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Abstract

The cosparse analysis model has been introduced as an interesting alternative to the standard sparse synthesis
model. Given a set of corrupted measurements, finding a signal belonging to this model is known as analysis
pursuit, which is an important problem in analysis model based sparse representation. Several pursuit methods
have already been proposed, such as the methods based on l1-relaxation and greedy approaches based on the
cosparsity of the signal. This paper presents a novel greedy-like algorithm, called Cosparsity-based Stagewise
Matching Pursuit (CSMP), where the cosparsity of the target signal is estimated adaptively with a stagewise
approach composed of forward and backward processes. In the forward process, the cosparsity is estimated and
the signal is approximated, followed by the refinement of the cosparsity and the signal in the backward process. As
a result, the target signal can be reconstructed without the prior information of the cosparsity level. Experiments
show that the performance of the proposed algorithm is comparable to those of the l1-relaxation and Analysis
Subspace Pursuit (ASP)/Analysis Compressive Sampling Matching Pursuit (ACoSaMP) in noiseless case and better
than that of Greedy Analysis Pursuit (GAP) in noisy case.
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1 Introduction
Many high-dimensional signals, such as natural images,
can be represented in a low-dimensional space. A variety
of methods have been proposed in the past for low-
dimensional representations of high-dimensional signals.
Sparse representation is one of such techniques that
have been studied extensively. This issue can be de-
scribed as recovering an unknown signal x of a high-di-
mension from a low-dimensional signal y having a
limited set of measurements:

y ¼ Mxþ e ð1Þ
where M ∈ℜm × d is a known linear operator and e ∈ℜm is
additive noise bounded by ∥e∥2

2≤ε
2. In a noiseless case, e is

set to be a zero vector. One such example is the problem
of compressed sensing where M is a measurement matrix.
For m < d, this is an ill-posed underdetermined problem
and thus has an infinite number of solutions, and extra

priors or constraints need to be imposed on the model in
order to limit the range of possible solutions to x.
Sparsity is usually considered as an effective prior in

both the synthesis and analysis models [1]. The synthesis
model assumes that x can be represented by x =Dz,
where D ∈ℜd × n is an over-complete dictionary with
n > d and z is the sparse representation coefficient.
The original signal x can be recovered by solving the
following optimization problem:

ẑ ¼ argmin
z

jjzjj0 s:t: ∥y−MDz∥2≤ε ð2Þ
where ‖ ⋅ ‖0 is a l0 pseudo-norm counting the number of
non-zero elements in its argument vector.
Since solving (2) is an non-deterministic polynomial

(NP)-hard problem [2], many approximation techniques
have been proposed to recover x. Basis pursuit (BP) [3],
which is based on the l1-minimization using linear pro-
gramming (LP), is a well-known reconstruction algorithm.
Another option for approximating (2) is to use a family of
greedy-like algorithms, such as Orthogonal Matching
Pursuit [4] or the thresholding technique [5–10].
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In the analysis model, recovering x from the incom-
plete measurements is achieved by solving the following
minimization problem [11]:

x̂ ¼ argmin
x

jjΩxjj0 s:t: ∥y−Mx∥2≤ε ð3Þ

where Ω ∈ℜp × d is a fixed analysis operator which is
also referred to as the analysis dictionary. Typically, the
dimensions are m ≤ d ≤ p, n. In the analysis model, the
cosparsity l (used to distinguish from the term “sparsity”
in the synthesis model) is defined as

l ¼ p−∥Ωx∥0: ð4Þ

The role of cosparsity in the analysis model is similar
to the role of sparsity in the synthesis model. The level
of sparsity in the synthesis model indicates the number
of non-zeros in the representation vector z in (2), while
in the analysis model, the cosparsity l is used to indicate
the number of zeros in the vector Ωx, as defined in (4).
In other words, the quantity l denotes the number of
rows of Ω that are orthogonal to the signal.
Solving problem (3) is NP-complete, just as in the

synthesis case; thus, approximation methods are required
for reconstructing x. As before, l1-relaxation [13, 14] can
be used to replace the l0 pseudo-norm-based optimization
and the problem can then be solved by linear program-
ming. With l1-relaxation, only a small number of measure-
ments are required to achieve a high reconstruction rate.
However, the computational complexity of this method
may limit its practical use in large-scale applications. The
restricted isometry property (RIP) is commonly used by
both the synthesis- and analysis-based algorithms to govern
the recovery condition of the sparse or cosparse signals.
The measurement matrix M has the Ω-RIP property with a
constant δl, if δl is the smallest constant that satisfies

ð1−δlÞ∥v∥2
2≤∥Mv∥≤ð1þ δlÞ∥v∥2

2 ð5Þ

whenever Ωv has at least l zeros [12].
Another popular class of cosparse reconstruction algo-

rithms is based on the idea of iterative greedy pursuit,
such as Greedy Analysis Pursuit (GAP) [11, 15, 16]. As
compared with l1-relaxation, GAP has better reconstruction
performance and, to some degree, a lower computational
complexity. Analysis Iterative Hard Thresholding (AIHT)
and Analysis Hard Thresholding Pursuit (AHTP) [12, 17,
18] have been proposed by incorporating the idea of back-
tracking, which enables the wrong cosupports obtained in
the previous iteration to be pruned in the current iteration
and offers strong theoretical guarantees. Experiments show
that both of them recover the signal faster than the GAP
algorithm. Nevertheless, they require a relatively large
number of measurements for exact reconstruction.

Recently, more sophisticated greedy algorithms have
been developed, such as Analysis Subspace Pursuit
(ASP) and Analysis Compressive Sampling Matching
Pursuit (ACoSaMP) [12, 19]. They employ the backtracking
strategy and offer strong theoretical guarantees. ASP and
ACoSaMP with a candidate set size of 2l − p have
good performance on reconstructing the signal when
l is close to d, but they require more measurements
for an exact reconstruction with an increasing level of
cosparsity. ASP and ACoSaMP with a candidate set
size of l provide a comparable reconstruction quality to
that of the l1-relaxation methods with a lower reconstruc-
tion complexity. Other recent methods include a Bayesian
method [20] where the model parameters are estimated
by a Bayesian algorithm for the reconstruction of the
signal under consideration.
Although all these greedy pursuit methods achieve sig-

nal reconstruction with a high accuracy, they require the
cosparsity l to be known a priori for signal recovery.
However, l may not be available in many practical appli-
cations. For example, most natural image signals are
only cosparse when represented by an analysis operator
such as a two-dimensional Fourier transform. It is diffi-
cult to define a cosparsity that exactly matches the signal
under consideration. The inaccurate cosparsity may
degrade the performance of the signal reconstruction
algorithm, as demonstrated in the next section.
In this paper, a new greedy algorithm named

Cosparsity-based Stagewise Matching Pursuit (CSMP) is
proposed for the case where l is unknown. By analyzing
the projection from the signal under consideration to
the analysis operator, CSMP estimates the cosparsity
with a pre-set step size stage by stage without the
cosparsity knowledge. Cosupport and measurement re-
sidual are estimated alternately in the forward stage and
fine-tuned in the backward stage, and the signal approxi-
mation is obtained at the end of the procedure. Our
experiments show that the proposed algorithm has a
reconstruction performance comparable to ASP and
ACoSaMP, but without the knowledge of the cosparsity.
This paper is organized as follows. In Section 2, we

present the motivation of this work. The CSMP algo-
rithm is detailed in Section 3 and a theoretical analysis
to the algorithm is also provided. The simulation results
are given in Section 4, followed by concluding remarks
and future work in Section 5.

2 Motivation
In analysis cosparse representation, it is important to
establish the cosupport accurately for an exact signal
reconstruction. A common approach is to adopt the
“correlation” term defined as follows:

αi ¼ ΩiM
Ty

�� ��; i ∈ 1; 2;⋯; pf g ð6Þ
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where MTy resembles the original signal, Ωi denotes the
i-th row of Ω, the superscript T denotes matrix trans-
pose, and | ⋅ | takes the absolute value of its argument.
Obviously, a growing αi implies the increase of the cor-
relation between the signal and Ωi. When the signal is
orthogonal to Ωi and M = I, we get αi = 0, where I is an
identity matrix. The existing recovery methods based on
the analysis model can be categorized into bottom-up
and top-down methods, respectively. The bottom-up
methods, such as GAP, prune one or more rows of the
analysis operator which correspond to the entries of the
largest correlation in each iteration. It could lead to un-
reliable reconstruction if the cosupports have been re-
moved incorrectly. In contrast, the top-down methods,
such as ACoSaMP and ASP [12], employ the backtrack-
ing technique to establish the cosupports. Although such
cosupport refinement technique improves the perform-
ance of ACoSaMP and ASP significantly, it requires the
cosparsity l as a priori for an exact recovery of the target
signal. In practical applications, such information is
often unavailable and must be pre-set in advance. If l is
set to an inappropriate value, the performance of the al-
gorithm for signal recovery in terms of both accuracy
and robustness could be degraded significantly.
To see this, we first perform an experiment for the

ASP algorithm, when l is not given accurately. Here,
the analysis operator is a two-dimensional finite difference
operator Ω ∈ℜp × d, where p = 144 and d = 120; x is a
Gaussian random signal of length d = 120 and a
cosparsity of l = 90.1 In this experiment, the sampling
rate δ, which is defined as δ =m / d [12], is chosen
from the set {0.50, 0.54, 0.58, 0.62, 0.66, 0.70}. The
cosparsity lest, which denotes the estimated cosparsity
of the signal, is chosen from the set {110, 100, 90, 80, 70}.
We draw a phase transition diagram [12] for this
algorithm.

The vertical and horizontal axes of the diagram are lest
and δ, respectively. For each pair of lest and δ, we repeat
the experiment 50 times. In each experiment, we check
whether we have an exact reconstruction in the sense
that the energy of the difference between the reconstruc-
tion and the original signal is smaller than 10−6 [12].
Note that the choice of this threshold value is followed
from the existing algorithms in the literature, such as
GAP, ASP, ACoSaMP, AIHT, and AHTP, for fair compari-
sons to be demonstrated in our experiments later. White
cells in the diagram denote a completely exact reconstruc-
tion, and black cells denote a total failure in the exact
reconstruction. Figure 1 shows the probability of exact
reconstruction changes with respect to the sampling rate δ
and the cosparsity lest. We can see that the performance of
ASP drops significantly if an inaccurate cosparsity l is used.

3 Cosparsity-based Stagewise Matching Pursuit
3.1 Algorithm description
To address the above issue, we propose a novel greedy
algorithm for blind cosparse reconstruction, where the
cosupports are refined iteratively and the information on
cosparsity is extracted automatically. The proposed
CSMP algorithm, as shown in Algorithm 1, is composed
of two processes, namely, the forward and backward
processes. The forward process estimates the cosparsity,
constructs the cosupport starting from a cosupport with
all rows in Ω, and updates the measurement residual
simultaneously. The procedure ends with a backward
process that tries to add the rows in Ω with a smaller
correlation until the terminating condition is reached.
The terminating condition for CSMP is controlled by a
threshold, which ensures that the estimated cosparsity is
fairly close to the actual one and the target signal has
been well reconstructed. The main steps of CSMP are
summarized in Algorithm 1.

δ

ρ

0.50 0.54 0.58 0.62 0.66 0.70

70

80
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Fig. 1 The probability of exact reconstructions versus the cosparsity in ASP
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In Algorithm 1, cosupp(x) = {i: Ωix = 0}, cosupp(x, lest)
returns the index set of lest smallest (in absolute value)
elements in Ωx, 2lest − p is the size of |Γ| and for a vec-
tor α, function Min(α, 2lest − p) returns the 2lest − p indi-
ces corresponding to the 2lest − p smallest values of α,
index(Ωx, q) returns q elements from the (lest + 1)-th to
(lest + q)-th smallest (in absolute value) rows in Ωx, and
Γ, ΛΔ, ~Λk and Λk are subsets of {1, 2,⋯, p}, and ⌈s/q⌉
returns the smallest integer which is larger than s / q.

The CSMP algorithm adopts a stagewise approach [6]
to estimate the real cosparsity in each stage in the for-
ward process, which only requires the step size s to be
set in initialization. Here, l is defined as the real cospar-
sity of the original signal, and s should not be larger than
d − l normally [11]. The initial cosupport Λ0 has the
maximum number of rows in Ω that enables CSMP to
recover the signal. To avoid under-estimation of the
cosparsity, a safe choice is s = 1 if l is unknown.
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Nevertheless, there is a tradeoff between s and the re-
covery speed as a smaller s requires more stages. We
can see that GAP and ASP/ACoSaMP are the special
cases of the proposed algorithm when CSMP has a step
size of s = 1 and s = d − l, respectively.
Suppose CSMP has a cosparsity of lest in the forward

process. With this cosparsity, the candidate set is
constructed by selecting some rows in Ω with smaller
correlations. Here, we should explain the relation be-
tween greedy synthesis algorithms and their analysis
counterparts. Given two vectors v1, v2 ∈ℜn such that
Λ1 = cosupp(Ωv1) and Λ2 = cosupp(Ωv2). Assuming that
‖Λ1‖0 ≤ (lest)1 and ‖Λ2‖0 ≤ (lest)2, it holds that ‖Λ1 ∩ Λ2‖0 ≥
(lest)1 + (lest)2 − p. For the case ‖Λ1‖0 = ‖Λ2‖0 = lest, we
have 2lest − p ≤ ‖Λ1 ∩Λ2‖0 ≤ lest. So 2lest − p is a reasonable
size of the candidate set for CSMP, which corresponds to
the candidate set size of 2k of CoSaMP in the synthesis
model. Denoting T1 = supp(Ωv1) and T2 = supp(Ωv2),
it is clear that supp(Ω(v1 + v2)) ⊆ T1 ∪ T2. Noticing that
supp(⋅) = cosupp(⋅)C, we get cosupp(Ω(v1 + v2)) ⊇ (T1 ∪
T2)

C = T1
C ∩ T2

C = Λ1 ∩ Λ2, where the superscript C de-
notes the complementary set. This implies that the
union of the supports in the synthesis case is parallel
to the intersection of the cosupports in the analysis
case.
Now, with the candidate set, we begin to construct

the cosupport and update the measurement residual.
The rows in the analysis operator, which correspond
to the smallest lest components in the temporarily es-
timated signal (calculated in Step 4 in Algorithm 1),
are used to form the cosupport. Then, we approxi-
mate the signal and update the measurement residual
of the current iteration with this cosupport. The
backtracking strategy [12, 19], which can be described
as not only selecting rows that match the current re-
sidual signal better from the candidate set in each it-
eration but also excluding the other rows from the
cosupport, provides the basis for constructing a more
accurate cosupport and obtaining a smaller measure-
ment residual. Here, indexðΩx̂temp; qÞ is reserved for
sharing in the backward process. An efficient mech-
anism is required for stage switching when each stage
finishes till lest < l. This can be performed if the
current measurement residual energy no longer de-
creases when compared with that in the last iteration.
From Step 9 in Algorithm 1, we can see that the al-
gorithm will run for some iterations with the same
cosparsity lest until it reaches the stage switching con-
dition. The proposed algorithm will perform with a
cosparsity of lest − s in the next stage. The forward
process will not stop until the measurement residual
reaches a pre-set threshold such as ‖yr‖2/‖y‖2 ≤ 10‐ 6

for the noiseless case or ‖yr‖2 ≤ ε for the noisy case.

In the backward process, the algorithm tries to fur-
ther increase the cosparsity by adding the less used
rows into the cosupport. These q rows have been
chosen in the last iteration of the forward process.
The choice of the value of q can be made in terms of
the value of s. As a rule of thumb, a small q is
chosen when s is relatively small, and likewise, a
greater q should be chosen if s is large. Typically, in
our experiments, we choose q = 1 when s = 10, but we
select q = 50 when s is in the order of thousands.
With this strategy, we can get a more accurate cosup-
port for signal approximation. The iterations stop as
soon as the measurement residual reaches the termin-
ating threshold used in the forward process. The
backward process needs to repeat less than ⌈s/q⌉
times since it is enough for the cosparsity to change
from lest to lest + s in this process.

3.2 Relaxed versions for high-dimensional problems
In CSMP, the constrained minimization problem

min
x

∥y−Mx∥2
2 s:t: ΩΛx ¼ 0 ð7Þ

is hard to solve for high-dimensional signals, and we
propose to replace it with the minimization of the
following cost function in Steps 4, 6, 12, and 14 in
Algorithm 1:

∥y−Mx∥2
2 þ λ ∥ΩΛx∥2

2 ð8Þ

where λ is a relaxation constraint and we choose λ = 0.001
as in [12] in our experiments. This results in a relaxed ver-
sion of the algorithm. We refer hereafter to this version as
relaxed CSMP (RCSMP).

3.3 Theoretical performance analysis
This section describes our theoretical analysis of the be-
havior of CSMP for the cosparse model in both noiseless
and noisy cases. Because the proposed algorithm has a
similar strategy of backtracking which is used in ASP,
the proofs are mainly based on the proof framework of
ASP/ACoSaMP. The following theorems are formed in
parallel with those in [12], except for the unknown
cosparsity and the initial cosupport and measurement
vectors.
To show the ability of exact and stable recovery of

cosparse signals by the CSMP algorithm, we define all
variables involved in the process of signal reconstruction
as follows:
Definition 3.1 [12] Let QΛ ¼ I−Ωþ

ΛΩΛ be the orthog-
onal projection onto ΩΛ, where ΩΛ is a sub-matrix of
the analysis operator Ω ∈ℜp × d and Λ is a subset of
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{1, 2,⋯, p}. A cosupport Ŝl which implies a near-optimal
projection is defined as

Ŝ l vð Þ ¼ argmin
Λ∈Ll

v−QΛvk k22 ð9Þ

where v ∈ℜd and Ll ¼ Λ∈ 1; 2;⋯; p½ �; Λj j≥lf g l-cosparse
cosupports.
Definition 3.2 (Problem p) [12] Consider a measure-

ment vector y ∈ℜm such that y =Mx + e, where x ∈ℜd

is l-cosparse, M ∈ℜm × d is a measurement matrix, and
e ∈ℜm is a bounded additive noise. The largest singular
value of M is σM and its Ω-RIP constant is δl. The ana-
lysis operator Ω ∈ℜp × d is given and fixed. Define Cl to
be the fraction of the largest and the smallest eigen-
values (which are not zero) of the sub-matrix composed
of l rows from Ω. Assume that Ŝl = cosupp(Ωx,l).
According to Definition 3.1, the cosupport of x is a
near-optimal projection. Our task is to recover x from y.
The recovery result is denoted by x̂.
Now, we give the guarantees on exact recovery and

stability of CSMP for recovering the cosparse signals.
Theorem 3.3 (Convergence for cosparse recovery)

Consider the problem p, and suppose that there exists
γ > 0 such that

ð1þ C2lq−pÞ 1−
C2lq−p

ð1þγ2Þ−ðC2lq−p−1Þσ2M
� �� �

< 1; ð10Þ

then there exists δðC2lq−p; σ
2
M; γÞ > 0; whenever δ4lq−3p≤δ

ðC2lq−p; σ
2
M ; γÞ; such that the k-th iteration of the

algorithm satisfies

∥x−x̂k∥2≤
1þ δ2lq−p
1−δ2lq−p

ρ1ρ2∥x−x̂
k−1∥2

þ 1þ δ2lq−p
1−δ2lq−p

ðη1 þ ρ1η2Þ þ
2

1−δ2lq−p

 !
∥e∥2;

ð11Þ

where

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
δ4lq−3p

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2lq−p

ð1þγÞ2ð1−δ2lq−pÞ
2−ðC2lq−p−1Þð1þ δ2lq−pÞσ2M−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
δ4lq−3p

qr
ð12Þ

Moreover, when ρ21ρ
2
2 < 1; the iteration converges. The

constant γ gives a tradeoff between satisfying the theorem
conditions and the noise level, and the conditions for the
noiseless case are achieved when γ tends to zero.
Theorem 3.4 (Exact recovery for cosparse signals) Con-

sider the problem p when ‖e‖2 = 0. Let ls = d − s⌈(d − l)/s⌉
and lq = ls + q⌊(l − ls)/q⌋. If the measurement matrix
M satisfies the Ω-RIP with parameter δ4lq−3p≤δðC2lq−p

; σ2M; γÞ; where C2lq−p and γ are as in Theorem 3.3

and δðC2lq−p; σ
2
M; γÞ is a constant guaranteed to be

greater than zero whenever (10) is satisfied, the
CSMP algorithm guarantees an exact recovery of x
from y via a finite number of iterations.
The proof is mainly based on the following lemma:
Lemma 3.5 If the measurement matrix M satisfies the

Ω-RIP with the same conditions as in Theorem 3.4, then

� The ⌈(d − l)/s⌉ + ⌊(l − ls)/q⌋ − th stage of the
algorithm is equivalent to the ASP algorithm with
estimated cosparsity lq, except that they have
different initial cosupports and initial measurement
vectors.

� CSMP recovers the target signal exactly after
completing the ⌈(d − l)/s⌉ + ⌊(l − ls)/q⌋ − th stage.

In the Appendix, Lemma 3.5 is proved in detail.
Lemma 3.5 describes that CSMP has a process of sig-

nal reconstruction that is equivalent to ASP, and could
complete the exact recovery of the cosparse signals in a
finite number of stages. To complete the proof, it is suf-
ficient to show that the CSMP algorithm never gets
stuck at any iteration of either stage, i.e., it takes a finite
number of iterations up to ⌈(d − l)/s⌉ + ⌊(l − ls)/q⌋ stages.

η1≜

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ Clq
1þClq

þ 2
ffiffiffiffiffiffiffi
Clq

p þ Clq

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ3lq−2p

q
1−δ4lq−3p

;

η22≜
1þ δ3lq−2p
γ 1þ αð Þ þ

1þ δ2lq−p
� �

C2lq−p

γ 1þ αð Þ 1þ γð Þ þ
C2lq−p−1
� �

1þ γð Þσ2
M

1þ αð Þ 1þ γð Þγ

0
@

1
A;

ρ21≜
1þ 2δ4lq−3p

ffiffiffiffiffiffiffi
Clq

p þ Clq

1−δ24lq−3p

ρ22≜ 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
δ4lq−3p

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2lq−p

1þ γð Þ2 1−
ffiffiffiffiffiffiffiffiffiffiffi
δ2lq−p

q� �2
− C2lq−p−1
� �

1þ δ2lq−p
� �

σ2M

s !2

and
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At each stage, the cosupport (whose size is assumed to
be lest) adds and discards some rows of Ω, and the
number of rows is fixed and finite. Hence, there are a

finite number of combinations, at most,
d
lest

� �
; where d

is the length of the signal. Thus, if CSMP takes an infin-
ite number of iterations in this stage, the construction of

cosupport would be repeated after at most
d
lest

� �
itera-

tions. Hence, Theorem 3.6 follows.
Lemma 3.6 (Stability for cosparse recovery) Consider

the problem p. If (10) holds and δ4lq−3p≤δðC2lq−p; σ
2
M; γÞ ,

where γ is as in Theorem 3.3 and δðC2lq−p; σ
2
M; γÞ is a

constant guaranteed to be greater than zero whenever
ðC2

2lq−p
−1Þσ2M

C2
2lq−p

< 1 is satisfied, then for any

k≥

����� logð∥x∥2=∥e∥2Þ
log 1=

1þδ2lq−p
1−δ2lq−p

ρ1ρ2

� �
�����;

we have

∥x̂−x∥2≤

 
1þ

1−
1þδ2lq−p
1−δ2lq−p

ρ1ρ2

� �k

1−
1þδ2lq−p
1−δ2lq−p

ρ1ρ2

⋅
1þδ2lq−p
1−δ2lq−p

ðη1 þ ρ1η2Þ þ
2

1−δ2lq−p

 !!
∥e∥2

ð13Þ

implying that CSMP leads to a stable recovery. The con-
stants η1, η2, ρ1, and ρ2are the same as in Theorem 3.3.
Similarly, the proof of Lemma 3.6 is based on Lemma

3.5 and the corresponding theorems of ASP algorithm
in [12], and we omit the detailed proof here.
The above theorems are sufficient conditions of CSMP

for exact recovery and stability. They are slightly more
restrictive than the corresponding results of ASP algo-
rithms because the true cosparsity level l is always larger
than or equal to the estimated one lq. This may be
regarded as an additional cost for not having precise in-
formation of cosparsity. On the other hand, the proofs
also show that these sufficient conditions may not be op-
timal or tight enough because they only consider the
final stage and ignore the influence of previous stages on
the performance of the algorithm.

4 Experiments
In this section, we evaluate the performance of the
proposed algorithm, as compared with several baseline
algorithms. To this end, we repeat some of the experiments

performed in [12] for the noiseless case (e = 0) and
noisy case.

4.1 Phase transition diagrams for synthetic signals in the
noiseless case
We show the performance of the proposed algorithm as
compared with six baseline methods, namely, AIHT,
AHTP, ASP, ACoSaMP, l1-relaxation, and GAP, using the
same experiments as performed in [12] for the noiseless
case. We begin with synthetic signals and test the per-
formance of CSMP with s = 1, s = 5, and s = 10, respect-
ively. The results of the proposed algorithm are
compared with those of AIHT and AHTP with an adap-
tively changing step size, ASP and ACoSaMP with a = 1
and a¼2l−p

l , l1-relaxation, and GAP. We use a random
matrix M, where each entry is drawn independently
from a Gaussian distribution, and a random tight frame
Ω of size d = 120 and p = 144.
We draw a phase transition diagram [12] for each of

the algorithms. In each phase transition diagram, 20 dif-
ferent possible values of m and 20 different values of l
are tested. For each pair of m and lest, we repeat the
experiment for 50 times, with the value of lest selected
according to the formula in [12]:

l ¼ d−ρm ð14Þ

where ρ is the ratio between the cosparsity of the sig-
nal and the number of measurements, shown as the
vertical axis of the phase diagram. The sampling rate
δ is defined as δ =m / d and shown as the horizontal
axis. There are 400 cells in each phase transition dia-
gram, and the gray level of the cell shows the exact
reconstruction rate of its recovery algorithm. White
cells in the diagram denote a completely exact recon-
struction, and black cells denote a total failure in the
exact reconstruction.
The reconstruction results of the proposed algorithm

and the baseline algorithms are shown in Fig. 2.
In Fig. 2, experiments with s = 1, s = 5, and s = 10 are

performed for CSMP, respectively. From Fig. 2, it can be
seen that CSMP has better results than those of AIHT
and AHTP with an adaptively changing step size, and
ASP and ACoSaMP with a ¼ 2l−p

l when lest is far from d.
In addition, the proposed algorithm with s = 5 and s = 10
provides comparable performance to ASP and ACoSaMP
with a = 1 and the l1-relaxation when the knowledge of
cosparsity is unknown. Although the accurate recovery
rates of GAP for experiments of all pairs of δ and ρ are
higher than those of CSMP, the number of white cells is
59 in Fig. 2k, which is less than 67 in Fig. 2b and 63 in
Fig. 2c.
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4.2 Reconstruction of high-dimensional images in the
noiseless and noisy cases
We now test the methods for high-dimensional signals.
We use RCSMP (relaxed versions of CSMP defined in
Section 3.2) for the reconstruction of the Shepp-Logan
phantom from a few number of measurements. RCSMP
is computationally more efficient than CSMP for high-
dimensional signals and is thus chosen in this experi-
ment. The sampling operator M is a two-dimensional
Fourier transform that measures only a certain number
of radial lines from the Fourier transform. The cosparse
operator is a two-dimensional finite difference operator
Ω2D-DIF, of which the number of rows is p = 130, 560
and the real cosparsity of the signal under this operator
is l = 128, 014. The original phantom image is presented
in Fig. 3a. Using the RCSMP with s = 4000, q = 50, we get
perfect reconstructions using only 12 radial lines just
as RASP (relaxed Analysis Subspace Pursuit), i.e., only
m = 3032 measurements out of d = 65,536 which is
less than 4.63 % of the data in the original image.
The algorithm requires less than 15 iterations which
are less than those required by RASP for achieving
this recovery percentage. The reconstruction results
of CSMP are shown in Fig. 3c.
We now turn to test the method for the noisy case; we

perform reconstruction using RCSMP with s = 4000,
q = 50 of a noisy measurement of the phantom with
22 radial lines (in Fig. 4b) and signal-to-noise ratio
(SNR) at 20 dB. Figure 4c presents the noisy image,

which is the result of applying inverse Fourier trans-
form on the measurements. We get the reconstruc-
tion results by the proposed method with a peak
SNR (PSNR) of 37.11 dB in Fig. 4e. The recovery
image using GAP is shown in Fig. 4f, with a little worse
PSNR of 34.34 dB. Note that for the minimization process,
we solve conjugate gradients in Steps 4, 6, 12, and 14 in
each iteration in Algorithm 1, take only the real part of
the result, and crop the values of the resulting image to be
in the range of [0, 1] [12].

5 Conclusions
We have presented a novel greedy pursuit algorithm
CSMP for the cosparse analysis model. With the pro-
posed algorithm, the information of the cosparsity of the
target signal is not required as a priori. It addresses a
common limitation associated with the existing greedy
pursuit algorithms. The underlying intuition of CSMP is
to obtain the cosparsity estimation and the signal ap-
proximation in the forward process and refine them in
the backward process. Borrowing the idea from ASP, a
theoretical study of the proposed algorithm has been
performed to give guarantees for stable recovery under
the assumption of the Ω-RIP and the existence of an
optimal or a near-optimal projection. Experiments have
confirmed that the proposed algorithm gives competitive
results for signal recovery as compared with those of
l1-relaxation and ACoSaMP/ASP in the noiseless case
and better results than GAP in the noisy case.
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Fig. 2 The phase transition diagrams for a CSMP with s = 1, b CSMP with s = 5, c CSMP with s = 10, d AIHT with an adaptive changing step size,
e AHTP with an adaptive changing step size, f ASP with a = 1, g ASP with a ¼ 2l−p

l , h ACoSaMP with a = 1, i ACoSaMP with a ¼ 2l−p
l , jl1-relaxation,

and k GAP
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6 Endnotes
1To form a Gaussian random signal x of length of

d = 120 and a cosparsity of l = 90, we choose l rows
from Ω randomly to form ΩΛ ∈ℜ

l × d, where Λ is com-
posed of the indices of the chosen rows. We apply sin-
gular value decomposition (SVD) to ΩΛ =U ⋅D ⋅V− 1,

where D ∈ℜl × d and Dð:; l þ 1 : dÞ ¼
0 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ 0

#
¼ 0

2
64 .

Define Nullspace = V(:, l + 1 : d), and let r ∈ℜd − l − 1

be an i.i.d. Gaussian random variable of identical
variance. Further define x = Nullspace * r. We have

ΩΛ⋅x ¼ U⋅D⋅V−1⋅V ð:; l þ 1 : dÞ⋅r ¼ U⋅D⋅
0 0

0 I

#
⋅r

"
,

where I ∈ℜ(d − l − 1) × (d − l − 1) is a unit matrix, so we have

ΩΛ ⋅ x =U ⋅D(:, l + 1 : d) ⋅ r=U ⋅ 0 ⋅ r= 0 and ‖Ω ⋅ x‖0 ≤
p − l. Then, we have generated a signal x of length of
d = 120 and a cosparsity of l = 90.

7 Appendix
7.1 Proof of Lemma 3.5
Proof of Lemma 3.5 Assuming that ls = d − s⌈(d − l)/s⌉
and lq = ls + q⌊(l − ls)/q⌋, we first discuss the relation
between l, s, and q, which includes the following two
cases.
Case 1 When (d − l)/s is an integer, we have ⌊(l − ls)/

q⌋ = 0 and lq = ls = l. It means that after (d − l)/s stages,
an estimated cosparsity ls can be obtained by the pro-
posed algorithm which is equal to the real cosparsity l in
the forward process; the backward process will not be
performed in this situation.

Fig. 3 a Shepp-Logan Phantom image. b 12 sampled radial lines. c CSMP with s = 4000 and q = 50 using 12 radial lines
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Case 2 If ⌈(d − l)/s⌉ > (d − l)/s, we have ls < l. After
⌈(d − l)/s⌉ stages, an estimated cosparsity ls can be
obtained by the proposed algorithm which is smaller
than the real cosparsity l in the forward process.
This is followed by the backward process. If (l − ls)/q
is an integer, we have lq = l. At the (l − ls)/q stage of
the backward process, the cosparsity lq increases to l
and the CSMP algorithm will be performed as ASP
with cosparsity with lq. If ⌊(l − ls)/q⌋ < (l − ls)/q, we
have ls < lq.
For both cases, we summarize that CSMP will recover

a signal exactly with an estimated cosparsity of lq (ls ≤ lq)
after ⌈(d − l)/s⌉ + ⌊(l − ls)/q⌋ stages.

The analysis operator has a property that for ~l≤l;
it holds that δl≤δ~l [12]. Via (4) and this property,
the inequality ð1−δ4ls−3pÞ∥v∥2

2≤ð1−δ4lq−3pÞ∥v∥2
2≤∥Mv∥2

2

≤ð1þ δ4lq−3pÞ∥v∥2
2≤ð1þ δ4ls−3pÞ∥v∥2

2 holds; hence, we
choose the parameter δ4lq−3p to satisfy the Ω-RIP in-
stead of δ4ls−3p.
At the last stage, we know that the construction of

the candidate set and cosupport of CSMP is similar
to that of ASP with the corresponding value of

cosparsity. The only difference is that while the ASP
algorithm has full initial cosupport and measurement
data, CSMP has the cosupport and measurement re-
sidual of the last iteration as its initialization. This is
the first part of Lemma 3.5.
The second part of Lemma 3.5 is derived from the fact

that the convergence condition of the ASP algorithm in
[12] does not depend on those initial values but the con-
struction of the candidate set and cosupport. In particu-
lar, it is based on the following observations:

� The energy of the part of the signal x not captured
by the current cosupport is a constant of times
smaller than that of the signal x not captured by
the cosupport in the previous iteration.

� The energy of the measurement residual of the
current iteration is a constant of times smaller than
that of the previous iteration.

When the condition of Ω-RIP is satisfied, both the
above constants are smaller than the one that results in
the exact recovery after a finite number of iterations.
This is the main result of Theorem 6.13 in [12]. Because

Fig. 4 a Shepp-Logan Phantom image. b 22 sampled radial lines. c Noisy image with a SNR of 20 dB. d Location of non-zero elements in the
difference map. e Recovery image using CSMP with s = 4000 and q = 50 and only using 22 radial lines. f Recovery image using GAP and only
using 22 radial lines
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the final stage in the proposed algorithm is equivalent to
ASP with estimated cosparsity level lq, it is obvious that
the target signal will be exactly recovered after this stage
if the condition on Ω-RIP of parameter lq is satisfied.
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