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Abstract

In this work, we present a novel method for approximating a normal distribution with a weighted sum of normal
distributions. The approximation is used for splitting normally distributed components in a Gaussian mixture filter,
such that components have smaller covariances and cause smaller linearization errors when nonlinear measurements
are used for the state update. Our splitting method uses weights from the binomial distribution as component
weights. The method preserves the mean and covariance of the original normal distribution, and in addition, the
resulting probability density and cumulative distribution functions converge to the original normal distribution when
the number of components is increased. Furthermore, an algorithm is presented to do the splitting such as to keep
the linearization error below a given threshold with a minimum number of components. The accuracy of the estimate
provided by the proposed method is evaluated in four simulated single-update cases and one time series tracking
case. In these tests, it is found that the proposed method is more accurate than other Gaussian mixture filters found in
the literature when the same number of components is used and that the proposed method is faster and more
accurate than particle filters.
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1 Introduction
Estimation of a state from noisy nonlinear measurements
is a problem arising in many different technical appli-
cations including object tracking, navigation, economics,
and computer vision. In this work, we focus on Bayesian
update of a state with a measurement when the measure-
ment function is nonlinear. The measurement value y is
assumed to be a d-dimensional vector whose dependence
on the n-dimensional state x is given by

y = h(x) + ε, (1)

where h(x) is a nonlinear measurement function and ε is
the additive measurement error, assumed to be zero mean
Gaussian and independent of the prior, with nonsingu-
lar covariance matrix R. When a Kalman filter extension
that linearizes the measurement function is used for the
update, the linearization error involved is dependent on
the measurement function and also the covariance of the
prior: generally, larger prior covariances give larger lin-
earization errors. In some cases, e.g., when the posterior
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is multimodal, no Kalman filter extension that uses a sin-
gle normal distribution as the state estimate can estimate
the posterior well.
In this paper, we use Gaussian mixtures (GMs) [1] to

handle situations where the measurement nonlinearity is
high. A GM is a weighted sum of normal distributions

p(x) =
m∑
k=1

wkpN(x|μk ,Pk), (2)

where m is the number of components in the mixture,
wk is the component weight

(∑
wk = 1,wk ≥ 0

)
, and

pN(x|μk ,Pk) is the probability density function (pdf) of
a multivariate normal distribution with mean μk and
covariance Pk . The mean of a GM is

μ =
m∑
k=1

wkμk (3)

and the covariance is

P =
m∑
k=1

wk
[
Pk + (μk − μ)(μk − μ)T

]
. (4)

Gaussian mixture filters (GMFs) work in such a man-
ner that the prior components are split, if necessary,
into smaller components to reduce the linearization error
within a component. In splitting, it is desirable that the
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mixture generated is similar to the original prior. Usu-
ally, the mean and covariance of the generated mixture
are matched to the mean and covariance of the origi-
nal component. Convergence properties are more rarely
discussed, but, for example, in [2] a GM splitting that
converges weakly to the prior component is presented.
We propose in this paper a way of splitting a prior com-

ponent called Binomial Gaussian mixture (BinoGM) and
show that when the number of components is increased,
the pdf and cumulative distribution function (cdf) of the
resulting mixture converge to the pdf and cdf of the
prior component. Furthermore, we propose the Binomial
Gaussian mixture filter (BinoGMF) for time series filter-
ing. BinoGMF uses BinoGM in component splitting and
optimizes the component covariance so that the mea-
surement nonlinearity is kept small, while minimizing the
required number of components needed to have a good
approximation of the prior.
In our GMF implementation, we use the unscented

Kalman filter (UKF) [3,4] for computing the measurement
update. The UKF is used because the proposed split-
ting algorithm uses measurement evaluations that can be
reused in the UKF update. To reduce the number of com-
ponents in the GMF, we use the algorithm proposed in
[5].
The rest of the paper is organized as follows. In

Section 2, related work is discussed. Binomial GM is pre-
sented in Section 3, and BinoGMF algorithms are given
in Section 4. Tests and results are presented in Section 5,
and Section 6 concludes the article.

2 Related work
In this section, we present first the UKF algorithm that
is used for updating the GM components and then five
different GM generating methods that we use also in our
tests section for comparison.

2.1 UKF
The UKF update is based on the evaluation of the mea-
surement function at the so-called sigma points. The
computation of the sigma points requires the computation
of a matrix square root of the covariance matrix P, that is,
a matrix L(P) such that

P = L(P)L(P)T . (5)

This can be done using, for example, the Cholesky
decomposition. The extended symmetric sigma point set
is

Xi =
⎧⎨
⎩

μ i = 0
μ + �i 1 ≤ i ≤ n
μ − �i−n n < i ≤ 2n

, (6)

where n is the dimension of the state,�i = √
n + ξL(P)[:,i]

(L(P)[:,i] is the ith column of L(P)), and ξ is a configuration

parameter. The images of the sigma points transformed
with the measurement function are

Yi = h(Xi). (7)

The prior mean μ and covariance P are updated using

z =
2n∑
i=0

�i,mYi

S =R +
2n∑
i=0

�i,c (Yi − z) (Yi − z)T

C =
2n∑
i=0

�i,c (Xi − μ) (Yi − z)T ,

K =CS−1

μ+ =μ + K(y − z)
P+ =P − KSKT

(8)

where μ+ is the posterior mean, P+ is the posterior
covariance, �0,m = ξ

n+ξ
, �0,c = ξ

n+ξ
+ (1−α2

UKF +βUKF),
�i,c = �i,m = 1

2n+2ξ , (i > 0) and ξ = α2
UKF(n + κUKF) −

n. The variables with subscript UKF are configuration
parameters [3,4].
When UKF is used to update a GM, update (8) is com-

puted separately for each component. Each component’s
weight is updated with the innovation likelihood

w+
k = wkpN (y|zk , Sk), (9)

where k is the index of kth mixture component. Weights
are normalized so that

∑m
k=1 w

+
k = 1.

2.2 Havlak and Campbell (H&C)
In H&C [6], a GM is used to improve the estimation in
the case of the nonlinear state transition model, but the
method can be applied also to the case of the nonlinear
measurement model by using measurement function in
place of state transition function.
In H&C, a linear model is fitted to the transformed

sigma points using least squares fitting

argmin
∑

(AXi + b − Yi)
2 . (10)

For computing the direction of maximum nonlinearity,
the sigma points Xi are weighted by the norm of their
associated residual ||AXi + b − Yi|| and the direction
of nonlinearity is the eigenvector corresponding to the
largest eigenvalue of the second moment of this set of
weighted sigma points.
In the prior splitting, the first dimension of a stan-

dard multivariate normal distribution is replaced with a
precomputed mixture. An affine transformation is then
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applied to this mixture. The affine transformation is
chosen to be such that after transformation the split
dimension is aligned with the direction of the maximum
nonlinearity and such that the resulting mixture is a good
approximation of the prior component.

2.3 Faubel and Klakow (F&K)
In [7], the nonlinearity corresponding to ith pair of sigma
points is

ηi = 1
2
||Yi + Yi+n − 2Y0||. (11)

If there is more than one component, the component
next to be split is chosen to be the one that maximizes

√
wiηi. (12)

In the paper, there are two alternatives for choosing the
direction of maximum nonlinearity. Better results with
fewer components were obtained in [7] by using the eigen-
vector corresponding of the largest eigenvalue of matrix

n∑
i=1

ηi
(Xi − Xi+n) (Xi − Xi+n)

T

||Xi − Xi+n||2 . (13)

The splitting direction is chosen to be the eigenvector
of the prior covariance closest to this direction, and the
prior components are split into two or three components
that preserve the mean and covariance of the original
component.

2.4 Split andmerge (S&M)
In the split and merge unscented Gaussian mixture fil-
ter, the component to be split is chosen to be the one
that would have the highest posterior probability (9) with
nonlinearity

η =
∑ ||Yi + Yi+n − 2Y0||2

||Yi − Yi+n||2 (14)

higher than some predefined value [8]. The splitting
direction is chosen to be the eigenvector correspond-
ing to the maximum eigenvalue of the prior covariance.
Components are split into two components with equal
covariances.

2.5 Box GMF (BGMF)
The Box GMF [2] uses the nonlinearity criterion

√
trPHiPHi√

R[i,i]
> 1, for some i, (15)

where Hi is the Hessian of the ith component of the mea-
surement equation. This criterion is only used to assess
whether or not the splitting should be done.
If a measurement is considered highly nonlinear, the

prior is split into a grid along all dimensions. Each grid
cell is replaced with a normal distribution having the

mean and covariance of the pdf inside the cell and hav-
ing as weight the amount of probability inside the cell. It is
shown that the resulting mixture converges weakly to the
prior component.

2.6 Adaptive splitting (AS)
In [9], the splitting direction is computed by finding
the direction of maximum nonlinearity of the following
transformed version of criterion (15) for one-dimensional
measurements:

tr PHPH > R. (16)

It is shown that the direction of the maximum nonlin-
earity is aligned with the eigenvector corresponding to
the largest absolute eigenvalue of PH. In [9], a numerical
method for approximating the splitting direction that is
exact for second-order polynomial measurements is also
presented.

3 Binomial Gaussianmixture
The BinoGM is based on splitting a normal distributed
prior component into smaller ones using weights and
transformed locations from the binomial distribution.
The binomial distribution is a discrete probability dis-

tribution for the number of successes in a sequence of
independent Bernoulli trials with probability of success p.
The probability mass function for having ks successes in
ms trials is

pB,ms(ks) =
(
ms
ks

)
pks(1 − p)ms−ks . (17)

A standardized binomial distribution is a binomial dis-
tribution scaled and translated so that it has zero mean
and unit variance. The pdf of a standardized binomial
distribution can be written using Dirac delta notation as

pB,m(x) =
m∑
k=1

(
m − 1
k − 1

)
pk−1(1 − p)m−kδ

×
(
x − k − 1 − (m − 1)p√

(m − 1)p(1 − p)

)
,

(18)

where, for later convenience we have used m = ms + 1,
the number of possible outcomes, and k = ks + 1. By
the Berry-Esseen theorem [10], the sequence of cdfs of
(18) converges uniformly to the cdf of the standard nor-
mal distribution as m increases with fixed p. In other
words, the sequence of standardized binomial distribu-
tions converges weakly to a standard normal distribution
as the number of trials is increased. The error of (18)
as an approximation of a standard normal distribution is
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of order O
(

1√
m(1−p)p

)
[11]. This error is smallest when

p = 0.5, in which case (18) simplifies to

pB,m(x) =
m∑
k=1

(
m − 1
k − 1

)(
1
2

)m−1
δ

(
x − 2k − m − 1√

m − 1

)
.

(19)

If a random variable having a standardized binomial
distribution is scaled by σ , then its variance is σ 2.
The BinoGM is constructed using a mixture of standard

normal distributions along the main axes, with mixture
component means and weights selected using a scaled
binomial distribution. The mixture product is then trans-
formed with an affine transformation to have the desired
mean and covariance.
To illustrate, the construction of a two-dimensional GM

is shown in Figure 1. On the left, there are two binomial
distributions having variances σ 2

1 = 1 and σ 2
2 = 8 with

probability mass distributed in m1 = 5 and m2 = 3
points. One-dimensional GMs are generated by taking
point mass locations and weights from the discrete dis-
tributions as the means and weights of standard normal
distributions. The product of the two one-dimensional
GMs is a two-dimensional GM, to which the affine trans-
formation (multiplication with an invertible matrix T and
addition of a mean μ) is applied.
A BinoGM consisting of mtot = ∏n

i=1mi components
has a pdf of the form

pBinoGM(x) =
mtot∑
l=1

wlpN (x|μl,P), (20)

-where

wl =
n∏

i=1

(
mi − 1
Cl,i − 1

)(
1
2

)mi−1
(21a)

μl = T

⎡
⎢⎢⎢⎢⎢⎢⎣

σ1
2Cl,1−m1−1√

m1−1

σ2
2Cl,2−m2−1√

m2−1
...

σn
2Cl,n−mn−1√

mn−1

⎤
⎥⎥⎥⎥⎥⎥⎦+ μ (21b)

P = TTT (21c)

and C is the Cartesian product

C = {1, . . . ,m1}×{1, . . . ,m2}× . . .×{1, . . . ,mn}, (22)
which contains sets of indices to binomial distributions of
all mixture components. Notation Cl,i is used to denote
the ith component of the lth combination. If mk = 1, the
term 2Cl,k−mk−1√

mk−1 in (21b) is replaced with 0.
We use the notation

xBinoGM ∼ BinoGM(μ,T ,�,m1, . . . ,mn), (23)

where � = diag
(
σ 2
1 , . . . , σ 2

n
)
, to denote a random vari-

able distributed according to a BinoGM. Parameters of the
distribution are μ ∈ R

n, T ∈ R
n×n ∧ detT �= 0 and

∀i; 1 ≤ i ≤ n : mi ∈ N
+ ∧ σi ∈ R

+.
Matrix T is a square root (5) of a component covari-

ance P. We use notation T instead of L(P) here, because
the matrix square root L(P) is not unique and the choice
of T affects the covariance of the mixture (25). BinoGM
could also be parameterized using prior covariance P0
instead of T . In such case, T should be replaced with
T = L(P0)(� + I)− 1

2 . In this case, the component covari-
ance is affected by the choice of L(P0).

Figure 1 Construction of a BinoGM.
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We will next show that

E(xBinoGM) = μ (24)
cov(xBinoGM) = P0 = T(� + I)TT (25)

lim
m1,...,mn→∞BinoGM(μ,T ,�,m1, . . . ,mn)

= N
(
μ,T(� + I)TT

)
.

(26)

The limit (26) for BinoGM is in the sense of the weak
convergence and convergence of the pdf.
First, we consider a sum of a scaled standardized bino-

mial random variable xB,m and a standard normal random
variable xN that are independent,

σxB,m + xN . (27)

Because xB,m converges weakly to standard normal
distribution, then by the continuous mapping theorem,
σxB,m converges weakly to normal distribution with vari-
ance σ 2 [12].
The pdf of a sum of independent random variables is the

convolution of the pdfs, and the cdf is the convolution of
the cdfs [13]. For (27), the pdf is

gm(x) =
∫ ∞

−∞
pB,m(y)pN (x − y, 0, 1)dy

=
m∑
i=1

wipN (x|μi, 1) ,
(28)

where wi = (m−1
i−1

)
and μi = σ 2i−m−1√

m−1 . This is a pdf of a
GM whose variance is σ 2 + 1. For the weak convergence,
we use the following result (Theorem 105 of [13]):

Theorem 1. If cdf �m(x) converges weakly to �(x) and
cdf Bm(x) converges weakly to B(x) and �m and Bm are
independent, then the convolution of �m(x) and Bm(x)
converges to the convolution of �(x) and B(x).

Because the cdf of σxB,m converges weakly to the cdf
of a normal distribution with variance σ 2 and the sum of
two independent normally distributed random variables is
normally distributed, the cdf of the sum (27) converges to
the cdf of a normal distribution.
Convergence of the pdf means that

sup
x∈R

|gm(x) − pN
(
x|0, σ 2 + 1

) | → 0, asm → ∞. (29)

For this, we consider the requirements given in [14]
(Lemma 1).

1. The pdf gm exists
2. Weak convergence
3. supm |gm(x)| ≤ M(x) < ∞, for all x ∈ R

4. For every x and ε > 0, there exist δ(ε) andm(ε) such
that |x − y| < δ(ε) implies that |gm(x) − gm(y)| < ε

for allm ≥ m(ε).

The pdf (28) exists and the weak convergence was
already shown. The third item is satisfied because the
maximum value of the pdf is bounded:

gm(x) =
m∑
i=1

wipN (x,μi, 1) ≤ max(pN (x|0, 1))

= 1√
2π

< ∞.
(30)

Then from

|gm(x) − gm(y)| ≤
m∑
i=1

wi|pN ,i(x) − pN ,i(y)|

∃c∈R≤
m∑
i=1

wi|p′
N ,i(c)||x − y|

< δmax
(|p′

N (c)| + 1
)
,

(31)

we see that by choosing δ = ε
max |p′

N (c)|+1 , the require-
ments of the fourth item are fulfilled and the pdf
converges.
For convergence of a multidimensional mixture, con-

sider a random vector x whose ith component is given by

x[i] = σixB,mi + xN ,i, (32)
where xB,mi has the standardized binomial distribution
(19) and xN ,i has the standard normal distribution. Let the
components x[i] be independent. The variance of x is

var x = � + I, (33)

where �[i,i] = σ 2
i , and the multidimensional cdf and pdf

are products of cdfs and pdfs of each component. As we
showed, the approximation error in the one-dimensional
case approaches 0 when the number of components is
increased. Now the multidimensional pdf and cdf con-
verge also because

n∏
i=1

lim
εi→0

fi(x) + εi =
n∏

i=1
fi(x), (34)

where εi is an error term.
Let random variable x be multiplied with a nonsingular

matrix T and be added to a constant μ

xBinoGM = Tx + μ. (35)

As a consequence of continuous mapping theorem [12],
the cdf of Tx + μ approaches the cdf of a normal dis-
tribution with mean μ and covariance T(� + I)TT . The
transformed variable has pdf

pxBinoGM (xBinoGM) = px
(
T−1 (xBinoGM − μ)

) |detT−1|.
(36)

Because px converges to a normal distribution, pxBinoGM
converges also and as such the pdf of the multidimen-
sional mixture (35), which is BinoGM (21), converges to a
normal distribution.
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4 Binomial Gaussianmixture filter
In this section, we present BinoGMF, which uses BinoGM
for splitting prior components when nonlinear mea-
surements occur. In Section 4.1, we propose algorithms
for choosing parameters for BinoGM in the case of
one-dimensional measurements. After the treatment of
one-dimensional measurements, we extend the proposed
method for multidimensional possibly dependent mea-
surements in Section 4.2, and finally, we present the
algorithm for time series filtering in Section 4.3.

4.1 Choosing the parameters for a BinoGM
The BinoGM can be constructed using (21), when
numbers of components m1, . . . ,mn, binomial variances
σ1, . . . , σn, and parameters of the affine transformation T
and μ are given. Now the goal is to find parameters for the
BinoGM such that it is a good approximation of the prior,
the nonlinearity is below a desired threshold ηlimit, and the
number of components is minimized. In this subsection,
we concentrate on the case of a one-dimensional mea-
surement. Treatment of multidimensional measurements
is presented in Section 4.2.
In splitting a prior component, the parameters are cho-

sen such that the mean and covariance are preserved. The
mean is preserved by choosing μ in (21b) to be the mean
of the prior component. If the prior covariance matrix is
P0 and it is split into smaller components that have covari-
ance P (i.e., P0 − P is positive semi-definite), matrices T
and � have to be chosen so that

TTT = P (37a)
T�TT + P = P0. (37b)

It was shown in Section 3 that the BinoGM converges
to a normal distribution when the number of compo-
nents is increased. In practical use cases, the number of
components has to be specified. We propose a heuristic

rule to choose the number of components such that two
equally weighted components that are next to each other
produce a unimodal pdf. In Appendix 1, it is shown that
unimodality is preserved if

m ≥ σ 2 + 1. (38)

Because we want to minimize the number of compo-
nents and we can choose σ so that σ 2 is an integer, we will
use the following relationship

m = σ 2 + 1. (39)

In Figure 2, this rule is illustrated in the situation where
a mixture consisting of unit variance components is used
to approximate a Gaussian prior having variance σ0 = 3.
In this case, (27) gives σ 2 = 2. According to (39), the pro-
posed number of components is three. The figure shows
how the mixture with two components has clearly distinct
peaks and that the approximation improvement when
using four components instead of three is insignificant.
For the multidimensional case, the component number

rule generalizes in a straightforward way to

mi = �[i,i] + 1. (40)

Using this relationship, matrix � in (67) is linked to
the total number of components by the formula mtot =∏

mi = ∏(
�[i,i] + 1

)
.

To approximate the amount of linearization error in the
update, we use

η = trPHPH
R

(41)

as the nonlinearity measure, which is similar to the
ones used in [2,9]. The Hessian H of the measure-
ment function is evaluated at the mean of a compo-
nent and treated as a constant. Analytical evaluation of
this measure requires that the second derivative of the

Figure 2 Effect of the number of components on the prior approximation.
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measurement function (1) exists. The optimal compo-
nent size is such that the total number of components
is minimized while (40) is satisfied and the nonlinearity
(41) is below ηlimit. Nonlinearity measure (41) is defined
for one-dimensional measurements only. We present a
method for handling multidimensional measurements in
Section 4.2.
We show in Appendix 2 that if we neglect the integer

nature of mi, the optimal values for mi are 1 or satisfy the
equation

λ2i
m2

i
= λ2j

m2
j

(42)

with the conditions that mi ≥ 1 and 1
R
∑ λ2i

m2
i

= ηlimit,
where λi is the ith eigenvalue in the eigendecomposition

V�VT = L(P0)THL(P0). (43)

The optimal T matrix is

T = L(P0)Vdiag
(

1√m1
, . . . ,

1√mn

)
(44)

and the component covariance is

P = L(P0)Vdiag
(

1
m1

, . . . ,
1
mn

)
VTL(P0)T . (45)

Using (44) and (40), the component mean becomes

μl = L(P0)Vdiag
(

1√m1
, . . . ,

1√mn

)
⎡
⎢⎢⎢⎢⎣
2Cl,1 − m1 − 1
2Cl,2 − m2 − 1

...
2Cl,n − mn − 1

⎤
⎥⎥⎥⎥⎦+ μ.

(46)

In (43), L(P0)THL(P0) can be replaced with 1
γ 2Q, where

Q[i,j] =

⎧⎪⎨
⎪⎩
h(x + �i) + h(x − �i) − 2h(x) , i = j
1
2 [ h(x + �i + �j) + h(x − �i − �j)−
2h(x) − Q[i,i] − Q[j,j]] , i �= j

(47)

and �i = γL(P0)[:,i]. If γ is chosen as γ = √
n + ξ ,

then the computed values of the measurement function
in (47) may also be used in the UKF [9]. The Q matrix
can also be used for computing the amount of non-
linearity (41), because trPHPH ≈ QQ

γ 4 [9]. Using the
Q matrix instead of the analytically computed H takes
measurement function values from a larger area into
account, analytical differentiation of the measurement
function is not needed, and the numerical approximation
can be done for any measurement function (1) that is
defined everywhere. Because the approximation is based
on second-order polynomials, it is possible that when the
measurement function is not differentiable, the computed
nonlinearity value does not represent the nonlinearity
well.
Figure 3 shows three different situations where second-

order polynomials are fitted to a function either using
Taylor expansion or sigma points. The analytical nonlin-
earity measure (43) can be interpreted as the use of the
Taylor expansion for nonlinearity computation and (47) as
a second-order polynomial interpolation at sigma points
for nonlinearity computation. The figure shows how the
analytical fit is more accurate close to the mean point, but
the second-order approximation gives a more uniform fit
in the whole region covered by sigma points. The two first
functions in Figure 3 are smooth, but the third is piecewise
linear, i.e., its Hessian is zero everywhere except at points

Figure 3 Second-order polynomials fitted to three nonlinear measurement functions using Taylor expansion and sigma points.
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where the slope changes, where it is undefined. The ana-
lytical fit of this function is linear, but the fit to the sigma
points detects nonlinearity.
Our proposed algorithm for choosing the integer num-

ber of components is presented in Algorithm 1. At the
start of the algorithm, the nonlinearity is reduced to ηlimit,
but if this reduction produces more than mlimit com-
ponents, the component covariance is chosen such that
nonlinearity is minimized while having at most mlimit
components. The algorithm for splitting a Gaussian with
component weight w0 is summarized in Algorithm 2.

Algorithm 1: Algorithm for choosing the number
of components for a scalar measurement
1 η ← Rηlimit // Remaining nonlinearity

scaled with scalar measurement
variance R

2 i ← 1
3 Compute V and � of eigendecomposition

V�VT = 1/γ 2Q so that eigenvalues are sorted
according to their absolute values. // Q is a
n × n matrix defined in (47)

4 while i ≤ n do
5 mi ← max

(⌈√
(n+1−i)

η
|λi|

⌉
, 1
)

// Dimensions share of

nonlinearity
λ2i
m2

i
≤ η

n+1−i

6 η ← η − λ2i
m2

i
// Update remaining

nonlinearity
7 i ← i + 1
8 end
// If number of components exceeds

the maximum
9 if

∏n
i=1mi > mlimit then

10 i ← 1
11 while λi = 0 & i ≤ n do
12 mi ← 1 // For linear dimension

use 1 component
13 i ← i + 1
14 end
15 while i ≤ n do

// Number of components
proportional to |λi|

16 mi ←

max
(⌊

|λi|
(

mlimit∏i−1
j=1 mj

∏n
j=i |λj|

) 1
n−i+1

⌋
, 1
)

17 i ← i + 1
18 end
19 end

Algorithm 2: Algorithm for splitting a Gaussian
1 Compute n × nmatrix square root L(P0) // Use

the same L(P0) in every step
2 Use L(P0) to compute Q // (47)

3 V�VT = 1/γ 2Q // Compute
eigendecomposition (43)

4 Computem1, . . . ,mn using Algorithm 1
5 T ← L(P0)Vdiag

(
1√m1

, . . . , 1√mn

)
// n × n

transformation matrix (44)
6 X ← R

n×1 // Initialize X for
orthogonal means

7 w ← w0 // Prior weight
8 mX ← 1 // Current size of X
// Go through all combinations

9 for k = 1 : n do

10 X ←
⎡
⎣ mk︷ ︸︸ ︷
X, . . . ,X

⎤
⎦ // Catenate matrix X

mk times

11 w ←
[ mk︷ ︸︸ ︷
w, . . . ,w

]
// Catenate w mk

times
12 for j = 1 : mk do
13 for i = 1 : mX do
14 X[k,mj−i+1] ← 2j − mk − 1

// 2C − m − 1 part of (46)

15 w[mj−i+1] ← (mk−1
j−1

) ( 1
2
)mk−1 w[m<k j−i+1]

// binomial weight

16 end
17 mX ← mXmk // Number of

components in the mixture so
far

18 end
19 end

// Parameters for components of the
BinoGM (1 ≤ l ≤ mX = ∏

mi)
20 μl ← TX[:,l] + μ // Mean (46)
21 wl ← w[l] // Weight

22 Pl ← TTT // Covariance

Figure 4 shows the result of splitting a prior in a highly
nonlinear case. To verify the relationship between m and
σ 2 (40) and determine which ηlimit should be used, we
tested the splitting with different parameters (·× tells how
much was the number of components increased). In the
figure captions,m is the total number of components and
KL is the Kullback-Leibler divergence [15]∫

ln
(
p(x)
q(x)

)
p(x)dx, (48)
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Figure 4 Effect of parameters on posterior approximation. Green dots are located at posterior component means, and red lines show where the
measurement likelihood is highest. In subfigure captions, ηlimit is the nonlinearity threshold for each component, ·× is the number of components
compared to proposed,m is the total number of components, and KL is the Kullback-Leibler divergence of the GM posterior approximation with
respect to the true posterior.

where p(x) is the true posterior and q(x) is the approxi-
mated posterior estimate.
From the figure, we can see that if the number of com-

ponents is quadrupled from (40), the KL divergence does
not improve significantly. If the subfigures with the same

numbers of components are compared, it is evident that
subfigures with (ηlimit = 4) have clearly the worst KL
divergence. Subfigures with ηlimit = 0.25 have slightly
better KL divergence than whose with ηlimit = 1 but
are by visual inspection more peaky. The KL divergence
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reduces towards the bottom right corner, which indicates
convergence.

4.2 Multidimensional measurements
To be able to use BinoGMF with possibly correlated mul-
tidimensional measurements, the nonlinearity measure
(41) for scalar measurements cannot be applied directly.
However, because we assume that the measurement noise
is additive and nondegenerate Gaussian, themeasurement
can be decorrelated with a linear invertible transformation

ŷ = L(R)−1y = L(R)−1h(x) + L(R)−1ε. (49)

The covariance of the transformed measurements is
L(R)−1RL(R)−I = I. This kind of transformation does
not change the posterior, which is shown for the UKF in
Appendix 3.
The UKF update is an approximation of a Bayesian

update of a prior, which can be written as

p(x|y) ∝ p(x)p(y|x), (50)

where p(x|y) is the posterior, p(x) is the prior, and p(y|x)
is the measurement likelihood. If two measurements are
conditionally independent, the combined measurement
likelihood is the product of likelihoods

p(y1, y2|x) = p(y1|x)p(y2|x). (51)

Thus, the update of prior with two condition-
ally independent measurements is p(x|y1, y2) ∝
p(x)p(y1|x)p(y2|x), which can be done with two separate
updates, first p(x|y1) ∝ p(x)p(y1|x) and then, using this as
the prior for the next update, p(x|y1, y2) ∝ p(x|y1)p(y2|x).
Thus, the measurements can be applied one at a time. Of
course, when using an approximate update method, such
as the UKF, the result is not exactly the same because
there are approximation errors involved. Processing
measurements separately can improve the accuracy, e.g.,
when y1 is a linear measurement, then the prior for the
second measurement becomes smaller and thus the effect
of its nonlinearity is reduced.

4.3 Time series filtering
So far, we have discussed the update of a prior compo-
nent with a measurement at a single time step. For the
time series estimation, the filter requires in addition to
Algorithms 1 and 2 a prediction step and a component
reduction step.
If the state model is linear, the predicted mean of a com-

ponent is μ(t) = Fμ+
(t−1), where F is the state transition

matrix and μ+
(t−1) is the posterior mean of the previous

time step. The predicted covariance is P(t) = FP+
(t−1)F

T +
W , where W is the covariance of the state transition
error. The weights of components do not change in the

prediction step. If the state model is nonlinear, a sigma
point approach can be also used for the prediction [3].
For component reduction, we use themeasure proposed

in [5]

Bi,j = 1
2
[
(wi + wj) log detPi,j−wi log detPi − wj log detPj

]
, (52)

where Pi,j = wiPi+wjPj
wi+wj

+ (μi − μj)(μi − μj)T . When-
ever the number of components is larger than mreduce
or Bi,j < Blimit, the component pair that has the small-
est Bi,j is merged so that the mean and covariance of
the mixture is preserved. The test for Blimit is our own
addition to the algorithm to allow the number of compo-
nents to be reduced belowmreduce if there are very similar
components.
When the prior consists of multiple components, the

value ofmlimit for each component is chosen proportional
to the prior weight so that they sum up to the total limit of
components. Algorithm 3 shows the BinoGMF algorithm.
AMATLAB implementation of BinoGMF is also available
[see Additional file 1].

Algorithm 3: Binomial Gaussian mixture filter
1 for k=1,. . . ,m do
2 Predict components
3 end
4 Computemk,limit for each component
5 ŷ ← L(R)−1y // Make measurement error

covariance unit diagonal by
multiplying d-dimensional
measurement y with L(R)−1

6 ĥ(x) ← L(R)−1h(x) // Define decorrelated
measurement functions

7 for i=1,. . . ,d do
8 for k=1,. . . ,m do
9 Compute L(P0) for kth prior component

10 Use L(P0) and ĥ[i](x) to compute Q̂i
// (47)

11 if trQ̂iQ̂i ≥ ηlimit then
12 Use Algorithm 2 to split the component
13 Update resulting components with UKF,

Section 2.1
14 Update component weights (9)
15 else
16 Update component with UKF,

Section 2.1
17 Update component weight (9)
18 end
19 end
20 Normalize weights
21 Reduce components
22 end
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5 Tests
We evaluate the performance of the proposed BinoGMF
method in two simulation settings. First, the splitting
method is compared with other GM splitting algorithms
in single prior component single measurement cases, and
then BinoGMF is compared with a particle filter in a time
series scenario. In all cases, a single-component UKF is
used as a reference.

5.1 Comparison of GM splitting methods
To compare the accuracy of the proposed BinoGMF with
other GM splitting methods presented in Section 2, we
update a one-component prior with a nonlinear measure-
ment. The accuracy of the estimate is evaluated with two
measures: mean residual and the Kullback-Leibler diver-
gence (48). The mean residual is the absolute value of
the difference of the mean of the posterior estimate and
the mean of the true posterior. The integrals involved
in computing results were computed using Monte Carlo
integration. Each simulation case was repeated 100 times.
Cases are as follows:

• 2D range - a range measurement in two-dimensional
positioning

• 2D second order - the measurement consists of a
second-order polynomial term aligned with a random
direction and a linear measurement term aligned
with another random direction

• 4D speed - a speedometer measurement with a highly
uncertain prior

• 10D third order - a third-order polynomial
measurement along a random direction in a
ten-dimensional space

For computation of sigma points and UKF updates, we
used the parameter values αUKF = 0.5, κUKF = 0, and
βUKF = 2. Detailed parameters of different cases are
presented in Appendix 4.
For comparison, we use a UKF that estimates the poste-

rior with only one component and the GMFs presented in
Section 2. In our implementation, there are some minor
differences with the original methods:

• For H&C, the one-dimensional mixture is optimized
with a different method. This should not have a
significant effect on results.

• For F&K, [7] gives two alternatives for choosing the
number of components and for computing the
direction of nonlinearity. We chose to use split into
three components, and the direction of nonlinearity
was computed using the eigendecomposition.

• In AS, splitting is not done recursively; instead, every
split is done to the component with highest

nonlinearity. This is done to get the desired number
of components. This probably makes the estimate
more accurate than with the original method.

Our implementation of UKF, H&C, F&K, and S&Mmight
have some other inadvertent differences from the original
implementations.
The nonlinearity-based stopping criterion is not tested

in this paper. Splitting is done with a fixed upper limit on
the number of components. We chose to test the meth-
ods with at most 3, 9, and 81 components for consistency
with the number of components in BGMF. The number
of components in BGMF is (2N2 + 1)n, where N ∈ N

is a parameter that adjusts the number of components.
Since BinoGMF does the splitting into multiple directions
at once, the number of components of BinoGMF is usually
less than the maximum limit.
Figure 5 shows the 25%, 50%, and 75% quantiles for

each tested method in different cases. The figure shows
how the proposed method has the best posterior approx-
imation accuracy with a given number of components,
except in the 4D speed case where AS has slightly bet-
ter accuracy. This is due to large variations of the Hessian
H within the region where the prior pdf is significant. In
the 2D range case, the posterior accuracy of AS and S&M
does not improve when the number of components is
increased from 9 to 81. This is caused by prior approxima-
tion error as the AS and S&M splitting does not converge
to the prior.
In Table 1, the estimation of direction nonlinearity is

tested in a two-dimensional case where the prior has iden-
tity covariance matrix and the measurement function is

y = ea
Tx. (53)

The true direction of nonlinearity is a. AS and BinoGMF
use the same algorithm for computing the direction of
maximum nonlinearity. S&M uses the maximum eigen-
value of the prior component as the split direction, and in
this case, it gives the same results as choosing the direc-
tion randomly. In the table, �θ is the average error of the
direction of maximum nonlinearity.
In two dimensions, choosing a random direction for

splitting has a mean error of 45 degrees. The good per-
formances of the proposed method and AS in Figure 5
are partly due to the algorithm for estimating the direc-
tion of maximum nonlinearity, because they have clearly
the most accurate nonlinearity direction estimates. The
0.8 degree error of AS and BinoGMF could be reduced by
choosing sigma points closer to the mean, but this would
make the estimate more local. The BinoGMF was also
tested with αUKF = 10−3. This resulted in splitting direc-
tion estimates closer than 10−5 degrees, but there was
significant accuracy drop in the 4D speed case. With a
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Figure 5 Mean residuals and estimated mean and corresponding Kullback-Leibler divergences.

small value of αUKF, the computation of Q does not take
variations of the Hessian into account. This causes fewer
problems with AS, because AS splits only in the direc-
tion of maximum nonlinearity and then re-evaluates the
nonlinearity for the resulting components.
Table 2 shows the number of measurement function

evaluations of each method assuming that the update is
done with UKF using a symmetric set of sigma points.

Table 1 Average error on estimation of the splitting
direction in degrees

Random F&K H&C BinoGMF

�θ 45 22 23 0.8

BinoGMF does fewer measurement function evaluations
than AS; it does significantly more than other methods
only if n � m. Because BinoGMF evaluates the nonlinear-
ity and does the splitting all at once, the computationally

Table 2 Number of measurement function evaluations

Method Evaluations Order

H&C (m + 1)(2n − 1) O(mn)

F&K (m+1)
2 (2n + 1) Omn)

S&M (2m − 1)(2n − 1) O(mn)

BGMF m(2n + 1) O(mn)

AS (m − 1)(n2 + n) + 2n + 1 O(mn2)

BinoGMF n2+n
2 + m(2n + 1) O(n2 + mn)
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most expensive part of the algorithm is done only once
and the update of themixture can be done with UKF. Also,
because the resulting components of a split have equal
covariance matrix P = TTT , T(44) can be used as the
matrix square root for UKF for all components.

5.2 Time series filtering
In the time series evaluation, we simulate the navigation of
an aircraft. The route does circular loops with a radius of
90 m if seen from above. In the vertical dimension, the air-
craft first ascends until it reaches 100 m, flies at constant
altitude for a while, and finally descends. In the simula-
tion, there are five ground stations that emit signals that
the aircraft receives.
There are two kinds of measurements available:

• Time of arrival (TOA) [16]

y = ‖rreceiver − remitter‖ + δreceiver + εreceiver + ε,
(54)

where rreceiver is the aircraft location, remitter is the
location of a ground station, δreceiver is the receiver
clock bias, εreceiver is an error caused by receiver clock
jitter that is the same for all measurements, and ε is
the independent error. The covariance of a set of
TOA measurements is

RTOA = I + 521, (55)

where 1 is a matrix of ones.
• Doppler [17]

y = vTreceiver(rreceiver − remitter)

‖rreceiver − remitter‖ +γreceiver+εreceiver+ε,

(56)

where vreceiver is the velocity of the aircraft and
γreceiver is the clock drift. The Doppler measurement
error covariance used is

RDoppler = I + 1. (57)

The probability of receiving a measurement is depen-
dent on the distance from a ground station, and a TOA
measurement is available with 50% probability when a
Doppler measurement is available. The estimated state
contains eight variables, three for position, three for veloc-
ity, and one for each clock bias and drift. The state model
used with all filters is linear. State model, true track, and
ground station parameters can be found in Appendix 4.
We compare BinoGMF with three different parameter

sets with UKF, a bootstrap particle filter (PF) that uses sys-
tematic resampling [18,19] with different numbers of par-
ticles, and a Rao-Blackwellized particle filter (RBPF) that
is implemented according to [20]. The Rao-Blackwellized
particle filter exploits the fact that when conditioned with

position variables, the measurement functions become
linear-Gaussian with respect to the remaining state vari-
ables. Consequently, position variables are estimated with
particles, and for the remaining variables, there is a nor-
mal distribution attached to every particle. BinoGMF
parameters are presented in Table 3.
Figure 6 shows 5%, 25%, 50%, 75%, and 95% quantiles of

mean position errors of 1,000 runs. Because some errors
are large, on the left, there are plots that show a maxi-
mum error of 200 m, and on the right, the maximum error
shown is 20 m. In some test cases, all particles end up hav-
ing zero weights due to finite precision in computation.
In these cases, the particle filters are considered to have
failed. This causes lines in the plot to end at some point,
e.g., with 100 particles, the RBPF fails in more than in 50%
of cases.
The UKF and BinoGMF results are located according

to their time usage compared to the time usage of PFs.
The figure shows how BinoGMF achieves better position-
ing accuracy with smaller time usage than the PFs. The
95% quantile of UKF and BinoGMF4 is more than 150 m,
which is caused bymultimodality of the posterior. In these
cases, UKF and BinoGMF4 follow only wrong modes.
The RBPF has better accuracy than the PF with a similar
number of particles, but is slower. In our implementa-
tion, updating of one Rao-Blackwellized particle is 6 to 10
times faster than the UKF update depending on howmany
particles are updated. The RBPF requires much more
particles than BinoGMF requires components. The boot-
strap PF is faster than the RBPF, because our MATLAB
implementation of the bootstrap PF is highly optimized.
The locations of the ground stations are almost copla-

nar, which causes the geometry of the test situation to
be such that most of the position error is in the alti-
tude dimension. Figure 7 shows an example of the altitude
estimates given by BinoGMF16, bootstrap PF with 104
particles, RBPF with 100 particles, and UKF. Both PFs are
slower than the BinoGMF16.
The figure shows how the PF and BinoGMF16 estimates

are multimodal at several time steps, but most of the time,
BinoGMF16 has more weight on the correct mode. The
RBPF starts in the beginning to follow a wrong mode and
does not recover during the whole test. The UKF estimate
starts out somewhere between the modes, and it takes a
while to converge to the correct mode. UKF could also
converge to a wrong node. In multimodal situations as in

Table 3 Parameters used in filtering test for BinoGMF

mtotal mreduce ηlimit Blimit

BinoGMF4 4 2 4 0.1

BinoGMF16 16 4 1 0.01

BinoGMF64 64 16 0.25 0.001
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Figure 6 Position estimate error comparison between BinoGMF, PF, RBPF, and UKF.

Figure 7 Altitude estimates of BinoGMF16, PF, RBPF, and UKF.
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Figure 7, the comparison of the accuracy of the mean to
the true route is not necessarily so relevant, e.g., in PF at
time step 70, the mean is located in a low probability area
of the posterior.
This simulated test showed that there are situations

where the BinoGMF can outperform PFs. We found also
that if the state transition model noise (87) was made
smaller without changing the true track, then the num-
ber of required particles increased fast, while the effect on
BinoGMF was small.

6 Conclusions
In this paper, we have presented the BinoGMF. BinoGMF
uses a binomial distribution in the generation of a GM
from a normal distribution. It was shown that the pdf and
cdf of the resulting mixture converge to the prior when
the number of components is increased. Furthermore, we
presented an algorithm for choosing the component size
so that the nonlinearity is not too high, the resulting mix-
ture is a good approximation of the prior, and the number
of required components is minimized.
We compared the proposed method with UKF and five

different GMFs in several single-step estimation simula-
tion cases and with UKF and PF in a time series estimation
scenario. In these tests, the proposed method outper-
forms other GM-based methods in accuracy, while using
a similar amount or fewer measurement function eval-
uations. In filtering, BinoGMF provided more accurate
estimates faster than bootstrap PF or Rao-Blackwellized
PF. BinoGMF can be used in suitable situations instead
of PFs to get better estimation accuracy, if the measure-
ment error can be modeled as additive and normally
distributed.
Because BinoGMF performed well in all tests, we rec-

ommend it to be used instead of other GM splitting
methods to get better estimation accuracy. It performs
especially well in situations where there is more than a few
dimensions and in cases where it is essential to have an
accurate estimate of the posterior pdf.

Appendices
Appendix 1: Determining the component distance
Consider two equally weighted unit variance one-
dimensional components located at an equal distance �μ

from the origin, with pdf

f (x) = w√
2π

e−
(x−�μ)2

2 + w√
2π

e−
(x+�μ)2

2 . (58)

Due to symmetry, this function has zero slope at the ori-
gin and so there is either a local minimum or maximum at
the origin. Function (58) is unimodal when the origin is a
maximum and bimodal if it is a local minimum. The func-
tion has a local minimum at the origin if f ′′(0) > 0. The
second derivative of (58) is

f ′′(x) = w√
2π

[(
(�μ − x)2 − 1

)
e−

(x−�μ)2
2

+ (
(�μ + x)2 − 1

)
e−

(x+�μ)2
2

]
.

(59)

Evaluating this, we get the rule for having a local maxi-
mum at origin as

f ′′(0) ≤ 0 ⇔
w√
2π

[
(�μ2 − 1)e−

�μ2
2 + (�μ2 − 1)e−

�μ2
2

]
≤ 0 ⇔

�μ2 − 1 ≤ 0 ⇔
�μ ≤ 1

(60)

Consider the mean of the kth component of a mixture
generated using the standardized binomial distribution
scaled with σ

μxk = σ
2k − m − 1√

m − 1
(61)

The distance between two components is

2�μ = σ
2(k + 1) − m − 1√

m − 1
− σ

2k − m − 1√
m − 1

= 2σ√
m − 1

.

(62)

Using (60), we get

m ≥ σ 2 + 1. (63)

Appendix 2: Optimization of mixture parameters
In [9], it was shown that if a component covariance P is
computed as

P = P0 − βL(P0)VeieTi V
TL(P0)T , (64)

where ei is the ith column of the identity matrix andV and
� are computed from the eigendecomposition

V�VT = L(P0)THL(P0)T , (65)

where H is the Hessian of the measurement function,
then the nonlinearity associated with direction L(P0)Vei
changes from λ2i to (1 − β)2λ2i .
It was also shown that the eigenvectors of (65) do not

change in this reduction. Due to this, we can also do
multiple reductions simultaneously

P = P0 − L(P0)VBVTL(P0)T

= L(P0)V (I − B)VTL(P0)T , (66)

where B is a diagonal matrix having β1, . . . ,βn on its
diagonal.
A solution to (37) is to compute an eigendecomposition

UT�U = L(P)−1(P0 − P)L(P)−T (67)

and choose

T = L(P)U . (68)
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We use the following matrix square root

L(P) = L(P0)Vdiag
(√

1 − β1, . . . ,
√
1 − βn

)
. (69)

Using (66) and (69) in (67) produces

L(P)−1(P0 − P)L(P)−T

= √
I − B−1VTL(P0)−1L(P0)VBVTL(P0)T

L(P0)−TV
√
I − B−1

= √
I − B−1B

√
I − B−1 = (I − B)−1B = I�I.

(70)

From this, we get

σ 2
i = βi

1 − βi
(71)

and using relationship (40)

mi = σ 2
i + 1 = 1

1 − βi
⇔ 1 − βi = 1

mi
. (72)

Now T (37) can be written using (69) and (72) as

T = L(P0)Vdiag
(

1√m1
, . . . ,

1√mn

)
. (73)

The nonlinearity (41) after multiple reductions can be
written as

η = trPHPH
R

=
∑

(1 − βi)2λ
2
i

R
(74)

The problem is to find B so that the nonlinearity
decreases below a given threshold, i.e.,∑

(1 − βi)2λ
2
i

R
≤ ηlimit (75)

while the total number of components is as low as possi-
ble. Substituting (72) into (75), the nonlinearity becomes

η =
∑ (1 − βi)2λ

2
i

R
= 1

R
∑ λ2i

m2
i
. (76)

The optimization problem is to minimize
n∏

i=1
mi (77)

with constraints
n∑

i=1

λ2i
m2

i
≤ Rηlimit (78a)

mi ≥ 1,∀i : 1 ≤ i ≤ n. (78b)

The Karush-Kuhn-Tucker conditions [21] for this prob-
lem are

0 = ∇
∏

mi + ξ0∇
(∑ λ2i

m2
i

− Rηlimit

)

+
∑

∇ξi(1 − mi). (79)

The jth partial derivative is

0 =
∏
i�=j

mi − 2ξ0
λ2j

m3
j

− ξj ⇔
∏

mi = 2ξ0
λ2j

m2
j

+ ξjmj.

(80)

Due to the complementary slackness requirement,
eithermj = 1 or ξj = 0. For allmj �= 1 �= mi

λ2i
m2

i
= λ2j

m2
j
. (81)

This means that if the integer nature of mi is neglected,
the optimummi is either 1 or proportional to |λi|.

Appendix 3: UKF update after a linear transformation is
applied to measurement function
Let A be an invertible matrix and Xi UKF sigma points
computed as explained in Section 2.1. The measurement
transformed with A is

ŷ = Ay = Ah(x) + Aε. (82)

If the original measurement error covariance is R, then
the transformed measurement error covariance is R̂ =
ARAT .
The transformed sigma points are:

Ŷi = Ah(Xi). (83)

The update becomes

ẑ =
2n∑
i=0

�i,mAYi = A
2n∑
i=0

�i,mYi = Az

Ŝ = ARAT +
2n∑
i=0

�i,c (AYi − Az) (AYi − Az)T = ASAT

Ĉ =
2n∑
i=0

�i,c (Xi − μ) (AYi − Az)T = CAT ,

K̂ = ĈŜ−1 = CATA−TS−1A−1 = KA−1

μ̂+ = μ + K̂(Ay − Az) = μ + K(y − z) = μ+

P̂+ = P − K̂ ŜK̂T = P − KA−1ASA−TKT = P − KSKT = P+

(84)

and the posterior estimate is identical to the estimate
computed with nontransformed measurement function.

Appendix 4: Simulation parameters
GMF comparison
The simulation parameters used to evaluate different
methods for Figure 5 are below. The measurement vari-
ance was 1 in every case.

• 2D range

– Prior mean: [ 5 0]T



Raitoharju et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:36 Page 17 of 18

– Prior covariance:[
cos θ sin θ

− sin θ cos θ

] [
10 0
0 1

] [
cos θ − sin θ

sin θ cos θ

]
,

where θ ∼ U(0, 2π)

– Measurement function:
√
x2[1] + x2[2]

• 2D second order

– Prior mean: ∼ N(0, I)

– Prior covariance:
[
5 2
2 5

]
– Measurement function:

(
aT1 x

)2 + aT2 x, where
a1 ∼ N(0, I) and a2 ∼ N(0, I)

• 4D speed

– Prior mean: ∼ N
(
0,
[

1003
3 I 1002

2 I
1002
2 I 1002

2 I

])

– Prior covariance:
[

1003
3 I 1002

2 I
1002
2 I 1002

2 I

]

– Measurement function:
√
x2[3] + x2[4]

• 10D third order

– Prior mean: ∼ N(0, I)
– Prior covariance: I
– Measurement function:(

k4aTx
)3 + (

k3aTx
)2 + k2aTx + k1, where

ki ∼ N(0, 1) (i = 1, . . . , 4) and a ∼ N(0, I)

Filtering example
State model used in filters:

xt+1 = Fxt + εW , (85)

where

F =

⎡
⎢⎢⎣
I3×3 I3×3 03×2
03×3 I3×3 03×2

02×3 02×3
1 1
0 1

⎤
⎥⎥⎦ (86)

and

εW =

⎡
⎢⎢⎣
I3×3

1
2 I3×3 03×2

1
2 I3×3

1
3 I3×3 03×2

02×3 02×3
1

100
1

2001
200

1
300

⎤
⎥⎥⎦ . (87)

The track is simulated on time indices from 1 to 400 and
the true track is:

• Position:

rtruei =
⎡
⎣ 90 sin θi
90 cos θi

hi

⎤
⎦ , (88)

where θi = 2iπ
100 and

hi =
⎧⎨
⎩
50 + 50 cos θi+2π

2 , i ≤ 100
100 , 100 < i ≤ 300
50 + 50 cos θi−2π

2 , 300 < i
(89)

• Velocity: vtruei = rtruei+1 − rtruei
• Bias: δi = 10 cos θi

3• Drift: γi = δi+1 − δi

Ground station locations:⎡
⎣−100

0
−10

⎤
⎦ ,

⎡
⎣ 100

0
20

⎤
⎦ ,

⎡
⎣ 0

−100
−20

⎤
⎦ ,

⎡
⎣ 0
100
10

⎤
⎦ ,

⎡
⎣ 0
0
0

⎤
⎦ (90)

Additional file

Additional file 1: binogmf.m–a MATLAB implementation of the
BinoGMF algorithm.
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