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Abstract

The recently released REverberant Voice Enhancement and Recognition Benchmark (REVERB) challenge includes a
reverberant automatic speech recognition (ASR) task. This paper describes our proposed system based on
multi-channel speech enhancement preprocessing and state-of-the-art ASR techniques. For preprocessing, we
propose a single-channel dereverberation method with reverberation time estimation, which is combined with
multichannel beamforming that enhances direct sound compared with the reflected sound. In addition, this paper also
focuses on state-of-the-art ASR technigues such as discriminative training of acoustic models including the Gaussian
mixture model, subspace Gaussian mixture model, and deep neural networks, as well as various feature transformation
techniques. Although, for the REVERB challenge, it is necessary to handle various acoustic environments, a single ASR
system tends to be overly tuned for a specific environment, which degrades the performance in the mismatch
environments. To overcome this mismatch problem with a single ASR system, we use a system combination approach
using multiple ASR systems with different features and different model types because a combination of various
systems that have different error patterns is beneficial. In particular, we use our discriminative training technique for
system combination that achieves better generalization by making systems complementary with the modified
discriminative criteria. Experiments show the effectiveness of these approaches, reaching 6.76 and 18.60 % word error
rates on the REVERB simulated and real test sets. These are 68.8 and 61.5 % relative improvements over the baseline.

Keywords: Reverberant speech recognition; Dereverberation; Discriminative training; Feature transformation; System

combination; REVERB challenge

1 Introduction

Automatic speech recognition (ASR) using distant micro-
phones can overcome application restrictions of places
and devices and widen the usage of speech interfaces. For
example, users can control distant home appliances by
voice without touching the devices. However, in such a
scenario, it is necessary to address reverberation, which
is composed of reflected sounds from walls, ceilings,
or furniture, in addition to the direct sound from a
sound source. Reverberation as well as noise degrades the
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intelligibility of speech for humans, and it also signifi-
cantly degrades ASR performance.

The REverberant Voice Enhancement and Recognition
Benchmark (REVERB) challenge is an Audio and Acous-
tic Signal Processing (AASP) challenge sponsored by the
IEEE Signal Processing Society in 2013, and has recently
been released for studying reverberant speech enhance-
ment and recognition techniques [1]. This paper focuses
on the speech recognition task, which is a medium-
sized vocabulary continuous speech recognition task, in
order to evaluate the ASR performance in reverberant
environments.

In such a scenario, speech enhancement before ASR is
important and impacts ASR performance. We have pro-
posed a single-channel dereverberation method [2]. This
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method first estimates a reverberation time, which is one
of the most important parameters for characterizing the
extent of reverberation, and attempts to eliminate the
reverberant components based on the estimated rever-
beration time. In addition, in order to exploit the eight-
channel data provided by the REVERB challenge, we use a
beamforming (BF) approach [3] with a direction-of-arrival
estimation [4, 5].

In addition to the speech enhancement process, we
focus on the state-of-the-art ASR techniques. Recently,
ASR performance has been significantly improved owing
to various types of discriminative training [6, 7] and
feature transformations [8—13]. In the previous Compu-
tational Hearing in Multisource Environments (CHiME)
challenge [14], we showed the effectiveness of discrimina-
tive training and feature transformations in noisy environ-
ments [15, 16], and this time, also our proposed system
employs these techniques. However, the CHiME challenge
and other existing evaluation campaigns for noise-robust
ASR [14, 17] mainly focus on the variety of non-stationary
additive noises, and the variety of room shapes or room
types in these campaigns is very limited. On the other
hand, the REVERB challenge [1] includes eight different
reverberant environments: four rooms, which are com-
posed of three simulated rooms and one real recorded
room, multiplied by two types of source-to-microphone
distances. In this scenario, due to the variety in the evalu-
ation environments and the mismatch between simulated
training data and real test data, discriminative training
would cause over-training problems, although discrimi-
native training is very powerful for matched conditions
where training and evaluation conditions are close, in gen-
eral. Therefore, it is important to confirm that speech
recognition systems with discriminative training and fea-
ture transformations perform robustly in various rever-
berant environments.

This paper deals with two feature transformation
approaches: linear transformation and non-linear dis-
criminative feature transformation. The former approach
converts original feature vectors to new feature vectors
based on linear transformation matrices. This paper deals
with linear discriminant analysis (LDA) [8] and maximum
likelihood linear transformation (MLLT) [9, 10] to esti-
mate the transformation matrices. LDA uses long context
input features, which are obtained by concatenating mul-
tiple features in contiguous frames, as original feature
vectors to exploit feature dynamics. Therefore, LDA can
reduce the influence of reverberation because the long
context input features can handle the distorted speech
features across several frames due to the influence of
longer reverberation than the window size of the short-
time Fourier transform (STFT) [18, 19]. This property is
particularly effective for reverberant speech recognition,
and this paper investigates the effectiveness of LDA on
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ASR performance in detail with varying context sizes. In
addition, MLLT finds a linear transformation of features
to reduce state-conditional feature correlations. For the
latter approach, we use non-linear discriminative feature
transformation [12], which directly reduces ASR errors by
estimating non-linear feature transformation matrix with
discriminative criteria.

The above feature transformation techniques estimate
transformation matrices in the training stage. However, to
improve recognition accuracy for unknown conditions in
the evaluation stage, the adaptation strategy of estimat-
ing feature transformation matrices for evaluation data is
also effective. This paper deals with basis feature-space
maximum likelihood linear regression (basis fMLLR) [20],
which can estimate transformation matrices robustly even
in the cases of short utterances. In addition, in the training
stage, speaker adaptive training (SAT) [11] is also used. It
trains acoustic models in a canonical speaker space based
on the MLLR framework in order to obtain better feature
transformation in the adaptation stage.

After the feature transformations, Gaussian mixture
model (GMM)-based acoustic models are obtained by
using discriminative training techniques [6, 7] and also
this paper deals with deep neural networks (DNN) [13]
that have recently attracted great attention, and we have
shown promising results in noisy environments [16]. Note
that the lower layers of a DNN play the role of dis-
criminative feature transformation [21], and our DNN
system skips discriminative feature transformation, which
is already included in a DNN.

The studies above mainly focus on a single ASR sys-
tem. On the other hand, the use of multiple systems is
another solution to improve the robustness of ASR perfor-
mance [22-24]. For our proposed method, which exploits
discriminative training methods, the best performing sys-
tem is different from environment to environment due to
the variety of evaluation data or mismatch between train-
ing and evaluation data. The system combination methods
relax the degradation of speech recognition performance
coming from these varieties or mismatches, e.g., [25, 26]
proposed to use a complementary system for system com-
bination. This paper constructs various systems that have
different properties, and in particular, our proposed dis-
criminative training method introduces complementary
systems intentionally within a lattice-based discriminative
training framework [27, 28]. The results from various rec-
ognizers will be combined using recognizer output voting
error reduction (ROVER) [22].

In summary, there are three objectives in this
paper: First, the effectiveness of dereverberation and
microphone-array speech enhancement techniques is val-
idated. Second, the effectiveness of feature transformation
and discriminative training for reverberant environ-
ments is validated. The objectives here are various
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types of acoustic modeling such as the GMM, subspace
Gaussian mixture model (SGMM) [29], and DNN and
their discriminative training. Third, to address the vari-
ety of reverberant environments, a system combination
approach is introduced and its effectiveness is validated.

There are two main differences between this paper and
the REVERB challenge workshop paper [30]: First, we add
detailed descriptions about validated techniques and the
experimental setup. For example, we detail the speech
enhancement, feature transformation, and speaker adap-
tation parts. Second, we compare our proposed method
with other participants’ systems that were submitted to
the workshop, which clarifies the effectiveness of our
proposed method.

2 System overview

Figure 1 shows a schematic diagram of the proposed
system, which consists of three components. The first
component is based on a speech enhancement step, which
is described in Section 3. This paper focuses on single-
and eight-channel data. The speech enhancement part
consists of (1) a multichannel delay-and-sum BF with
direction-of-arrival estimation that enhances the direct
sound compared with the reflected sound, (2) a single-
channel dereverberation technique with reverberation
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time estimation that attempts to eliminate late reverber-
ation, and (3) a normalized least-mean-squares (NLMS)
adaptive filter algorithm that attempts to eliminate short-
term distortions such as microphone difference or speech
distortions caused by speech enhancement methods.

The second component is based on a feature transfor-
mation step, including several feature-level transforma-
tions (LDA, MLLT, and basis fMLLR) and discriminative
feature transformation (Section 4.1). This step uses two
types of features [Mel-frequency cepstral coefficients
(MFCC) and perceptual linear prediction (PLP)]. By
using two different types of features, it is believed that
complementary hypotheses can be obtained for system
combination.

The third component is based on the ASR decoding step
that uses a discriminatively trained acoustic model with
margin control. Three types of systems (GMM, SGMM,
and DNN) are constructed. Boosted maximum mutual
information (bMMI) is used for GMM and SGMM in
Sections 4.2 and for DNN in Section 4.4.

In addition, Section 4.5 describes our proposed sys-
tem combination approach that combines discrimina-
tively trained complementary systems. In addition to the
three types of SAT model, a GMM model without SAT
is also constructed; our proposed method constructed

Speech Speech enhancement part

—_—

(1.8} (Section 3) 1

<PLP>
Feature J: ) Hypotheses|
. (Section 4)
extraction

Speech enhancement (1ch)

Speech enhancement (8ch)

: ! 8§ bl '
ASR part
<PLP>
<
MFCC> | "
(f-bMMI, w/o SAT)
Feature - GMM
Transform (f-bMMI, w/ SAT)
LDAMLLT [ | ROVER p—
i G
- = (bMMI, w/ SAT)
DNN
= (bMMI, w/ SAT) =

system type

Fig. 1 Schematic diagram of the proposed system. (CSP cross-spectrum phase analysis, DS-BF delay-and-sum beamformer, derev. proposed
dereverberation method, and NLMS normalized least-mean-squares adaptive filter algorithm.). Gray blocks are complementary systems for each
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complementary systems for each system. The output
results of 16 systems are combined using ROVER, and the
final hypotheses are obtained.

3 Speech enhancement

This section deals with speech enhancement methods:
delay-and-sum BF with cross-spectrum phase (CSP) anal-
ysis in Section 3.1, a proposed dereverberation method
in Section 3.2, and an NLMS algorithm that attempts
to eliminate short-term distortion in Section 3.3. We
describe them step by step. The delay-and-sum BF using
the CSP method and NLMS adaptive filter algorithm is
used for an 8-channel (ch) system; the dereverberation
method is used for both the 1-ch and 8-ch systems.

3.1 Delay-and-sum BF after direction-of-arrival
estimation using CSP method

To enhance the direct sound from the source, a frequency-

domain delay-and-sum BF is applied [3]. The time-

domain sth sample z,, (s) observed by the mth microphone

is transformed into the STFT spectrum. The spectrum

xt,m(n) at the tth frame and nth frequency bins obtained as

Nr—1

S
m = m : -2 )
Xt,m (1) SE:o [P ()zm(p -t +5)] eXp< ) an)
(1)

where ¢ is a frame shift, and ¢ is a window function with
the window length Nf. A vector form of the spectrum
x¢,m denotes [x;,,(0), ..., %.,(NF — 1)] T € CNF, where T
denotes a transpose of vectors or matrices. The enhanced
spectrum X;(n) is obtained by summing the spectrum
x¢.m(n) with a compensation of a time delay as

Re(m) =) xym(n) - exp (—27r1 A’;Frt,m) : 2)

The arrival time delay t;,, of the mth microphone
from the first microphone is related to the direction of
arrival at the tth frame (here 7,7 = 0). This time delay
is estimated by CSP analysis [4]. First, an inverse STFT
transform a cross-power spectrum between first and mth
microphones into the time domain as

xt,1(5) ~x2‘,m(5)] ( n )
22 Thm 277 —5 ),
[¢ O e @ rem@] [P\ P N

3)

Np—1

=30 2

n=0

where “*” denotes a complex conjugate. The highest cor-
related point is the maximum point of elements among
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{Vt,m(0), ..., Yem(NF — 1)}. Thus, the time delay 7, is
calculated as
Yom(s) X — @
T = max S) X ’
tim SE[O,...,NF—I] bm féamp

where fimp is a sampling frequency. To improve the
performance of the original CSP method, we used a peak-
hold process [31] and noise component suppression,
which sets the cross-power spectrum to zero when the
estimated signal-to-noise ratio (SNR) is below 0 dB [5].
Synchronous addition of multiple microphone pair-wise
CSP coefficients reduces the noise influence [32].

3.2 Single-channel dereverberation with estimation of
reverberation time

For a single-channel dereverberation method, we employ
an algorithm proposed in [2]. The proposed algorithm
is briefly described below, and detailed discussions are
found in [2]. Since the proposed method is independently
processed across microphones, we omit the microphone
index m. When reverberation time 7T, is much longer
than the frame size, an observed power spectrum X; =
[|xt(0)|2,..., |x:(NF — 1)|2]T is modeled as a weighted
sum of the source’s power spectrum X; € RNF. The
source’s power spectrum is estimated as follows in the
existence of stationary noise N € RNF when the spectrum
between frequency bins is independent:

t
X =Y wuX;y +N, (5)
n=0

where 1 and w are the delay frame and the weight coef-
ficient, respectively. The source’s power spectrum X; is
related to X; as

Xy = n(T)X¢—p — N, (6)

where 1 is the ratio of a direct sound component to
the sum of the direct and reflected sound components,
which is a decreasing function of 7, because longer T
increases the energy of the reflected sound components.
Here, we assume that the reverberation time 7, and 7 are
independent of frequency bins, for simplicity.

Assuming that wy is unity to normalize reverberation
decay for the direct sound, Eq. (7) can be derived from the
above relations:

t

X =X,— Y wu[n(THX;y — N] - N. (7)
pn=1

Reverberation is divided into two stages: early reverber-

ation and late reverberation. The threshold between them
is denoted by D (frames) after the arrival of a direct sound.
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Generally, late reverberation mainly degrades speech
recognition performance and early reverberation can be
ignored. Therefore, the proposed method only focuses on
late reverberation. Early reverberation is complex because
it greatly depends on room shapes and distributions of
room materials, whereas late reverberation is statistical
and the sound-energy density decays exponentially with
time under the assumption of a diffuse sound field. These
are modeled according to Polack’s statistical model [33],
and w,, is determined as

0 I=wpn=D
3log10 , (8)

s 27T
nEyTr)e i o (D < M)

wy =

which corresponds to a reverberation decay in Fig. 2.
Here, oy is a subtraction parameter to be set. The upper
condition and lower condition correspond of Eq. (8) to
the early and late reverberations, respectively. Assum-
ing n is constant, Eq. (7) is a process similar to spectral
subtraction [34]. If the subtracted power spectrum X, is
less than BX;, it is substituted with BX;. This process is
called a flooring, and B is a flooring parameter. We define
the floored ratio p as a ratio of the number of floored
time-frequency bins to the total number of bins.

The proposed method estimates a reverberation time 7,
from a flooring ration p. Two observations are exploited
for this estimation. First, when some arbitrary reverber-
ation times (T},) are assumed, p increases monotonically
with T, because a longer T, increases the extent of sub-
traction. This is modeled as a linear relation with the
inclination A,. Second, p increases with T, at the same
T,. Since actual n(T}) decreases with T}, the power spec-
trum after dereverberation assuming a constant 7 is more
likely to be floored for a longer T, because the second
term of Eq. (7) is larger than that of the actual one in the
condition with a longer T,. Therefore, T, has a positive
correlation with A ,. This can be modeled as

T, =alA, —b, )

with two predetermined constants a and b.
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The estimation process of T, is summarized as follows:
Calculate p and the inclination A, by a least-squares
regression for some values of arbitrary assumed reverber-
ation times T, and estimate an actual reverberation time
T, by Eq. (9).

3.3 NLMS adaptive filter algorithm

The goal of the NLMS adaptive filter algorithm is to elim-
inate short-term distortions from an observed distorted
signal sequence z; =[z(s—Np+1),. .. ,2(s)] T € RM based
on a desired signal ds [35] by using a linear filter with the
tap length Nj. Filters w, € RM that realize these require-
ments are recursively trained in a manner where errors
between filtered signals and desired signals are minimized
as

min |dy — z] w}|%. (10)
W

An LMS algorithm uses instantaneous values for the esti-

mation of a gradient, and an NLMS algorithm normalizes

the step size parameter by the signal power. Thus, the

update formula of an NLMS algorithm is obtained as

4

——Z 11
€+ |ZS|2 S ( )

Wi =w,_; + [ds —z] W,_,],
where o is a step size, and € is a very small constant that
avoids the instability of the update formula. The initial
value of filter w, is 0. In this case, z; is a reverberant
speech, and d is a clean speech without reverberation. A
filter w' is obtained from the entire training data set. For
evaluation, desired signals d; cannot be obtained; thus,
the filter cannot be changed. The tap length of NLMS is
short because the goal of this filter is to eliminate a short-
term distortion, whereas the proposed dereverberation
algorithm (3.2) attempts to eliminate late reverberation.

4 Speech recognition

4.1 Feature transformation and speaker adaptation
Static features concatenated during the left L frames, cur-
rent frame, and the right R frames are compressed into
low-dimensional (I’-dimensional) features by using LDA.

Energy [dB]

---- Direct sound
— Reflected sound

a) Early b) Late

reverberation

exponentially decayed shape

Reverberation time

Timle [s]

reverberation

Fig. 2 a Early and b late reverberation. Early reverberation has complex and sparse reflections. Late reverberation has dense reflections and an
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The class of LDA is the state of the triphone HMM. In
addition to this, to reduce the correlation between feature
dimensions, MLLT is used. Combined feature transforma-
tion is realized as

y, = AM [AL[y;L,...,ytT,...,ytTJrR]T], (12)

where y, is an original /-dimensional feature at the tth
frame, and y; is an I’-dimensional transformed feature;
AL ¢ RI'XUXAARED) g 5 transform matrix of LDA, and
AM ¢ RI'*I is a transform matrix of MLLT.

For adaptation, instead of a normal fMLLR transforma-
tion, the basis fMLLR [20] is used. It can robustly estimate
transform matrices and bias terms even for short utter-
ances. This method realizes the transformation of original
features y; into adapted features y; by using pre-trained
bases of transform matrices and bias terms and estimating
their weights as

(13)

= va [A'Cy/t-i-b{],

where Aj,(, e R and b{j € R are the vth pre-trained
basis of an fMLLR transform matrix and bias term, respec-
tively, which are estimated from entire training data. For
evaluation, only their weights m, are estimated.
Moreover, to address the wide variety between speak-
ers, SAT as an acoustic model adaptation [11] is frequently
used. In SAT training, acoustic models are trained on
speaker-adapted training data, which are transformed into
canonical speaker space by using speaker adaptation tech-
niques, in this case, fMLLR. This can reduce the influence
of a speaker variation. This paper validates the effective-
ness of feature transformations (LDA and MLLT) and
adaptation techniques (basis fMLLR and SAT).

4.2 MMI discriminative training of acoustic model

MMI discriminative training is a supervised training algo-
rithm that maximizes the mutual information between
correct labels and recognition hypotheses. This paper
focuses on bMMI [36], where a boosting factor b > 0
is used to introduce a weight depending on phoneme
accuracies. The objective function is given as

P (V' 1Ms,)" pr(sy)
( | Hs)" pr(s)ebAGs)’

Fp() =) log B (14)

r

T ,
where y* = [y,',. ..,yT(,)_lT] is the rth utterance’s
feature sequence and 7'(r) is the total frame number of
the rth utterance. The acoustic model parameters A are

Page 6 of 15

optimized by the extended Baum-Welch algorithm. A is
a mean, variance, and mixture weight of GMM. H,, and
Hs are the HMM sequences of the correct label s, and a
hypothesis s, respectively; p; is the acoustic model like-
lihood; « is the acoustic scale; py is the language model
likelihood; and A(s, s,;) is the phoneme accuracy of s for
sr. This paper compares the performances of bMMI train-
ing of GMM and SGMM to those of maximum likelihood
(ML) training.

4.3 Discriminative feature transforms
The extension of a discriminative training to a feature
transformation is referred to as a feature-space discrim-
inative training [12]. It estimates a matrix M € RIXJ
that projects rich, high-dimensional features h, € R/
(J > I') down to low-dimensional transformed features,
as follows:

=y, + Mh;. (15)
Usually, Gaussian posteriors of an Ny-mix universal back-
ground model (UBM) are used for &, [37]. The objective
function can be obtained simply by replacing y” with
the rth utterance’s transformed feature sequence v’ =

T.
[V()T, .. ,VT(r)_lT] in Eq. (14) as

Zlo

The matrices M are optimized by maximizing the objec-
tive function Fj, (M). In this study, we validate the effec-
tiveness of a feature-space bMMI (f-bMMI).

. (VM)  prisy)
Yo o (VI H)¥ pr(s)e bAGs)

Fp (M) = (16)

4.4 Discriminative training of DNN

In a DNN-HMM hybrid system, sequential discriminative
training according to the (b)MMI criterion (14) has been
proposed [38] in addition to a usual cross-entropy (CE)
training. The DNN provides posterior probabilities for the
HMM state j. The acoustic likelihood py is replaced by a
pseudo likelihood as

pe (1)
po(j)

where pg (/) is the prior probability of a state j calculated
from a forced alignment of the training data. For each
HMM state, the model 0 includes a softmax activation
function:

(17)

po (V') =

exp a;(y")

Zj’ exp “/" (yr) ’ (18)

po(ly") =

where a; is the activation of the jth unit in the output
layer. 0 is a parameter in weight matrices and bias terms
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of DNN. These activations are trained discriminatively
according to the bMMI criterion. The bMMI objective
function is the same as Eq. (14), simply by replacing A with
0: Fp (6).

4.5 Constructing complementary system suitable for
system combination
We describe a discriminative method that constructs
complementary systems for appropriate system combi-
nation [27, 28]. Complementary systems are constructed
by discriminatively training a model, which begins with
an initial model. The proposed discriminative training
method for complementary systems is extended from a
discriminative training principle. Assuming Q base sys-
tems have already been constructed and fixed, the dis-
criminative training objective function F° for building a
complementary system is

Q
FEM) = (1 + @) Fp(M) — “—QC N Fp M), (19)
q=1

where Fj, is a Fj just replaced by b with by. Derived
formula was

FEM)= Fp(M)

+ac2

r

—log ) pua (¥ 1Hs)" pL(s)e—bA@,sr)] ,
S

Q

1 _

*QE log pm (yr|qu)KpL(sq)e biAGsqsn)
q=1

(20)

where M is the set of model parameters of a comple-
mentary system to be optimized; that is, 1, M, and 6.
a. is a scaling factor. The model parameter M is shared
among the original 7 and the Q base models’ F to be opti-
mized. This subtracts an objective function related to the
one-best hypothesis of the gth base system, s;, from an
objective function related to the correct label s,. The dis-
criminative criterion F is selected as bMMI or -bMMI. If
a, equals zero, this objective function matches the original
F. The first term in Eq. (19) promotes a good perfor-
mance according to the discriminative training criterion,
whereas the second term makes the target system generate
hypotheses that have different tendencies from the origi-
nal Q base models. This procedure is commonly used to
obtain the objective functions of Sections 4.2, 4.3, and 4.4.

5 Experimental setup

5.1 REVERB challenge speech recognition task

We validated the effectiveness of our proposed app-
roaches for a reverberated speech recognition task on
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the REVERB challenge [1] data. The task is a medium-
vocabulary ASR in reverberant environments, whose
utterances are taken from the Wall Street Journal (WS])
database (WSJCAMO [39]). This database includes two
types of data: SIMDATA created by convolving clean
speech with six types of room impulse responses at a dis-
tance of 0.5 m (near) or 2 m (far) from the microphones
in three offices (Rooms 1, 2, and 3) whose reverberation
times are 0.25, 0.5, and 0.75 s, respectively, with relatively
stationary noise at 20 dB SNR; and REALDATA created
by recording real-world speech at a distance of 1 m or
less (near) or 2.5 m or less (far) from the microphones in
one room (Room 1) with stationary noise such as air con-
ditioner noise. Eight microphones were arranged on the
circle with a radius of 0.1 m. The number of speakers and
utterances of the training set (¢r), evaluation set (eva), and
development set (dev) is shown in Table 1.

Acoustic models were trained using ¢r. Some of the
parameters, e.g., language model weights, were tuned
based on the WERs of dev. The vocabulary size is 5 k, and
a trigram language model is used. The REVERB challenge
speech recognition task is categorized in terms of pro-
cessing techniques, training data of the acoustic model,
recognizer type, and number of channels used, as shown
in Table 2. All experiments in this paper were “utterance-
based batch processing;’! “acoustic model trained on the
challenge provided multicondition (MC) training data,’
“own recognizer; and “single- or eight-channel data”
These systems were constructed by using the Kaldi
toolkit [40].

5.2 Speech enhancement

The REVERB challenge provides single-, two-, and eight-
channel data. We used single- and eight-channel data. For
single- and eight-channel data, the proposed dereverbera-
tion technique was used with parameters: D = 9, @ = 5,
B = 0.05, a = 0.005, and b = 0.6. For eight-channel data,
before dereverberation, delay-and-sum BF with a direc-
tion of arrival estimation by CSP analysis was performed,
which used a total of gCy(= 28) pairs of microphones.
After dereverberation, NLMS adaptive filters with N; =
200 taps were applied.

Table 1 Number of speakers and utterances of training (tr),
development (dev), and evaluation (eva) set for the REVERB
challenge

Set Number of speakers Number of utterances
tr - 92 7861
dev SIMDATA 20 1484
REALDATA 5 179
eva SIMDATA 28 2176
REALDATA 10 372
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Table 2 Category of the REVERB challenge speech recognition
task

Type

Full batch, utterance-based, real-time

Processing scheme

Training data of acoustic model Own dataset, multi-condition, clean

) own recognizer,
Recognizer type
Challenge baseline recognizer

Number of channels used 1,2,8

Italicized data denotes the category to which this paper belongs

5.3 Feature extraction and transformation and acoustic
model adaptation
We describe the settings of acoustic features and feature
transformations, which are detailed in [15, 16]. The base-
line acoustic features were 0—12 order MFCCs and PLPs
with first and second dynamic features. After concatenat-
ing static MFCCs/PLPs during L + R + 1 frames without
using delta feature, a total of (13 x (L+R+1))-dimensional
features were compressed into 40 dimensions by the LDA.
For adaptation, when speaker IDs were known for the
training set, bases Aj; and b{ were estimated. For the
development and evaluation set, speaker IDs are assumed
to be unknown, and weight vector , was estimated.
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5.4 Discriminative methods

In discriminative feature transformation (Section 4.3), a
UBM with N, = 400-mix Gaussians was used. The
offset features were calculated for each composed of 40-
dimensional features, including MFCC/PLP features with
dynamic features (39 dimensions in total) and the poste-
rior probability of it, with context expansion (contiguous
nine frames). The number of dimensions of feature vector
h; was 400[{Gauss] x 40[dim/(Gauss - frame)] x 9[frame].
Features with the top two GMM posteriors were selected
and all other features were ignored.

The boosting factor b of bMMI and f-bMMI was 0.1. To
construct complementary systems, the additional boost-
ing factor b; in the second term of Eq. (19) was 0.3 and
o, was 0.75. For f-bMM]I, in one iteration, f-bMMI for the
matrix M was coupled with bMMI for the acoustic model
parameters A.

5.5 Building acoustic models

First, clean acoustic models were trained. The number of
monophones was 45, including silence (“sil”). Triphone
model has 2500 states and 15,000 Gaussian distributions.
Second, using the alignments and triphone tree struc-
tures of the clean model, reverberated acoustic models
were trained on the MC dataset according to the ML

Table 3 WER [%] in terms of rooms and microphone distances on the REVERB challenge dev set using single-channel data and MFCC

features
SIMDATA REALDATA
Room 1 Room 2 Room 3 Avg Room 1 Avg
Feature Type Near Far Near Far Near Far Near Far
Kaldi baseline MFCC ML 10.96 12.56 15.70 34.21 19.61 39.24 22.05 48.53 4737 47.95
derev. 1241 14.68 14.03 27.16 16.39 3385 19.75 47.04 4457 45.81
GMM +LDA+MLLT ML 946 11.01 11.51 22.04 13.08 28.09 15.87 39.99 4067 4033
+basis fMLLR 777 10.00 9.76 19.28 11.05 2490 1379 33.00 3554 3427
bMMI 7.3 9.61 9.12 16.19 1046 2198 1242 3069 3520 3295
f-bMMI 6.27 873 8.28 14.89 937 19.54 11.18 28.32 31.31 29.82
f-bMMI¢ 7.06 9.05 8.58 14.96 10.16 2043 [AVAl 29.01 31.72 3037
+SAT ML 8.87 11.21 9.71 19.89 10.95 24.04 14.11 36.06 36.23 36.15
bMMI 6.56 851 7.76 16.24 9.03 19.88 1133 34.19 3753 35.86
f-bMMI 5.88 7.60 7.25 14.59 8.09 17.51 10.15 31.63 3472 33.18
f-bMMiI¢ 6.07 7.82 7.22 14.89 843 17.51 1032 3238 3527 33.83
SGMM ML 6.47 9.07 8.18 17.11 9.55 2040 11.80 3313 3493 34.03
bMMI 553 7.23 7.00 14.44 7.76 1748 9.91 3150 33.36 3243
bMMIc 5.68 7.28 7.02 1444 7.94 17.68 10.01 30.94 33.08 3201
DNN CE 6.71 8.85 8.70 15.58 9.15 19.07 1134 30.88 35.82 3335
bMMI 5.29 7.06 6.95 13.09 757 15.53 9.25 2845 3267 30.56
bMMIc 5.14 6.74 6.51 12.37 7.27 15.50 8.92 28.32 3349 3091

The proposed dereverberation method was used. Three types of acoustic models (GMM, SGMM, and DNN) were constructed with feature transformation (LDA + MLLT),

adaptation (basis fMLLR and SAT), and discriminative training (oMMl and f-bMMI). Subscript letter “c

the best systems in each condition

" represents the proposed “complementary” system. Italicized data were
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criterion. Finally, from this ML model, we performed the
discriminative training and feature transformations.

For DNNs, we used Povey’s implementation of neural
network training in Kaldi [40]. DNN has two hidden lay-
ers was two and each hidden layer has 642 nodes. The
total number of parameters was 2 M. The initial learning
rate of CE training was 0.02, and this decreased to 0.004
at the end of training. The training targets for the DNN
were determined by the forced alignments on reverberant
speech using a GMM model with SAT. The parameters
used in our experiments were set as those in the WS/
tutorial (s6) attached to the Kaldi toolkit, although some
settings such as the number of model parameters or some
minor parameters were modified.

5.6 System combination

We prepared three types of ASR acoustic model systems
for the challenge: GMM, SGMM, and DNN. To improve
the performance of the respective systems, for GMM, f-
bMMI was used; whereas for SGMM and DNN, bMMI
was used. On the development set, because output ten-
dencies of GMM with and without SAT model were differ-
ent, both systems were used for a system combination. For
each system, complementary systems were constructed
by the proposed method as shown in 4.5. These systems
were trained both for MFCC and PLP features; thus, a
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total of 16 systems were prepared. After decoding for
generated lattices, minimum Bayes risk decoding [41],
which slightly improved the performance, was commonly
used.

5.7 Black-box optimization

Bayesian optimization using Gaussian processes [42] was
applied to various speech recognition problems includ-
ing neural network [43] and HMM topology optimiza-
tion [44]. In this paper, we also applied this technique
to the selection of combined systems and the parameter
optimization for ROVER. The objective function of the
optimization was WER of the development set.

6 Results and discussion

6.1 Baseline and speech enhancement techniques

Tables 3 and 4 show the WERs of the development set
(dev) for three simulated rooms and one real room with
two types of source-to-microphone distances (near/far).
Table 3 is based on a single-channel one and Table 4 is
based on an eight-channel one. The “Kaldi baseline” in
Table 3 is an acoustic model trained on the MC data with-
out speech enhancement. “derev.” is the proposed dere-
verberation method with a reverberation time estimation.
Although, for some cases in room 1, the reverberation
time is fairly short and the proposed method degraded

Table 4 WER [%] on the REVERB challenge dev set using eight-channel data and MFCC features

SIMDATA REALDATA
Room 1 Room 2 Room 3 Avg Room 1 Avg

Feature Type Near Far Near Far Near Far Near Far
CSP+BF+derev. MFCC ML 10.79 12.19 11.02 16.71 1147 2043 13.77 40.36 42.83 41.60
+NLMS 1111 12.27 11.81 17.40 12.34 21.46 14.40 3837 40.74 39.56
GMM +LDA+MLLT ML 838 10.30 9.91 14.94 10.19 17.28 11.83 34.06 37.18 35.62
+basis fMLLR 774 9.22 8.80 1333 9.05 15.28 10.57 27.39 30.14 2877
bMMI 6.64 8.21 7.25 11.39 7.10 11.50 8.68 24.89 27.96 2643
f-bMMI 6.19 740 7.39 10.13 6.58 10.24 7.99 22.58 26.25 24.42
f-bMMIc 6.39 7.33 7.44 9.86 6.70 1044 8.03 22.71 2741 25.06
+SAT ML 7.25 9.32 8.70 12.79 8.33 13.80 10.03 28.88 32.88 30.88
bMMI 524 7.10 6.56 9.93 5.98 10.98 763 26.58 30.83 28.71
f-bMMI 5.01 6.76 5.9 9.07 5.84 9.40 7.01 24.27 29.60 26.94
f-bMMI¢ 5.16 6.93 6.11 9.49 5.96 9.67 722 24.27 29.73 27.00
SGMM ML 5.65 7.62 747 10.97 7.00 1145 8.36 25.27 30.35 27.81
bMMI 4.57 6.05 6.19 9.27 6.01 9.89 7.00 24.70 30.01 27.36
bMMI¢ 4.72 6.10 6.09 9.56 6.18 10.01 7.1 24.39 30.01 27.20
DNN CE 6.49 745 7.84 1144 7.25 11.97 8.74 2527 29.32 27.30
bMMI 5.56 6.27 6.24 9.29 571 1044 7.25 23.27 28.84 26.06
bMMIc 5.26 6.05 6.21 9.10 561 10.06 7.05 2265 2850 2558

In addition to the proposed dereverberation method, BF with direction of arrival estimation by CSP analysis and NLMS adaptive filters were used. Subscript letter “c”
represents the proposed “complementary” system. Italicized data were the best systems in each condition
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Table 5 Average WER [%] on the REVERB challenge dev set using PLP features
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1ch 8ch
Feature SIMDATA REALDATA SIMDATA REALDATA
Kaldi baseline PLP ML 22.96 48.90
derev. 19.84 44.15
CSP+BF+derev. 13.98 42.21
+NLMS 14.97 41.15
GMM +LDA+MLLT ML 15.63 40.36 12.13 35.11
+basis fMLLR 13.70 34.21 10.73 29.21
bMMI 12.78 3343 8.94 26.84
f-bMMI 11.91 30.67 8.10 2572
f-bMMIc 12.20 31.67 8.26 26.30
+SAT ML 13.55 36.25 1017 30.85
bMMI 11.05 35.63 8.06 2845
f-oMMI 10.14 33.29 7.32 26.78
f-oMMIc 12.20 31.67 7.61 27.59
SGMM ML 11.90 3295 843 26.99
bMMI 10.25 33.10 713 26.67
bMMIc 10.30 33.14 7.19 27.21
DNN CE 11.30 31.87 8.75 27.33
bMMI 944 30.19 7.25 26.06
bMMIc 9.40 30.13 6.74 2637

Subscript letter “c” represents the proposed “complementary” system. Italicized data were the best systems in each condition

performance, for other cases and on average, perfor-
mance was improved by approximately 2%. Weninger
et al. [45] showed that our proposed dereverberation
technique is effective even with a state-of-the-art de-
noising auto-encoder. For the eight-channel data shown
in Table 4, BF with “derev.” significantly improved per-
formance by approximately 6.3—-8.3 % on average, because
the direction of arrival estimation was stable and reliable.
“NLMS” improved the WER by 2.0% for the REAL-
DATA, but degraded the WER by 0.6% for the Sim-
DATA. However, because these decreases in performance
have less impact than the improvements, we used NLMS
below.

These results above used MFCC features. Experimen-
tal results using PLP features are shown in Table 5.
On average, the ASR performances using PLP fea-
tures were approximately 0.2—1 % lower than those using
MECC features; however, their error tendencies were
fairly different, which was a good property for system
combination.

6.2 LDA and MLLT feature transformation and adaptation
LDA and MLLT feature transformations significantly
improved performance by approximately 2.6-5.5%.
Table 6 shows the effect of an LDA context size on
performance. The performance of the SIMDATA could

not be improved by context sizes longer than 4. For the
REALDATA, performance could be improved in several
cases by adding more right context, but generally not
by adding left context. In reverberant environments,
because reverberant components of current frames give
an influence on the features in the right context, the right
context can be useful for improving speech recognition
performance. In the end, we kept the context size at the
default setting, L = R = 4.

Tables 3 and 4 show that the adaptation tech-
nique, basis fMLLR, improved performance by approxi-
mately 1.3-6.9 %. The effect of SAT is unstable between
environments.

Table 6 Average WER[%] investigating the effect of LDA context
sizes [left (L) and right (R)] on the REVERB challenge dev set using
eight-channel data

SIMDATA REALDATA
L\R 4 5 6 7 4 5 6 7
4 11.83 1220 1210 1257 3562 3431 3410 3622
5 1214 1232 1246 1272 3471 3534 3444 3331
6 1257 1233 1256 1287 3549 3529 3419 3511
7 1283 1294 1343 1349 3513 3590 3567 36.00

Italicized data were the best systems in each condition
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Table 7 Average WER [%] investigating the effect of iteration
numbers of bMMI and f-bMMI discriminative training with SAT
on the REVERB challenge dev set using eight-channel data

MFCC PLP

Number of iterations

1 2 3 4 1 2 3 4
bMMI
SIMDATA 870 841 818 763 902 864 847 806
REALDATA 2921 2834 2816 2871 2974 2926 2891 2845

f-bMMI
SIMDATA 807 756 730 701 847 793 757 732

REALDATA 27.70 2729 27.16 2694 2936 2786 27.15 2678
Italicized data were the best systems in each condition

6.3 Discriminative training of acoustic model and
discriminative feature transformation

Tables 3 and 4 show that the discriminative training
was effective for reverberant environments. The per-
formances of f-bMMI training were higher than those
of bMMI training in all cases by approximately 0.6—
1.7%. The WERs of our complementary systems were
only slightly lower (0.2-0.7%) than those of the base
systems, and they have different tendencies from base
systems; thus, they appear to be well suited to system
combination.

Table 7 shows the effect of the iteration numbers of
bMMI and f-bMMI on the development set performance.
The results show that the best performance was achieved
at four iterations.
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6.4 SGMM and DNN

Tables 3 and 4 show the performance of SGMM acous-
tic models. For the SIMDATA, the performance of SGMMs
was higher than that of GMMs. However, for the REAL-
DATA, the performance was lower than that of GMMs.
Because the REALDATA were noisier than the SIMDATA,
the estimation of speaker vector can be unstable.

DNN acoustic models achieved the best performance
for the SIMDATA. Although the best system for the REAL-
DATA was GMM without SAT, DNN was the second
best. On average over the SIMDATA and REALDATA,
DNNs achieved the best performance. Although DNN
was trained discriminatively even by CE training accord-
ing to the frame-level discriminative criterion, sequence
discriminative training, bMMI, for DNN systems turned
out to be as effective as for other systems.

6.5 System combination

We tested five types of system combinations, as shown
in Table 8. The number 2 stands for one MFCC sys-
tem and one PLP system. The number 4 stands for two
MECC and two PLP systems composed of a base sys-
tem and the proposed complementary system. These
systems’ outputs are combined by using ROVER. The
ID 1) system was a combination of SAT-GMMs (f-
bMMI) using both MFCC and PLP features. The perfor-
mance for the REALDATA improved by 1.2-4.2 % over the
f-bMMI with a SAT (MFCC) single system. For the GMM
system without SAT, using f-bMMI [ID 2)], the WER
improved by 0.2-1.5% for the SIMDATA and 0.6-1.4%
for the REALDATA. Including the complementary systems

Table 8 WER [%] on the REVERB challenge dev set, with system combination using both MFCC and PLP features

SIMDATA REALDATA
Number of systems Room 1 Room 2 Room 3 Avg Room 1 Avg

D GMM SAT-GMM SGMM DNN Near Far Near Far Near Far Near Far

1ch 1) 2 6.00 819 752 1437 878 1835 1054 2770 3035 2903
2) 2 2 531 637 658 1262 742 1600  9.05 2726 2960 2843
3) 4 4 533 639 663 1267 749 1560  9.02 27.01 2967 2834
4) 4 4 4 5.01 634 633 1245 687 1543 874 2664 2980 2822
5) 4 4 4 4 467 588 631 11.93 6.63 1489 839 2658 2891 27.75
6) 2 2 2 2 452 568 629 1200 650 15.06 834 26.45 2980  28.13

8ch 1) 2 4.72 583 596 892 537 875 6.59 2327 2830 2579
2) 2 2 4.72 602 572 8.26 5.14 8.56 6.40 2227 2659 2443
3) 4 4 4.72 5.83 5.77 8.21 5.19 8.38 6.35 2252 2652 2452
4) 4 4 4 4.08 516 562 779 4.80 8.38 5.97 2240 2700 2470
5) 4 4 4 4 4.18 511 550 7.74 4.85 823 5.94 2190 2652 2421
6) 3 1 4 2 4.18 5.51 550 7.74 4.97 843 6.06 21.58 2632 2395

For GMM systems, f-bMMI is used, while for SGMM and DNN systems, bMM I is used. The number 2 stands for MFCC and PLP systems, and the number 4 stands for MFCC and
PLP systems along with their complementary systems. ROVER 6) uses black-box optimization at the stage of system selection and parameter optimization for ROVER. Italicized

data were the best systems in each condition
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Fig. 3 WER [%] averaged over SIMDATA and REALDATA through
black-box optimization of the system selection and parameter setting
for ROVER in terms of the number of iterations

[ID 3)], the WER improved slightly. For the best case,
WER improved by 0.4 %, while for the worst case, WER
decreased by 0.1%. This shows the effectiveness of our
proposed method. Adding in SGMMs [ID 4)], which was
effective for the SIMDATA, the performance for the SIM-
DATA further improved by 0.3-0.4 %. Taking into account
DNN:s [ID 5)], the performance was again improved; this
system, which combined 16 systems in total, achieved the
best average performance on the development set. For the
reference, the results of eight system combination with-
out using our proposed combination are added to the
last line of 1 ch case [ID 6)]. The WER on REALDATA

Table 9 WER [%)] on the REVERB challenge eva set
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was worse than those of the proposed 16 system com-
bination, which shows that the complementary training
generalizes the ASR results for unseen data conditions
more.

In all cases except for the room 1/far(8-ch) condition,?
the performances were better than those of the best sys-
tem. This shows that the system combination approach is
effective for the case where reverberant environments are
various.

6.6 Black-box optimization

For eight-channel data, black-box optimization was per-
formed. Figure 3 shows the average WER in terms of the
iteration number. WER almost decreased monotonically
and, after 100 iterations, it converged. Among these itera-
tions, the results that achieved the best WER on average,
are shown in the last column of Table 8. The performance
improved mainly for the REALDATA.

6.7 Evaluation set

Table 9 shows the results for the evaluation set (eva).
Legend of the table is the same to the development set.
The optimal system combination is determined based
on the WER on the development set. The discrimina-
tive training of acoustic model (bMMI) and feature-space
discriminative training (f-bMMI) significantly improved
the performance. SGMM was better than GMM because
model adaptation was well performed. DNN outper-
formed GMM and SGMM. The DNN with discriminative

SIMDATA REALDATA
Room 1 Room 2 Room 3 Avg Room 1 Avg
Near Far Near Far Near Far Near Far
1ch Kaldi baseline 1323 14.13 15.54 29.69 20.06 37.44 2168 50.62 4598 48.30
derev. 1250 1343 14.61 24.71 17.09 3262 19.16 44.75 4332 44.04
GMM (f-bMMI) 7.27 8.17 8.82 14.11 10.54 18.76 11.28 28.65 29.54 29.10
GMM (SAT f-bMMI) 6.44 7.22 7.57 13.97 9.52 18.44 1053 28.87 29.78 29.33
SGMM (SAT, bMMI) 5.81 6.54 7.22 13.84 8.70 18.17 10.05 27.75 2836 28.06
DNN (SAT, bMMI) 5.90 6.84 7.35 12.57 940 16.55 9.77 25.97 25.69 2583
ROVER 5) 530 561 6.30 11.16 7.76 14.95 851 23.79 23.60 23.70
8ch CSP+BF+derev. 10.94 11.69 10.98 16.33 12.79 2139 14.02 3433 36.93 35.63
+NLMS 10.94 1232 11.38 17.59 1346 22.96 14.78 3532 35.28 35.30
GMM (f-bMMI) 6.57 6.93 6.80 993 747 12.76 841 20.22 23.19 21.71
GMM (SAT, f-bMMI) 6.17 6.64 6.51 10.13 740 13.15 8.33 20.63 23.67 2215
SGMM (SAT, bMMI) 5.86 6.44 6.29 9.23 6.96 12.83 7.94 20.66 23.50 22.08
DNN (SAT, bMMI) 5.64 6.18 6.16 9.29 7.08 1240 7.79 19.35 22.28 2082
ROVER 5) 4.96 5.62 5.58 8.18 573 1047 6.76 16.90 20.29 18.60
ROVER 6) 5.00 556 538 815 573 10.70 6.75 1747 20.36 18.93

All systems except ROVER are single systems. MFCC feature was used for single system, and MFCC and PLP features were used for ROVER 5). Italicized data were the best

systems in each condition
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Fig. 4 Comparison of WER [%] on REVERB challenge eva set among REVERB challenge participants for 1-ch data. (Multicondition/clean, own
recognizer/challenge baseline recognizer.)

training achieved the best performance for the SIMDATA
and REALDATA among single systems. This shows the
robustness of DNN in unseen conditions. Moreover, sys-
tem combination [ROVER 5)] improved the WER by 1.0—
1.3 % for the SIMDATA and 2.1-2.2 % for the REALDATA.
Among system combination systems, the performance of
ROVER 5) was better than that of ROVER 6), which used
black-box optimization and could be overly tuned on the
development set.

6.8 Comparison to other participants’ results in the
REVERB challenge workshop

The results in the previous section were submitted to

the REVERB challenge workshop. Figure 4 shows the

WERs for the single-channel data of other participants
who belong to the same category, which corresponds to
all cases except “own dataset” in the training data of
the acoustic models in Table 2. Figure 5 shows those
for the eight-channel data. For speech enhancement
purposes, a long—short-term memory recurrent neural
network (LSTM-RNN) was effective [46] (“TUM2” in
the figure). Many participants used DNN-based acous-
tic modeling (e.g., [47] “Nanyang Tech” in the figure).
Speaker adaptation of DNN based on the i-vector tech-
nique in addition to robust features, also performed
well [48] (“INRS Energie” in the figure). We achieved
the best performances in both single- and eight-channel
cases.>

60 Average WER[%]
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b Inst for Infocomm
_ 40 F Research 2425
S i
g 30 —A— INESC-ID-Lisboa  22.63
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Fig. 5 Comparison of WER [%] among REVERB challenge participants for 8-ch data
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7 Conclusions

We evaluated the medium-sized vocabulary continuous
speech recognition task of the REVERB challenge in
order to validate the effectiveness of single-channel dere-
verberation and multi-channel beamforming techniques
and discriminative training of acoustic model and feature
transformation in reverberant environments. For speech
enhancement, experiments show the effectiveness of dere-
verberation of the late reverberation components, and
beamforming using multiple microphones that enhances
direct sounds compared to the reflected sounds.

For speech recognition, we validated the effectiveness
of feature transformations and discriminative training.
Experiments show that these techniques are effective
across various types of reverberation as well as in noisy
environments. To improve robustness in eight types of
environments, the system combination approach was
used. Systems from 2 to 16 were constructed to address
the problem where the best performing system was dif-
ferent from environment to environment. System com-
bination improved performance; in almost all cases, the
combined system outperformed the best performing sin-
gle system. Our proposed method to specifically provide
desired complementary systems for system combination
further improved performance. The best results were
submitted to the REVERB challenge workshop, and our
results were the best among the challenge participants in
the same category, which clarifies the effectiveness of our
proposed approach.

Endnotes

This allows for multiple decoding passes per
utterance, such as for calculating the fMLLR matrix, but
decodes each test utterance separately, without taking
into account information from other test utterances, or
speaker identities.

2In this case, GMM(f-bMMI) exhibited the best
performance (26.25 % WER).

3 Among all the participants, [49] was the best. This is a
state-of-the-art system composed of a liner-prediction
based dereverberation technique, DNN based acoustic
modeling, and rescoring using RNN language model. The
main difference from our system was the use of the “own
dataset” that can compensate for the mismatches
between training data and evaluation data (especially for
the REALDATA) and improve the performance.
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