ‖m(n − 1)‖22 − 2
αmT (n − 1)x(n)e(n)

‖x(n)‖22 + δ

+ α2 ‖x(n)‖22 e2(n)[‖x(n)‖22 + δ
]2 . (11)

Based on (2) and (9), the a priori error signal can be
expressed as

e(n) = xT (n)m(n − 1) + v(n), (12)

so that, using (12) in (11), it results

‖m(n)‖22 = ‖m(n − 1)‖22
− 2

αmT (n − 1)x(n)
[
xT (n)m(n − 1) + v(n)

]
‖x(n)‖22 + δ

+ α2 ‖x(n)‖22
[
xT (n)m(n − 1) + v(n)

]2[‖x(n)‖22 + δ
]2 .

(13)

Next, taking mathematical expectation on both sides of
(13) and removing the uncorrelated products (since x(n)

and v(n) are assumed to be independent and zero mean),
we obtain

E
[‖m(n)‖22

] = E
[‖m(n − 1)‖22

]
− 2αE

[
mT (n − 1)x(n)xT (n)m(n − 1)

‖x(n)‖22 + δ

]

+ α2E
{
mT (n − 1)x(n)xT (n)m(n − 1) ‖x(n)‖22[‖x(n)‖22 + δ

]2
}

+ α2E
{

v2(n) ‖x(n)‖22[‖x(n)‖22 + δ
]2

}
.

(14)

It is clear that E
[‖x(n)‖22

] = Lσ 2
x , where σ 2

x = E
[
x2(n)

]
is the variance of the input signal. For large values of L (i.e.,
L � 1), it holds that ‖x(n)‖22 ≈ Lσ 2

x [1, 19]. Consequently,

1
‖x(n)‖22 + δ

≈ 1
Lσ 2

x + δ
, (15)

so that, for a large value of L and a certain stationar-
ity degree of the input signal, we can treat this term as

a deterministic quantity at this point [1]. Under these
circumstances, (14) becomes

E
[‖m(n)‖22

] = E
[‖m(n − 1)‖22

]
− 2α

Lσ 2
x + δ

E
[
mT (n − 1)x(n)xT (n)m(n − 1)

]
+ α2Lσ 2

x(
Lσ 2

x + δ
)2 E [

mT (n − 1)x(n)xT (n)m(n − 1)
]

+ α2Lσ 2
x(

Lσ 2
x + δ

)2 σ 2
v ,

(16)

where σ 2
v = E

[
v2(n)

]
is the variance of the system noise.

Next, it can be assumed that the input vector, x(n), and the
a posteriori misalignment vector,m(n−1), are statistically
independent, and x(n) is white. In this case,

E
[
mT (n − 1)x(n)xT (n)m(n − 1)

]
= σ 2

x E
[‖m(n − 1)‖22

]
.

(17)

Summarizing, (16) can be rewritten as

E
[‖m(n)‖22

] = A
(
α, δ, L, σ 2

x
)
E

[‖m(n − 1)‖22
]

+ B
(
α, δ, L, σ 2

x
)
σ 2
v ,

(18)

where

A
(
α, δ, L, σ 2

x
) = 1 − 2ασ 2

x
Lσ 2

x + δ
+ α2Lσ 4

x(
Lσ 2

x + δ
)2 , (19)

B
(
α, δ, L, σ 2

x
) = α2Lσ 2

x(
Lσ 2

x + δ
)2 , (20)

represent the so-called contraction and expansion param-
eters, respectively [1].
Clearly, the contraction parameter, A

(
α, δ, L, σ 2

x
)
,

should be always smaller than 1, which is certainly ful-
filled for 0 < α < 2 and δ ≥ 0. The expansion parameter,
B

(
α, δ, L, σ 2

x
)
, is related to the influence of the system

noise, since it multiplies σ 2
v . Both terms depend on the

control parameters, α and δ, as well as on the filter
length, L, and the input signal power, σ 2

x . However, a
compromise should be made when setting the values of
the control parameters. For example, if the influence of
the system noise should be eliminated completely, i.e.,
B

(
α, δ, L, σ 2

x
) = 0, we should set α = 0 or δ = ∞, which,

on the other hand, leads to A
(
α, δ, L, σ 2

x
) = 1, i.e., the

filter will not be updated. The fastest convergence (FC)
mode is achieved when A

(
α, δ, L, σ 2

x
)
reaches its mini-

mum (e.g., for α = 1 and δ = 0), which, unfortunately,
increases the misadjustment (in terms of the influence
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of the system noise). For example, taking the normalized
step-size as the reference parameter and evaluating

∂A
(
α, δ, L, σ 2

x
)

∂α

∣∣∣∣
α=αFC

= 0, (21)

it results

αFC = 1 + δ

Lσ 2
x
. (22)

Neglecting the regularization constant (i.e., δ ≈ 0), the
fastest convergence mode is achieved for α ≈ 1, which is a
well-known result [1, 11, 12]. Also, the stability condition
can be found by imposing

∣∣A(α, δ, L, σ 2
x )

∣∣ < 1, which leads
to

0 < αstable < 2
(
1 + δ

Lσ 2
x

)
= 2αFC. (23)

Again, taking δ = 0 in (23), the standard stability condi-
tion of theNLMS algorithm results, i.e., 0 < α < 2. On the
other hand, the lowest misadjustment (LM) is obtained
when the term from (20) reaches its minimum. Also, tak-
ing the normalized step-size as the reference parameter
and evaluating

∂B
(
α, δ, L, σ 2

x
)

∂α

∣∣∣∣
α=αLM

= 0, (24)

the lowest misadjustment mode requires

αLM = 0, (25)

which is also a well-known result [1, 11, 12]; unfortunately,
the filter is not updated in this case.
Summarizing, the convergence rate of the algorithm is

not influenced by the level of the system noise, but the
misadjustment increases when the system noise increases.
More importantly, it can be noticed that the expansion
term from (20) always increases when α increases; this
concludes the fact that a higher value of the normalized
step-size increases the misadjustment. Nevertheless, the
ideal requirements of the algorithm are for both fast con-
vergence and low misadjustment. It is clear that (22) and
(25) “push” the normalized step-size in opposite direc-
tions. This aspect represents the motivation behind the
VSS approaches, i.e., the normalized step-size needs to
be controlled in order to meet these conflicting require-
ments. The regularization constant also influences the
performance of the algorithm, but in a “milder” way. It
can be noticed that the contraction term from (19) always
decreases when the regularization constant increases,
while the expansion term from (20) always increases when
the regularization constant decreases.

1.2.2 Optimal choice of the control parameters
Motivated by these findings, Hänsler and Schmidt pro-
posed in [1] (Chapter 13) an optimal choice for the
control parameters of the NLMS algorithm. First, the

non-regularized version of the NLMS algorithm is consid-
ered (also imposing that the normalized step-size is time
dependent), with the update

ĥ(n) = ĥ(n − 1) + α(n)x(n)e(n)

‖x(n)‖22
. (26)

Next, developing in (12), it results

xT (n)m(n − 1) = e(n) − v(n) � eu(n), (27)

where eu(n) denotes the so-called undistorted error signal
[1], i.e., the part of the error that is not affected by the
system noise. Using this notation, (11) can be rewritten as

‖m(n)‖22 = ‖m(n − 1)‖22−2
α(n)eu(n)e(n)

‖x(n)‖22
+ α2(n)e2(n)

‖x(n)‖22
,

(28)

which implies that

E
[‖m(n)‖22

] = E
[‖m(n − 1)‖22

] − 2α(n)E
[
eu(n)e(n)

‖x(n)‖22

]

+ α2(n)E
[

e2(n)

‖x(n)‖22

]
.

(29)

A natural optimization criterion to follow in any sys-
tem identification problem is the minimization of system
misalignment. Consequently, imposing the condition:

∂E
[‖m(n)‖22

]
∂α(n)

∣∣∣∣∣
α(n)=αopt(n)

= 0 (30)

and assuming that the normalized step-sizes at different
time instants are uncorrelated, the optimal normalized
step-size results as

αopt(n) =
E

[
eu(n)e(n)

‖x(n)‖22

]
E

[
e2(n)

‖x(n)‖22

] . (31)

For large values of L (i.e., L � 1), the assumption
‖x(n)‖22 ≈ Lσ 2

x is valid [1, 19]. Also, since the input sig-
nal, x(n), and the system noise, v(n), are uncorrelated, the
undistorted error signal, eu(n), is also uncorrelated with
the system noise. Therefore, (31) simplifies to

αopt(n) = E
[
e2u(n)

]
E

[
e2(n)

] . (32)

In the absence of the system noise [i.e., v(n) = 0], the a
priori error signal, e(n), equals the undistorted error sig-
nal, eu(n), so that and the optimal normalized step-size is
equal to 1, which justifies the discussion related to (6). In
the presence of the system noise, when the adaptive fil-
ter starts to converge, the power of the undistorted error
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signal, eu(n), decreases and, consequently, the normalized
step-size decreases, thus leading to low misadjustment.
Unfortunately, the undistorted error signal, eu(n), is not

available in practice. In order to overcome this issue, sev-
eral solutions were proposed in [1]. For example, assuming
that the excitation, x(n), is white and considering that the
input vector, x(n), and the a posteriori misalignment vec-
tor, m(n − 1), are statistically independent, (32) can be
developed based on (17) as

αopt(n) = E
[
e2u(n)

]
E

[
e2(n)

]
= E

[
mT (n − 1)x(n)xT (n)m(n − 1)

]
E

[
e2(n)

]
= σ 2

x E
[‖m(n − 1)‖22

]
E

[
e2(n)

] . (33)

Now the problem is reduced to the estimation of
E

[‖m(n − 1)‖22
]
. A solution to estimate this term is based

on the “delay and extrapolation” approach [1]. In other
words, if an additional artificial delay is introduced into
the unknown system, this delay is also modeled by the
adaptive filter. Thus, utilizing the property of adaptive
algorithms to spread the filter misalignment evenly over
all coefficients, the known part of the (true) system mis-
alignment vector can be extrapolated, thus resulting

‖m(n − 1)‖22 ≈ L
LD

LD−1∑
l=0

ĥ2l (n), (34)

where LD denotes the number of coefficients correspond-
ing to the artificial delay. However, this methodmay freeze
the adaptation when the unknown system changes, which
would require an additional system change detector [1].
The second control parameter of the NLMS algorithm

is the regularization term, δ. Using a similar approach as
before, the only-regularized version of the NLMS algo-
rithm is considered (also imposing that the regularization
parameter is time dependent), with the update

ĥ(n) = ĥ(n − 1) + x(n)e(n)

‖x(n)‖22 + δ(n)
. (35)

In this case, (11) can be rewritten as

‖m(n)‖22 = ‖m(n − 1)‖22 − 2
eu(n)e(n)

‖x(n)‖22 + δ(n)

+ e2(n) ‖x(n)‖22[‖x(n)‖22 + δ(n)
]2 , (36)

so that,

E
[‖m(n)‖22

] = E
[‖m(n − 1)‖22

] − 2E
[

eu(n)e(n)

‖x(n)‖22 + δ(n)

]

+ E
{

e2(n) ‖x(n)‖22[‖x(n)‖22 + δ(n)
]2

}
.

(37)

Following the same criterion, i.e., minimization of sys-
tem misalignment, it can be imposed that the condition

∂E
[‖m(n)‖22

]
∂δ(n)

∣∣∣∣∣
δ(n)=δopt(n)

= 0. (38)

Under similar considerations and assumptions as in the
case of αopt(n), (38) leads to the optimal regularization
parameter, which can be further developed as

δopt(n) =
{
E

[
e2(n)

] − E
[
e2u(n)

]}
Lσ 2

x
E

[
e2u(n)

]
= E

[
v2(n)

]
Lσ 2

x
E

[
e2u(n)

]
= Lσ 2

v
E

[‖m(n − 1)‖22
] .

(39)

The denominator of (39) can be evaluated based on
(34). Also, another important parameter to be found is
the noise power, σ 2

v . There are different methods for esti-
mating this parameter; for example, in echo cancellation,
it can be estimated during silences of the near-end talker
[19]. Also, other practical methods to estimate σ 2

v in AEC
can be found in [28, 29] (which are briefly detailed in the
end of Section 1.3). However, we should note that differ-
ent other estimators can be used for the noise power; the
analysis of their influence on the algorithms’ performance
is beyond the scope of this paper.
Concluding, both control methods proposed by Hänsler

and Schmidt in [1] [i.e., αopt(n) and δopt(n)] are theoret-
ically equivalent and represent valuable benchmarks in
the field of VSS/VR-NLMS algorithms. However, in prac-
tice, their implementations are usually different. In most
cases, the control of the normalized step-size is preferred,
mainly due to the limited dynamic range of its values; on
the other hand, the regularization control usually requires
an upper bound (to avoid overflow in case of very large
values).

1.3 NPVSS-NLMS algorithm
In the previous section, the optimization criterion used
for adjusting the control parameters was the minimiza-
tion of the system misalignment. However, in a system
identification setup like AEC (as shown in Fig. 1), this is
equivalent to recover the system noise from the error of
the adaptive filter [1].
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Consequently, getting back to the discussion related to
(2)–(6), the step-size parameter, μ(n) (which is determin-
istic in nature), can be found by imposing the condition
[19]

E
[
ε2(n)

] = σ 2
v . (40)

Following this requirement, we rewrite (5) as

ε(n) = e(n)
[
1 − μ(n)xT (n)x(n)

]
= v(n). (41)

Squaring the previous equation, then taking mathemat-
ical expectation on both sides, and using the approxima-
tion xT (n)x(n) ≈ LE

[
x2(n)

] = Lσ 2
x (which is valid for

L � 1), it results[
1 − μ(n)Lσ 2

x
]2

σ 2
e (n) = σ 2

v , (42)

where σ 2
e (n) = E

[
e2(n)

]
is the power of the error signal.

Thus, developing (42), we obtain the quadratic equation

μ2(n) − 2
Lσ 2

x
μ(n) + 1(

Lσ 2
x
)2 [

1 − σ 2
v

σ 2
e (n)

]
= 0, (43)

for which the obvious solution is (also using Lσ 2
x ≈

xT (n)x(n))

μNPVSS(n) = 1
xT (n)x(n)

[
1 − σv

σe(n)

]
(44)

= αNPVSS(n)

xT (n)x(n)
,

where

αNPVSS(n) = 1 − σv
σe(n)

(45)

is the variable normalized step-size. Therefore, the update
of the non-parametric variable step-size NLMS (NPVSS-
NLMS) algorithm [19] is

ĥ(n) = ĥ(n − 1) + μNPVSS(n)x(n)e(n). (46)

Let us examine the behavior of the algorithm in terms of
its normalized step-size. Looking at (44), it is obvious that
before the algorithm converges, σe(n) is large compared
to σv and, consequently, αNPVSS(n) ≈ 1. When the algo-
rithm has converged to the true solution, σe(n) ≈ σv and
αNPVSS(n) ≈ 0. This is the desired behavior for the adap-
tive algorithm, leading to both fast convergence and low
misadjustment.
We can compare (45) to the optimal step-size parameter

from (32), which results in

αopt(n) = αNPVSS(n)

[
1 + σv

σe(n)

]
. (47)

It is clear that αopt(n) is larger than αNPVSS(n) by a factor
between 1 and 2, but the two variable step-sizes have the
same effect for good convergence and low misadjustment.
In order to analyze the convergence of the misalign-

ment for the NPVSS-NLMS algorithm, we suppose that
the system is stationary (as in (9)). Using the a posteriori

misalignment vector defined in (8), the update equation
of the algorithm (46) can be rewritten in terms of the
misalignment as

m(n) = m(n − 1) − μNPVSS(n)x(n)e(n). (48)

Taking the l2 norm in (48), then mathematical expecta-
tion on both sides, and assuming that

E
[
v(n)xT (n)m(n − 1)

]
= 0, (49)

which is true if v(n) is white, we obtain

E
[‖m(n)‖22

] − E
[‖m(n − 1)‖22

] = −μNPVSS(n) [σe(n)

−σv] [σe(n) + 2σv]≤ 0.
(50)

The previous expression proves that the length of the
misalignment vector for the NPVSS-NLMS algorithm is
non-increasing, which implies that

lim
n→∞ σ 2

e (n) = σ 2
v . (51)

It should be noticed that the previous relation does
not imply that E

[‖m(∞)‖22
] = 0. However, under the

independence assumption, we can show the equivalence.
Indeed, from (12), it can be shown that

E
[
e2(n)

] = σ 2
v + tr [RK(n − 1)] (52)

if x(n) are independent (i.e., the white input assumption),
where tr(·) is the trace of a matrix, R = E

[
x(n)xT (n)

]
,

and K(n − 1) = E
[
m(n − 1)mT (n − 1)

]
. Taking (51) into

account, (52) becomes

tr [RK(∞)] = 0. (53)

Assuming that R > 0 (i.e., R is a positive definite
matrix), it results that K(∞) = 0 and, consequently,

E
[‖m(∞)‖22

] = 0. (54)

Finally, some practical considerations have to be stated.
First, in order that the algorithm behaves properly, a regu-
larization constant, δ, should be added to the denominator
ofμNPVSS(n). A second consideration is related to the esti-
mation of the parameter σe(n). In practice, the power of
the error signal is estimated as follows:

σ̂ 2
e (n) = λσ̂ 2

e (n − 1) + (1 − λ)e2(n), (55)

where λ is a weighting factor. Its value is chosen as λ =
1 − 1/(KL), where K > 1. The initial value for (55) is
σ̂ 2
e (0) = 0. Theoretically, it is clear that σ 2

e (n) ≥ σ 2
v ,

which implies that μNPVSS(n) ≥ 0. Nevertheless, the esti-
mation from (55) could result in a lower magnitude than
the noise power estimate, which would make μNPVSS(n)

negative. In this situation, the problem is solved by setting
μNPVSS(n) = 0.
The NPVSS-NLMS algorithm is summarized in Table 1.

The only parameter that is needed in the step-size formula
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Table 1 NPVSS-NLMS algorithm

Initialization:

ĥ(0) = 0L×1

σ̂ 2
e (0) = 0

Parameters:

λ = 1 − 1

KL
, weighting factor with K > 1

σ 2
v , noise power known or estimated

δ > 0, regularization

ζ > 0, very small number to avoid division by zero

For time index n = 1, 2, . . . :

e(n) = d(n) − xT (n)̂h(n − 1)

σ̂ 2
e (n) = λσ̂ 2

e (n − 1) + (1 − λ)e2(n)

αNPVSS(n) = 1 − σv

ζ + σ̂e(n)

μNPVSS(n) =

⎧⎪⎪⎨⎪⎪⎩
αNPVSS(n)

[
δ + xT (n)x(n)

]−1
, if αNPVSS(n) > 0

0, otherwise

ĥ(n) = ĥ(n − 1) + μNPVSS(n)x(n)e(n)

of the NPVSS-NLMS algorithm is the power estimate of
the system noise. In the case of AEC, this system noise is
represented by the near-end signal. Nevertheless, the esti-
mation of the near-end signal power is not always straight-
forward in real-world AEC applications. Some practical
solutions to this problem can be found in [28, 29].
For example, it was demonstrated in [28] that the power

estimate of the near-end signal can be evaluated as

σ̂ 2
v (n) = σ̂ 2

e (n) − 1
σ̂ 2
x (n)

r̂Tex(n)̂rex(n), (56)

where the variance of e(n) is estimated based on (55) and
the other terms are evaluated in a similar manner, i.e.,

σ̂ 2
x (n) = λσ̂ 2

x (n − 1) + (1 − λ)x2(n), (57)
r̂ex(n) = λ̂rex(n − 1) + (1 − λ)x(n)e(n). (58)

A more practical solution was proposed in [29]. It is
known that the desired signal of the adaptive filter is
expressed as d(n) = y(n)+ v(n). Since the echo signal and
the near-end signal can be considered uncorrelated, the
previous relation can be rewritten in terms of variances as

E
[
d2(n)

] = E
[
y2(n)

] + E
[
v2(n)

]
. (59)

Assuming that the adaptive filter has converged to a
certain degree, we can use the approximation

E
[
y2(n)

] ≈ E
[̂
y2(n)

]
. (60)

Consequently, using power estimates, we may compute

σ̂ 2
v (n) =

∣∣∣̂σ 2
d (n) − σ̂ 2

ŷ (n)

∣∣∣ , (61)

where σ̂ 2
d (n) and σ̂ 2

ŷ (n) are the power estimates of d(n)

and ŷ(n), respectively. These parameters can be recur-
sively evaluated similar to (55), i.e.,

σ̂ 2
d (n) = λσ̂ 2

d (n − 1) + (1 − λ)d2(n), (62)
σ̂ 2
ŷ (n) = λσ̂ 2

ŷ (n − 1) + (1 − λ)̂y2(n). (63)

The absolute values in (61) prevent any minor devia-
tions (due to the use of power estimates) from the true
values, which can make the normalized step-size negative
or complex.
When only the background noise is present, an estimate

of its power is obtained using the right-hand term in (61).
This expression holds even if the level of the background
noise changes, so that there is no need for the estimation
of this parameter during silences of the near-end talker.
In case of double-talk, when the near-end speech is also
present (assuming that it is uncorrelated with the back-
ground noise), the right-hand term in (61) still provides a
power estimate of the near-end signal. Most importantly,
this term depends only on the signals that are available
within the AEC application, i.e., the microphone signal,
d(n), and the output of the adaptive filter, ŷ(n). Moreover,
as it was demonstrated in [29], the estimation from (61)
is also suitable for the under-modeling case, i.e., when the
length of ĥ(n) is smaller than the length of h(n), so that
an under-modeling noise appears (i.e., the residual echo
caused by the part of the echo path that is not modeled by
the adaptive filter; it can be interpreted as an additional
noise that corrupts the near-end signal).
The main drawback of (61) is due to the approximation

in (60). This assumption will be biased in the initial con-
vergence phase or when there is a change of the echo path.
Concerning the first problem, we can use a regular NLMS
algorithm in the first steps (e.g., in the first L iterations).

1.4 JO-NLMS algorithm
In both previous sections, the assumption from (9) was
used when evaluating the a posteriori misalignment, i.e.,
the unknown system is time-invariant. However, in AEC
and also in many other system identification problems,
this assumption is quite strong. In practice, the system to
be identified could be variable in time. For example, in
AEC, it can be assumed that the impulse response of the
echo path is modeled by a time-varying system following
a first-order Markov model [9]. Therefore, a more reliable
approach could be based on the Kalman filter, since the
state variable model fits better in this context [26, 30, 31].
Motivated by the work of Hänsler and Schmidt [1] (sum-

marized in Section 1.2), we extend here their analysis by
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assuming that h(n) is a zero-mean random vector, which
follows a simplified first-order Markov model, i.e.,

h(n) = h(n − 1) + w(n), (64)

where w(n) is a zero-mean white Gaussian noise signal
vector, which is uncorrelated with h(n − 1). The correla-
tion matrix of w(n) is assumed to be Rw = σ 2

wIL, where IL
is the L×L identity matrix. The variance, σ 2

w, captures the
uncertainties in h(n). Equations (1) and (64) define now a
state variable model, similar to Kalman filtering setup.

1.4.1 Convergence analysis
In the context of the previously defined model, let us con-
sider the update of the NLMS algorithm from (7). Next,
developing (7) in terms of the a posteriori misalignment
from (8), also taking (64) into account, we obtain

m(n) = m(n − 1) + w(n) − αx(n)e(n)

xT (n)x(n) + δ
. (65)

For large values of L (i.e., L � 1), it holds that
xT (n)x(n) ≈ Lσ 2

x [1, 19]. Consequently,
α

xT (n)x(n) + δ
≈ α

Lσ 2
x + δ

. (66)

This term contains both the control parameters, i.e., α
and δ, and also the statistical information on the input
signal. However, for a large value of L and a certain sta-
tionarity degree of the input signal, we can treat this term
as a deterministic quantity [1].
Under these circumstances, taking the �2 norm in (65),

then mathematical expectation on both sides (also using
(66)), and removing the uncorrelated products, we obtain

E
[‖m(n)‖22

] = E
[‖m(n − 1)‖22

]
+ Lσ 2

w − 2α
Lσ 2

x + δ
E

[
xT (n)m(n − 1)e(n)

]
− 2α

Lσ 2
x + δ

E
[
xT (n)w(n)e(n)

]
+ α2(

Lσ 2
x + δ

)2 E [
e2(n)xT (n)x(n)

]
.

(67)

In order to further process (67), let us focus on its last
three cross-correlation terms. Based on (1), (8), and (64),
the a priori error signal from (2) can be rewritten as

e(n) = xT (n)m(n − 1) + xT (n)w(n) + v(n). (68)

Therefore, taking (68) into account within the first
cross-correlation term from (67) (also removing the
uncorrelated products), it results in

E
[
mT (n − 1)x(n)e(n)

]
≈ E

[
mT (n − 1)x(n)xT (n)m(n − 1)

]
= E

{
tr

[
m(n − 1)mT (n − 1)x(n)xT (n)

]}
.

(69)

Next, the following assumptions can be considered: (i)
the a posteriori misalignment at time index n−1 is uncor-
related with the input vector at time index n and (ii)
the correlation matrix of the input is close to a diagonal
one, i.e., E

[
x(n)xT (n)

] ≈ σ 2
x IL (this is a fairly restrictive

assumption, however, it has been widely used to simplify
the analysis [16]). Consequently, (69) becomes

E
[
mT (n − 1)x(n)e(n)

]
≈ tr

{
E

[
m(n − 1)mT (n − 1)

]
E

[
x(n)xT (n)

]}
= σ 2

x E
[‖m(n − 1)‖22

]
.

(70)

The second cross-correlation term from (67) can be also
developed based on (68). Taking into account that the cor-
relation matrix of w(n) is assumed to be diagonal and
removing the uncorrelated products, it results in

E
[
wT (n)x(n)e(n)

]
= E

[
wT (n)x(n)xT (n)w(n)

]
= E

{
tr

[
w(n)wT (n)x(n)xT (n)

]}
≈ tr

{
E

[
w(n)wT (n)

]
E

[
x(n)xT (n)

]}
= Lσ 2

x σ 2
w.

(71)

The last expectation term from (67) can be also
expressed taking (68) into account. Using a similar
approach, it results in

E
[
e2(n)xT (n)x(n)

]
= tr

{
E

[
e2(n)x(n)xT (n)

]}
= tr

{
E

[
v2(n)x(n)xT (n)

]}
+ tr

{
E

{[
rT (n)x(n)

]2
x(n)xT (n)

}}
,

(72)

with the notation

r(n) = m(n − 1) + w(n)

= [
r0(n) r1(n) · · · rL−1(n)

]T .

Next, let us focus on the last expectation term in (72);
since the correlation matrix of the input was assumed
to be diagonal, this term can be developed based on the
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Gaussian moment factoring theorem [32] (also known as
the Isserlis’ theorem) and results in

E
[
rT (n)x(n)rT (n)x(n)x(n)xT (n)

]
= σ 4

x IL
L−1∑
i=0

E
[
r2i (n)

] + 2σ 4
x E

[
r(n)rT (n)

]
= σ 4

x IL
{
Lσ 2

w + E
[‖m(n − 1)‖22

]} + 2σ 4
x

{
σ 2
wIL

+E
[
m(n − 1)mT (n − 1)

]}
.

(73)

Therefore, using the result from (73), (72) becomes

E
[
e2(n)xT (n)x(n)

]
= Lσ 2

x σ 2
v + tr

{
σ 4
x
{
Lσ 2

w + E
[‖m(n − 1)‖22

]}
IL

}
+ tr

{
2σ 4

x

{
σ 2
wIL + E

[
m(n − 1)mT (n − 1)

]}}
= Lσ 2

x σ 2
v + (L + 2)σ 4

x
{
E

[ ‖m(n − 1)‖22
] + Lσ 2

w
}
.
(74)

Having all these terms, we can introduce (70), (71), and
(74) in (67), also denotingm(n) = E

[‖m(n)‖22
]
, to obtain

m(n) = Ã
(
α, δ, L, σ 2

x
)
m(n−1)+B̃

(
α, δ, L, σ 2

x , σ 2
v , σ 2

w
)
,

(75)

where

Ã
(
α, δ, L, σ 2

x
) = 1 − 2σ 2

x
Lσ 2

x + δ
α + (L + 2)σ 4

x(
Lσ 2

x + δ
)2 α2,

(76)

B̃
(
α, δ, L, σ 2

x , σ 2
v , σ 2

w
) = α2Lσ 2

x
[
σ 2
v + (L + 2)σ 2

x σ 2
w
](

Lσ 2
x + δ

)2
− 2αLσ 2

x σ 2
w

Lσ 2
x + δ

+ Lσ 2
w.

(77)

The result from (75) illustrates a “separation” between
the convergence and misadjustment components, simi-
lar to (18)–(20) from Section 1.2. Therefore, the term
Ã

(
α, δ, L, σ 2

x
)
influences the convergence rate of the algo-

rithm. As expected, it depends on the normalized step-
size value, the regularization constant, the filter length,
and the input signal power. It is interesting to notice that
it does not depend on the system noise power, σ 2

v , or
the uncertainties, σ 2

w; in other words, the convergence
rate should not be influenced by these two terms. In
fact, the term from (76) is very similar to the contraction

parameter, A
(
α, δ, L, σ 2

x
)
, from (19). Similarly, it can be

noticed that the fastest convergence mode is obtained
when the function from (76) reaches its minimum. Taking
the normalized step-size as the reference parameter, we
obtain

α̃FC = δ + Lσ 2
x

(L + 2)σ 2
x
, (78)

which is similar to the result obtained in (22). For exam-
ple, neglecting the regularization constant (i.e., δ ≈ 0) and
assuming that L � 2, the fastest convergence mode is
achieved for α ≈ 1, which is the same conclusion related
to (22). Also, similar to (23), the stability condition can be
found by imposing

∣∣Ã(α, δ, L, σ 2
x )

∣∣ < 1, which leads to

0 < α̃stable < 2
δ + Lσ 2

x
(L + 2)σ 2

x
= 2α̃FC. (79)

For example, taking δ = 0 and L � 2 in (79), the stan-
dard stability condition of the NLMS algorithm results,
i.e., 0 < α < 2.
The term B̃(α, δ, L, σ 2

x , σ 2
v , σ 2

w) influences the misadjust-
ment of the algorithm and it depends on both σ 2

v and σ 2
w

(clearly, the misadjustment increases when these two fac-
tors increase). As we can notice, it is very similar to the
expansion parameter, B

(
α, δ, L, σ 2

x
)
, from (20), except the

fact that the term from (77) includes now the contribu-
tions of σ 2

v and σ 2
w. However, the lowest misadjustment is

obtained in a similar way, i.e., when the function from (77)
reaches its minimum. Thus, taking the normalized step-
size as the reference parameter, the lowest misadjustment
is achieved for

α̃LM = σ 2
w

(
Lσ 2

x + δ
)

σ 2
v + (L + 2)σ 2

x σ 2
w
. (80)

In order to compare this result with (25), let us assume
that the system is time-invariant, i.e., σ 2

w ≈ 0. Conse-
quently, (80) leads to α ≈ 0 (i.e., the lowest misadjustment
is obtained for a normalized step-size close to zero), which
is the same result obtained in (25).

1.4.2 Derivation of the algorithm
It is known that the ideal requirements of any adaptive
algorithm are for both fast convergence and low mis-
adjustment. In our framework, there are two important
issues to be considered: (1) we have two main parameters
to control, α and δ, which influence the overall perfor-
mance of the NLMS algorithm and (2) in the context of
system identification, it is reasonable to follow a mini-
mization problem in terms of the systemmisalignment, as
outlined by Hänsler and Schmidt in [1].
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Thus, following (75) and considering that the two
important parameters are time dependent, it can be
imposed

∂m(n)

∂α(n)
= 0, (81)

∂m(n)

∂δ(n)
= 0. (82)

After straightforward computations, both equations
lead to the same result, i.e.,

α(n)

Lσ 2
x + δ(n)

= m(n − 1) + Lσ 2
w

Lσ 2
v + (L + 2)σ 2

x
[
m(n − 1) + Lσ 2

w
] ,(83)

which suggests a joint optimization process. With a
proper estimation of its parameters (as will be discussed
in the end of this section), the term from the right-hand
side of (83) acts like a variable step-size. At this point, we
can introduce (83) in (7), thus obtaining

ĥ(n) = ĥ(n − 1) +
[
m(n − 1) + Lσ 2

w
]
x(n)e(n)

Lσ 2
v + (L + 2)σ 2

x
[
m(n − 1) + Lσ 2

w
] .
(84)

Next, there is a need to update the parameter m(n) in
(84). Using (83) in (75), followed by several straightfor-
ward computations, it results in

m(n) =
{
1 − σ 2

x
[
m(n − 1) + Lσ 2

w
]

Lσ 2
v + (L + 2)σ 2

x
[
m(n − 1) + Lσ 2

w
]}

× [
m(n − 1) + Lσ 2

w
]
.

(85)

Consequently, the resulting JO-NLMS algorithm is
defined by the relations (2), (84), and (85).
Finally, there are some practical considerations that

should be outlined. The JO-NLMS algorithm requires the
estimation of three main parameters, i.e., σ 2

x , σ 2
v , and σ 2

w.
The first one can be easily evaluated as in the NLMS
algorithm, i.e., σ̂ 2

x (n) = 1
Lx

T (n)x(n). The second param-
eter (i.e., σ 2

v ) appears in many VSS and VR versions of
the NLMS algorithm. Different methods can be used to
estimate it, e.g., [19, 28, 29], as mentioned at the end of
Sections 1.2 and 1.3. Maybe the most important parame-
ter to be found is σ 2

w. Small values of σ 2
w (i.e., the system

is assumed to be time-invariant) imply a good misadjust-
ment but a poor tracking; on the other hand, large values
of σ 2

w (i.e., assuming that the uncertainties in the system
are high) imply a good tracking but a high misadjust-
ment. In practice, we propose to estimate σ 2

w by taking the
�2 norm on both sides of (64) and replacing h(n) by its
estimate ĥ(n), thus resulting in

σ̂ 2
w(n) = 1

L

∥∥∥̂h(n) − ĥ(n − 1)
∥∥∥2
2
. (86)

According to (86), the parameter σ̂ 2
w(n) takes large val-

ues in the beginning of adaptation (or when there is an
abrupt change of the system), thus providing fast conver-
gence and tracking. On the other hand, when the algo-
rithm starts to converge, the value of σ̂ 2

w(n) reduces, which
leads to low misadjustment. In this way, the algorithm
achieves a proper compromise between the performance
criteria. In finite precision implementations, in order to
avoid any risk of freezing in (86), it is recommended to set
a lower bound for σ̂ 2

w(n) (e.g., the smallest positive number
available).
The JO-NLMS algorithm is summarized in Table 2, in

such a way that its implementation is facilitated. This algo-
rithm is similar to the simplified Kalman filter presented
in [31]. However, contrary to this one (which was obtained
as an approximation of the general Kalman filter), the
JO-NLMS algorithm was derived in a different manner
following a specific optimization criterion. In fact, this is
an alternative way to obtain the same results as with the
Kalman filter.

1.5 Simulation results
Simulations were performed in an AEC configuration, as
shown in Fig. 1. The measured acoustic impulse response
was truncated to 512 coefficients (Fig. 2), and the same
length was used for the adaptive filter, i.e., L = 512; the
sampling rate is 8 kHz. We should note that in many
real-world AEC scenarios, the adaptive filter works most
likely in an under-modeling situation, i.e., its length is

Table 2 JO-NLMS algorithm

Initialization:

ĥ(0) = 0L×1

m(0) = ε > 0

σ̂ 2
w(0) = 0

Parameters:

σ 2
v , noise power known or estimated

For time index n = 1, 2, . . . :

σ̂ 2
x (n) = 1

L
xT (n)x(n)

e(n) = d(n) − xT (n)̂h(n − 1)

p(n) = m(n − 1) + Lσ̂ 2
w(n − 1)

q(n) = p(n)

Lσ 2
v + (L + 2)p(n)̂σ 2

x (n)

ĥ(n) = ĥ(n − 1) + q(n)x(n)e(n)

m(n) = [
1 − q(n)̂σ 2

x (n)
]
p(n)

σ̂ 2
w(n) = 1

L

∥∥∥ĥ(n) − ĥ(n − 1)
∥∥∥2
2
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Fig. 2 Echo path. Acoustic impulse response used in simulations

smaller than the length of the acoustic impulse response.
Hence, the residual echo caused by the part of the sys-
tem that cannot be modeled acts like an additional noise
(that corrupts the near-end signal) and disturbs the over-
all performance. However, for experimental purposes, we
set the same length for both the unknown system (i.e., the
acoustic echo path) and the adaptive filter.
The input signal, x(n), is either a white Gaussian noise,

an AR(1) process generated by filtering a white Gaussian
noise through a first-order system 1/

(
1 − 0.8z−1) or a

speech sequence. An independent white Gaussian noise
v(n) is added to the echo signal y(n), with SNR = 20 dB
(except in the last experiment where the SNR is variable
and the near-end speech is also present). In most of the
experiments (except in the last one), we assume that σ 2

v is
known; in practice, this variance can be estimated like in
[19, 28, 29] (as presented in the end of Section 1.3). The
tracking capability of the algorithm is an important issue
in AEC, where the acoustic impulse response may rapidly
change at any time during the connection. Consequently,
an echo path change scenario is simulated in most of the
experiments, by shifting the impulse response to the right
by 12 samples, in the middle of the experiment. The mea-
sure of performance is the normalized misalignment (in
dB), defined as

m(n) = 20 log10
[∥∥∥h(n) − ĥ(n)

∥∥∥
2
/ ‖h(n)‖2

]
. (87)

In the first set of experiments, we evaluate the per-
formance of the optimal control parameters proposed
by Hänsler and Schmidt in [1] (also summarized in
Section 1.2), in order to set the benchmark for further
comparisons. In this context, we consider the ideal esti-
mation of these parameters [i.e., αopt(n) and δopt(n) from
Section 1.2], assuming that the undistorted error signal

eu(n) from (27) is available and its power, E
[
e2u(n)

] =
σ 2
eu(n), can be evaluated similar to (55), i.e.,

σ̂ 2
eu(n) = λσ̂ 2

eu(n − 1) + (1 − λ)e2u(n)

= λσ̂ 2
eu(n − 1) + (1 − λ) [e(n) − v(n)]2 , (88)

where λ is a weighting factor [λ = 1−1/(KL), withK > 1].
Of course, in practice, the near-end signal v(n) is not avail-
able; however, for comparison purpose, we consider that
it is available in (88).
In the first simulation, we evaluate the performance of

the NLMS algorithm using αopt(n) and δopt(n), respec-
tively. Since the estimation from (88) is used for both these
parameters, we deal with the ideal behavior of the algo-
rithms. Consequently, we will refer to these algorithms
as the ideal optimal step-size NLMS (OSS-NLMS-id)
and the ideal optimal regularized NLMS (OR-NLMS-
id), respectively. In Fig. 3, these ideal benchmarks are
compared to the NLMS algorithm using different con-
stant values of the normalized step-size, α, and reg-
ularization parameter, δ; the input signal is a white
Gaussian noise. First, it can be noticed that the perfor-
mance of the regular NLMS algorithm can be controlled
in terms of both parameters, α and δ, either by set-
ting the fastest convergence mode (i.e., α = 1) and
adjusting the value of δ, or by neglecting the regular-
ization constant (i.e., δ = 0) and tuning the value of
α. On the other hand, in case of the optimal control
parameters, the OSS-NLMS-id and OR-NLMS-id algo-
rithms achieve both fast convergence/tracking and low
misalignment, outperforming the NLMS algorithms that
use constant values for α and δ. Besides, it should be
noted that the OSS-NLMS-id and OR-NLMS-id algo-
rithms are equivalent in terms of their performance
(their misalignment curves are overlapped), which jus-
tifies the findings from Section 1.2. For this experi-
ment, the evolution of αopt(n) and δopt(n) is depicted in
Fig. 4, also supporting the expected behavior of these
parameters.
Next, the same experiment is repeated using an AR(1)

process as input; the results are presented in Figs. 5
and 6. As expected, the convergence rate of the algo-
rithms is affected in this case, due to correlated inputs.
Also, as we can notice from Fig. 5, the OSS-NLMS-id
and OR-NLMS-id algorithms (which behave the same)
still outperform their classical counterparts. Based on
the evolution of αopt(n) and δopt(n) depicted in Fig. 6,
we can outline again the discussion from the end of
Section 1.2, related to the dynamic range of these param-
eters. In practice, it is usually more convenient to con-
trol the performance of the algorithm in terms of the
normalized step-size, since its values are limited in a
specific interval. On the other hand, it could be more
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Fig. 3 Performance of the optimal algorithms for white Gaussian input. Misalignment of the NLMS (for different values of α and δ), OSS-NLMS-id,
and OR-NLMS-id algorithms. The input signal is white Gaussian, echo path changes at time 10 s, L = 512, and SNR = 20 dB

difficult to control the adaptation in terms of the regu-
larization term, since its values are increasing and could
lead to overflows. Usually, an upper bound on the reg-
ularization parameter could be imposed, but this would
introduce an extra tuning parameter in the algorithm.

Due to these aspects, only the OSS-NLMS-id algorithm
will be considered as a benchmark in the following
experiments.
Nevertheless, the OSS-NLMS-id algorithm still requires

a constant regularization parameter, especially in case of

Fig. 4 Optimal control parameters for white Gaussian input. Evolution of the optimal control parameters: a αopt(n) of the OSS-NLMS-id algorithm
and b δopt(n) of the OR-NLMS-id algorithm. Other conditions are the same as in Fig. 3
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Fig. 5 Performance of the optimal algorithms for AR(1) input. Misalignment of the NLMS (for different values of α and δ), OSS-NLMS-id, and
OR-NLMS-id algorithms. The input signal is an AR(1) process, echo path changes at time 40 s, L = 512, and SNR = 20 dB

non-stationary inputs like speech. This is also the case
of the NPVSS-NLMS algorithm presented in Section 1.3.
While in the previous experiments, this regularization
constant was neglected (due to the stationary nature of
the input signals), and the next simulation shows the

importance of this parameter in practice. For this pur-
pose, in Fig. 7, a speech sequence is considered at the
far-end. The NLMS, NPVSS-NLMS, and OSS-NLMS-id
algorithms are compared when using two different val-
ues of the regularization constant, i.e., δ = σ 2

x and δ =

Fig. 6 Optimal control parameters for AR(1) input. Evolution of the optimal control parameters: a αopt(n) of the OSS-NLMS-id algorithm and b
δopt(n) of the OR-NLMS-id algorithm. Other conditions are the same as in Fig. 5
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Fig. 7 Regularization influence on the algorithms’ performance. Misalignment of the NLMS (with α = 1), NPVSS-NLMS, and OSS-NLMS-id algorithms
for different values of δ. The input signal is speech, L = 512, and SNR = 20 dB

20σ 2
x . As expected, the small regularization is not suit-

able in this case, leading to large misalignment. On the
other hand, the rule of thumb δ = 20σ 2

x (used in many
echo cancellation scenarios [6–8]) is more appropriate
here. Thus, the regularization parameter is a must in this
case. In fact, the regularization parameter is required in
all ill-posed and ill-conditioned problems such as in AEC;
some insights for choosing this parameter in practice can
be found in [14]. However, in all the following experi-
ments, we will consider a constant regularization δ =
20σ 2

x for the NLMS, NPVSS-NLMS, and OSS-NLMS-id
algorithms. As shown in [14], the regularization parame-
ter of the NLMS algorithm is related to the value of SNR
and the filter’s length L. For our experimental setup, i.e.,
L = 512 and SNR = 20 dB, the value δ = 20σ 2

x fits
well. However, this value should be increased for larger
values of L or lower SNRs [14]. To conclude this exper-
iment, the influence of the regularization parameter can
be also noticed in Fig. 8, where the control parameters
of the NPVSS-NLMS and OSS-NLMS-id algorithms are
depicted, i.e., αNPVSS(n) and αopt(n), respectively. Clearly,
their behavior is strongly biased in case of the small
regularization parameter, while they perform similarly in
case of a proper regularization.
Next, the JO-NLMS algorithm (presented in

Section 1.4) is also involved in the rest of experiments.
As compared to its counterparts, this algorithm does not
require an explicit regularization term. Its global step-
size from (83) resulted based on the joint-optimization
on both the normalized step-size and regularization

parameter. In Figs. 9 and 10, the NLMS algorithm (for
different values of α) is compared with the NPVSS-
NLMS, JO-NLMS, and OSS-NLMS-id algorithms,
when the far-end signal is an AR(1) process or a speech
sequence, respectively. According to these results, it
can be noticed that the NLMS algorithm is clearly
outperformed by the other algorithms, in terms of con-
vergence rate, tracking, and misalignment. Also, the
NPVSS-NLMS and JO-NLMS algorithms perform in a
similar manner (with a slight advantage for the JO-NLMS
algorithm); besides, they are close to the performance of
the OSS-NLMS-id algorithm, which represents the ideal
benchmark.
In all the previous experiments involving the NPVSS-

NLMS and JO-NLMS algorithms, it was assumed that
the power of the system noise, σ 2

v , is available. How-
ever, in practice, it should be also estimated. Moreover, in
AEC, the signal v(n) represents the near-end signal, which
can contain both the background noise and the near-end
speech; since both these signals could be non-stationary,
the estimation of σ 2

v becomes more difficult. There are
differentmethods for estimating this parameter; for exam-
ple, in a single-talk scenario, it can be estimated during
silences of the near-end talker [19]. Also, other practical
methods to estimate σ 2

v can be found in [28, 29], as shown
in the end of Section 1.3. In the last experiment, the esti-
mation from (61) is used within the NPVSS-NLMS and
JO-NLMS algorithms. Two challenging scenarios are con-
sidered in Fig. 11, where the far-end signal is a speech
sequence. First, a variation of the background noise is
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Fig. 8 Regularization influence on the control parameters. Evolution of the normalized step-sizes of the NPVSS-NLMS algorithm [αNPVSS(n)] and
OSS-NLMS-id algorithm [αopt(n)] for different values of δ: a δ = σ 2

x and b δ = 20σ 2
x . Other conditions are the same as in Fig. 7

Fig. 9 Performance of the algorithms for AR(1) input. Misalignment of the NLMS (for different values of α), NPVSS-NLMS, JO-NLMS, and OSS-NLMS-id
algorithms. The input signal is an AR(1) process; echo path changes at time 20 s, L = 512, and SNR = 20 dB
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Fig. 10 Performance of the algorithms for speech input. Misalignment of the NLMS (for different values of α), NPVSS-NLMS, JO-NLMS, and
OSS-NLMS-id algorithms. The input signal is speech; echo path changes at time 20 s, L = 512, and SNR = 20 dB

simulated, by decreasing the SNR from 20 to 10 dB
between times 10 and 20 s; second, the near-end speech
appears between times 25 and 30 s (i.e., double-talk case),
without using any DTD. The results from Fig. 11 indi-
cate that the NLMS algorithm fails in this case, especially
during double-talk. The NPVSS-NLMS and JO-NLMS

algorithms show good robustness features in both situ-
ations (with an advantage for the JO-NLMS algorithm
during double-talk). In terms of robustness, the JO-
NLMS algorithm performs similar to the ideal case repre-
sented by the OSS-NLMS-id algorithm. Finally, it should
be noted that both the NPVSS-NLMS and JO-NLMS

Fig. 11 Performance of the algorithms during near-end variations. Misalignment of the NLMS (for different values of α), NPVSS-NLMS, JO-NLMS, and
OSS-NLMS-id algorithms. The NPVSS-NLMS and JO-NLMS algorithms use the estimated σ̂ 2

v (n) from (61). The input signal is speech, L = 512, and
SNR = 20 dB. The SNR decreases from 20 to 10 dB between times 10 and 20 s and the near-end speech appears between times 25 and 30 s (without
using a DTD)
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algorithms do not require any additional features to
control their behavior, thus being reliable candidates for
AEC applications.

2 Conclusions
In this paper, we have presented several NLMS-based
algorithms suitable for AEC applications. These algo-
rithms are based on different control strategies for adjust-
ing their main parameters, i.e., the normalized step-size
and regularization term, in order to achieve a proper
compromise between the performance criteria (i.e., fast
convergence/tracking and low misadjustment). The main
motivation behind this approach was the reference work
of Hänsler and Schmidt from [1]. Following their ideas,
we presented here two related solutions, i.e., the NPVSS-
NLMS and JO-NLMS algorithms. The first one (originally
proposed in [19]) represents a simple and efficientmethod
to control the normalized step-size. Due to its non-
parametric nature, it is a reliable choice in many practical
applications. The second one is developed in the con-
text of a state-variable model and follows an optimization
criterion based on the minimization of the system mis-
alignment. It is also a non-parametric algorithm, which
does not require any additional control features (e.g., sys-
tem change detector, stability thresholds, etc.). It also gives
good robustness against double-talk, which is one of the
most challenging situation in AEC. Consequently, it could
be an appealing candidate for real-world applications.
There are several perspectives that could follow the

ideas presented in this paper. First, the extension to the
affine projection algorithm represents a straightforward
approach. Second, it would be highly interesting to further
develop these solutions in the context of proportionate-
type algorithms, which are also attractive choices for
sparse system identification.
Concluding, despite the fact that the NLMS algorithm

was the workhorse in AEC and also inmany other applica-
tions, it is still highly studied and very often represents the
algorithm of choice in practice. Therefore, let us end this
paper with a neat remark of Hänsler and Schmidt from [4],
which fits best in this context: “The NLMS algorithm has
often been declared to be dead. According to a popular
saying, this is an infallible sign of a very long life.”
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