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METHODOLOGY

New software for automated cilia detection 
in cells (ACDC)
Max C. Lauring1, Tianqi Zhu2, Wei Luo2, Wenqi Wu2, Feng Yu2* and Derek Toomre1* 

Abstract 

Background:  Primary cilia frequency and length are key metrics in studies of ciliogenesis and ciliopathies. Typically, 
quantitative cilia analysis is done manually, which is very time-consuming. While some open-source and commercial 
image analysis software applications can segment input data, they still require the user to optimize many parameters, 
suffer from user bias, and often lack rigorous performance quality assessment (e.g., false positives and false negatives). 
Further, optimal parameter combinations vary in detection accuracy depending on cilia reporter, cell type, and imag-
ing modality. A good automated solution would analyze images quickly, robustly, and adaptably—across different 
experimental data sets—without significantly compromising the accuracy of manual analysis.

Methods:  To solve this problem, we developed a new software for automated cilia detection in cells (ACDC). The 
software operates through four main steps: image importation, pre-processing, detection auto-optimization, and 
analysis. From a data set, a representative image with manually selected cilia (i.e., Ground Truth) is used for detection 
auto-optimization based on four parameters: signal-to-noise ratio, length, directional score, and intensity standard 
deviation. Millions of parameter combinations are automatically evaluated and optimized according to an accuracy 
‘F1’ score, based on the amount of false positives and false negatives. Afterwards, the optimized parameter combina-
tion is used for automated detection and analysis of the entire data set.

Results:  The ACDC software accurately and adaptably detected nuclei and primary cilia across different cell types 
(NIH3T3, RPE1), cilia reporters (AcTub, Smo-GFP, Arl13b), and image magnifications (60×, 40×). We found that false-
positive and false-negative rates for Arl13b-stained cilia were 1–6%, yielding high F1 scores of 0.96–0.97 (max. = 1.00). 
The software detected significant differences in mean cilia length between control and cytochalasin D-treated cell 
populations and could monitor dynamic changes in cilia length from movie recordings. Automated analysis offered 
up to a 96-fold speed enhancement compared to manual analysis, requiring around 5 s/image, or nearly 18,000 cilia 
analyzed/hour.

Conclusion:  The ACDC software is a solution for robust automated analysis of microscopic images of ciliated cells. 
The software is extremely adaptable, accurate, and offers immense time-savings compared to traditional manual 
analysis.
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Background
Primary cilia are highly conserved, rod-like sensory orga-
nelles that protrude from the surface of nearly all mam-
malian cells [1]. These tiny organelles help coordinate 

signaling pathways during development and tissue home-
ostasis. Defects associated with the assembly, structure, 
or function of the primary cilium lead to a wide spectrum 
of genetic disorders collectively known as ciliopathies [2]. 
Additionally, abnormally low frequency or complete loss 
of primary cilia is commonly observed in various tumor 
types, such as astrocytoma/glioblastoma [3], breast can-
cer [4, 5], and pancreatic ductal adenocarcinoma [6]. 
Aberrant changes in cilia length are associated with 
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Niemann–Pick C1 disease [7], enhanced cellular mecha-
nosensitivity [8], and kinase inhibitor resistance in cancer 
cells [9]. Researchers have investigated the therapeu-
tic potential of inducing ciliogenesis in different human 
cancer cell lines with drugs such as Clofibrate, Gefitinib, 
and Dexamethasone [10], and with drugs to increase cilia 
length such as cytochalasin D, an actin depolymerizing 
agent [11, 12]. Thus, cilia frequency (% of ciliated cells in 
a population) and cilia length are important quantitative 
metrics for studying the relationship between cilia and 
disease.

A common method for quantifying primary cilia fre-
quency and length in fixed 2D and 3D cell cultures and 
tissue sections is immunofluorescence microscopy 
using antibodies against acetylated α-tubulin (AcTub) or 
Arl13b [13–16]. For in  vitro cell culture studies, speci-
mens are prepared so that primary cilia are lying flat 
along the coverslip. Acquiring these types of data requires 
analysis of microscopy images of ciliated cells. Typically, 
after image acquisition, images are manually analyzed 
using simple line measurement tools associated with the 
microscope software or a generic image analysis program 
such as ImageJ (http://rsbwe​b.nih.gov/ij/). Because this 
process can be time-consuming and susceptible to user 
bias, there has been a push for the development of practi-
cal, automated image analysis software over the past two 
decades. Automated image analysis algorithms can help 
biologists quantify information in an efficient, objective, 
and reproducible manner. Accurate automated perfor-
mance can even detect small changes that are too subtle, 
or too tedious, for the human visual system to assess [17].

While existing modular open-source and commercial 
image analysis solutions allow for the implementation 
of complex image analysis pipelines [18], they leave the 
parameter adjustment of the component algorithm up to 
the user. Examples of commercial software include Meta-
Morph, Amira (Visage Imaging), Volocity (PerkinElmer), 
Imaris (Bitplane Scientific Software), NIS-Elements, 
SlideBook, ImagePro Plus (Media Cybernetics), and ZEN 
(Zeiss). Examples of open-source image analysis software 
include BioImageXD [19], Icy [20], Fiji [21], Vaa3D [22], 
CellProfiler [23], 3D Slicer [24], Reconstruct [25], Flu-
oRender [26], OsiriX [27], IMOD [28], and ImageJ [29]. 
Numerous plug-ins and macros have been written for 
ImageJ/Fiji for measuring features such as nuclear seg-
mentation, cilia intensity, total volume, average inten-
sity, and cilia length [10, 30–33]. However, the user 
must adjust multitudes of parameters to find an optimal 
parameter combination—a cumbersome and bias-prone 
process—that is likely specific to a certain cell type, treat-
ment condition, cilia reporter, or imaging setting.

Furthermore, while ‘plug-ins’ that provide bespoke 
solutions have been made available, little to no 

corresponding validation data or rigorous performance 
analysis has been made available in the context of pri-
mary cilia analysis. Namely, there is virtually no vali-
dation to show the percent of false positives or false 
negatives, and thus the accuracy of such bespoke solu-
tions is unknown. Researchers have used programs such 
as IN Cell Analyzer 2000 Imaging system and CytoShop 
HCS analysis software (Beckman Coulter) to automati-
cally analyze images of ciliated cells [10, 11], but these 
studies do not appear to (i) analyze images automatically 
based on training from a prior Ground Truth or (ii) easily 
adapt optimization parameters towards different experi-
mental conditions.

Here we developed ‘ACDC’ (Automated Cilia Detec-
tion in Cells), a user-friendly, MATLAB-based solution 
specifically for the detection and analysis of primary 
cilia. The ACDC software accurately detects and meas-
ures nuclei and primary cilia in 2D microscopy images 
and then exports these data to Microsoft Excel files. For 
cilia detection, the software utilizes only four param-
eters, which address nuances in cilia intensity, shape, 
and length. The software provides an auto-optimization 
feature that uses a single, manually marked-up repre-
sentative image for training; this is a very quick initial 
procedure. Subsequently, an optimal parameter com-
bination (from over 5.5 million possible combinations) 
is chosen for the automated analysis of the representa-
tive image itself and every other image in the data set. 
Because of this large parameter space and auto-optimiza-
tion process, ACDC can be used to analyze vastly differ-
ent data sets with differing experimental conditions. We 
demonstrate this capability using two different cell lines, 
three different cilia reporters, and two different image 
magnifications. We also report the false-positive and 
false-negative rates for each of these conditions and then 
calculate their respective accuracy scores (F1 scores). 
Lastly, we demonstrate that ACDC can be used for accu-
rate, wide-scale length measurement of ciliated cells, and 
report 28- to 96-fold increases in the number of cilia ana-
lyzed per unit time for fully automated analysis, relative 
to manual analysis.

Methods
Tissue cell culture, stable transfection, and reagents
htert-RPE1 cells (ATCC) were cultured in DMEM/F-12 
(Invitrogen) with 10% FBS (Sigma-Aldrich), 2  mM 
sodium pyruvate (Invitrogen), 100 U/ml penicillin–strep-
tomycin (Invitrogen), and MEM non-essential amino 
acids (Invitrogen). NIH3T3 cells (BPS Bioscience) were 
cultured in DMEM (Invitrogen) with 10% BS (Sigma-
Aldrich), 2  mM sodium pyruvate (Invitrogen), 100 U/
ml penicillin–streptomycin (Invitrogen), and MEM non-
essential amino acids (Invitrogen). htert-RPE1-Smo-GFP 
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stable cell lines were generated as described previously 
[34]. For cytochalasin D treatment, cells were grown on 
glass coverslips until confluency, serum-starved, and then 
grown in serum starvation media (0% FBS) supplemented 
with 100 nM cytochalasin D (Sigma-Aldrich) overnight. 
The following antibodies were used: acetylated α-tubulin 
(mouse monoclonal; Sigma-Aldrich) and Arl13b (mouse 
monoclonal; NeuroMab). The following dyes were used: 
goat anti-mouse IgG (H + L) secondary antibody Oregon 
Green 488 (Invitrogen) and Hoechst 33342, trihydrochlo-
ride, trihydrate (Invitrogen).

Immunofluorescence
Cells were plated on 12  mm glass coverslips (Fisher-
brand) in 24-well plates and, upon confluency, incu-
bated in serum starvation media containing 0% FBS 
for 48  h to induce ciliogenesis. Cells were then washed 
with PBS (2 × 1 min), fixed with 4% paraformaldehyde in 
PBS for 10  min at room temperature, washed with PBS 
(3 × 1  min), permeabilized with 0.1% Triton X-100 for 
10 min, washed with PBS with 0.3% Tween 20 (3 × 1 min), 
and blocked in 5% bovine serum albumin (BSA) with 
0.3% Tween 20 for 30 min. Cells were then incubated for 
1 h in primary antibody against Arl13b (1:300) or acety-
lated α-tubulin (1:400) in a wet chamber. Following sev-
eral more washes in blocking buffer, cells were incubated 
in dye-conjugated secondary antibodies and Hoechst dye 
for 30 min, washed again, and mounted on a coverslide 
with ProLong gold antifade reagent (Invitrogen).

Microscopy image acquisition and analysis
Fixed cells were imaged on a Yokogawa-type Spinning-
Disk Confocal Microscope (SDCM, PerkinElmer). The 
SDCM is mounted on an inverted microscope base (IX-
71, Olympus) equipped with a 512 × 512 pixels electron-
multiplying charge-coupled device camera (Hamamatsu 
Photonics) and a temperature-controlled stage set (cus-
tom built). The SDCM is controlled by the Ultraview 
ERS software (PerkinElmer) and the cells were imaged 
via a 60 × 1.4 NA oil objective lens with a pixel size of 
0.143 µm using 5 solid-state lasers 405-, 488-, 561-, 594-, 
and 640-nm (Melles Griot). Exposure times were typi-
cally between 100 and 140 ms. Z-stacks of images were 
taken at a separation of 0.5  µm. Images were acquired 
using Volocity software (PerkinElmer), which employs a 
maximum intensity projection (MIP) when creating 2D 
images from z-stacks. This process occurs prior to any 
image importation into the ACDC software. For live-
cell imaging, RPE-Smo-GFP cells were grown in MatTek 
dishes for 2 days, then grown in serum starvation media 
with 100 nM cytochalasin D, and then imaged by SDCM. 
Cells were also imaged on an EVOS fluorescent micro-
scope using the Invitrogen EVOS FL Auto 2 Cell Imaging 

System. A 40 × 0.95 NA air objective lens was used with 
a pixel size of 0.1787 µm. EVOS light cubes used in this 
study include DAPI (357/44  nm Excitation; 447/60  nm 
Emission) and GFP (470/22  nm Excitation; 510/42  nm 
Emission). In figures that analyzed hundreds of images 
from a single experiment, images were acquired in an 
automated manner based on nuclei autofocusing using 
the SDCM or EVOS microscope. Images were later ana-
lyzed manually, automatedly, and semi-automatically 
with the ACDC software (v0.81). The software was used 
on an Alienware laptop by Dell (Windows 10 Pro; Intel® 
Core™ i7-6700HQ CPU @ 2.60 GHz; Intel® HD Graphics 
530 and NVIDIA GeForce GTX 1070).

Statistical analysis
Statistical significance was calculated using two-tailed 
Student’s t test. *p < 0.05, ***p < 0.001. Figures contain-
ing cilia count and length measurements are expressed 
as mean ± standard deviation. Statistical tests were per-
formed in Microsoft Excel and GraphPad Prism 7.0 
software.

ACDC software: image pre‑processing for primary cilia 
detection
The algorithm is based on the assumption that fluoro-
phores with different wavelengths are used to image pri-
mary cilia and cell nuclei. Potential candidates for cilia 
are identified in a pre-processing step using the green 
channel. In a subsequent step, biologically relevant 
measurements are extracted for each of the confirmed 
detected candidates. Similarly, nuclei are detected and 
segmented using the blue channel.

Five pre-processing steps are applied to the green chan-
nel to generate potential cilia candidates. To achieve a reli-
able detection of such fine and small structures in a robust 
fashion, it is necessary to reduce image noise and enhance 
the image contrast. In the first two steps, we apply contrast-
limited adaptive histogram equalization [35], followed by 
Gaussian filtering to smooth the image and suppress back-
ground noise. In this context, a basic noise removal strategy 
based on linear filtering is sufficient, as we aim to remove 
some high-frequency signals that could generate spuri-
ous candidate detections. The size of the Gaussian filter is 
adjusted based on the resolution of the acquired images. 
In the third step, a top-hat transformation is applied to the 
image, serving as a grayscale morphological operation that 
preserves small, bright, linear structures. Because there is 
variation between the background intensities of each can-
didate, a threshold based on global intensity values can-
not be directly set to extract objects separately from the 
background. A top-hat transformation with a disk-shaped 
structure element of radius 4 corrects for non-uniform 
background intensities and preserves bright objects against 
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a further suppressed background. In the fourth step, pixel 
locations that have a high likelihood of corresponding to 
candidate cilia are identified by binarization using adap-
tive thresholding. Due to differences in brightness between 
candidate cilia, some low-brightness candidates may be 
lost if global thresholding is used to binarize the image. 
Adaptive thresholding helps account for this phenomenon 
by changing the threshold dynamically over the entire 
image. We apply the Gaussian filter from before as an adap-
tive thresholding method to binarize the image:

where Itophat denotes the result of the top-hat transfor-
mation, and Ibw denotes the result of the binarization 
using adaptive threshold. The last step of pre-processing 
comprises preliminary selection. In the resulting binary 
image, many connected components will be brighter 
than surrounding background pixels, and some of these 
components could be false positives. Preliminary selec-
tion uses a parameter called directional score (explained 
in the next section) to reject any connected components 
that do not meet a threshold of 0.01, the absolute low-
est value for directional score. After pre-processing, the 
raw image and the final binary image are used for further 
detection auto-optimization using parameters based on 
shape, length, and intensity. The optimal value for each 
parameter is automatically determined.

Parameters for auto‑optimized cilia detection
The directional score parameter, which was introduced in 
the previous section, is used again to ensure the detection 
of rod-like candidates. Because the majority of actual cilia 
are rod-shaped with a clear direction, we use rod-shaped 
structural elements of varying degrees to conduct mor-
phological erosion operations on connected components. 
A connected component is considered a false-positive 
candidate if its calculated directional score is below the set 
threshold:

where CC(i) is the i-th connected component of Ibw , ⊖ is 
the morphological erosion operation, LEk is a rod-shaped 
structure element with length L =

min(width, height)
50  , width 

1, degree 15*k, and the function |·| indicates the number 
of pixels with a value of 1.

The minimum length parameter describes the length 
of a candidate cilium’s skeleton. We use a thinning algo-
rithm [36] to generate a raw skeleton. In the instance 
that there are several branches from one skeleton (due 

Ibw = Itophat >
(

2 ∗ f
(

Itophat, σ = 12
))

,

Score(i) = max
k

(

∣

∣CC(i)⊖LEk
∣

∣

∣

∣CC(i)
∣

∣

)

k = {1, 2, . . . 11, 12},

to irregular binary block shape), the longest branch is 
chosen as the candidate’s skeleton. Lastly, a cubic spline 
interpolation is applied to smooth out any coarse skel-
etons, resulting in more accurate candidate lengths. 
Conveniently, this smoothing feature is also applied to 
manual analysis.

The signal-to-noise ratio (SNR) parameter accounts 
for the fact that the intensities of true cilia are usually 
brighter than surrounding background, even though 
absolute intensity values may vary greatly between can-
didates. SNR, rather than absolute intensity, is a better 
parameter to distinguish true cilia from background. 
The signal area of a candidate includes all pixels of a con-
nected component. The signal level is defined as the aver-
age intensity of these pixels. The background noise area 
is defined as the region 1 to 5 pixels radially away from a 
connected component. The background noise level is the 
average intensity of these pixels.

The standard deviation (STD) parameter accounts for 
intensity variations along the cilia length. After applying 
thresholds for SNR and directional score, there may still 
be some false candidates—possibly membranous struc-
tures or linear fixation artifacts—that possess high values 
for SNR and directional score. The STD parameter can 
help reject many of these false candidates. The brightness 
of a cilium’s center usually differs from that of a cilium’s 
base or tip, which translates to a larger standard devia-
tion along the cilia length. Conversely, non-cilia objects 
will have less variation of pixel brightness.

ACDC software: image pre‑processing and segmentation 
for nuclei detection
While many sophisticated nuclei segmentation algo-
rithms have been proposed, we have implemented a basic 
strategy to detect and segment nuclei using the DAPI 
(blue) channel. Pre-processing for nuclei detection com-
prises three steps. The first two steps improve the qual-
ity of image, while the third step uses an adaptive-global 
combined thresholding method for binarization. In the 
binary image, one connected component may consist of 
several overlapping nuclei. In brief, to solve this problem, 
an algorithm based on concave joints is applied to binary 
images to segment these connected components.

The first step of nuclei pre-processing is median fil-
tering. The background of the blue channel is generally 
much cleaner than that of the green channel, which is 
used for cilia detection. To ensure that the edges of the 
nuclei remain sharp, median filtering (size 7) is used to 
preserve edges while removing noise:

Ib_f
(

x, y
)

= median
({

Ib
(

x + i, y+ j
)

|

−s ≤ i, j ≤ s, i, j is interger
})

,
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where s denotes the size of the filter kernel, Ib denotes the 
blue channel of the raw input image, and Ib_f  denotes the 
result of median filtering on the blue channel.

The second step consists of binarization using adap-
tive-global combined threshold. Global thresholding 
alone would result in incomplete nuclei, and adaptive 
thresholding alone may produce artifacts in dark areas 
of the image. Thus, we combined adaptive thresholding 
with global thresholding to binarize the result from the 
previous step. The global threshold is computed by Otsu’s 
method [37], denoted by T  in the following equations, 
and a Gaussian filter is applied to Ib_f  to obtain an adap-
tive local threshold map [38] denoted by M0:

where floor(·) means round down operation, and H ,W  
represents the height and width of the Ib_f  , respectively. 
T  and M0 are combined to get the final threshold map for 
image binarization:

where α represents the adjustable parameter ‘sensitiv-
ity’ and Ib_bw represents the result of binarization using 
adaptive-global combined threshold.

The third step consists of region correction. After com-
pleting the first two steps, the resulting image would still 
contain several connected components that are nearby 
actual nuclei. Connected components that are too small 
in size tend to be artifacts. Thus, connected components 
with areas smaller than a set threshold are rejected. 
Finally, a solution for overlapping nuclei based on high 
curvature points, as proposed by Fan et al. [39], is used to 
split and segment nuclei.

Results
Conceptualization and framework of ACDC software
An overview of the resulting algorithm is presented 
in Fig.  1. Four primary steps are described, beginning 
with the importation of raw images and ending with 
the exportation of cilia data. The user has the option to 
analyze images in three modes: manual, automated, or 
semi-automated (i.e., corrected automated). In semi-
automated mode, the user has the ability to correct for 
any discrepancies that arise during the automated analy-
sis of each image. The first step of the automated analysis 
process involves the importation of microscope images, 
ideally in TIFF format. Images must have a minimum of 
two channels: (i) one for primary cilia such as acetylated 

M0 = f
(

Ib_f , σ = s
)

,

s = 2 ∗ floor

(

min(H ,W )

16

)

+ 1,

M1 = min(1,max(0, 0.95 ∗ α ∗M0 + 0.05 ∗ T )),

Ib_bw = Ib_f > M1,

tubulin (AcTub), Smoothened-GFP (Smo-GFP), or 
Arl13b, and (ii) one for nuclei such as DAPI or Hoechst 
stain. These reporters are just several of the many exam-
ples and are in no way exclusive. The second step of the 
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Fig. 1  Overview flow diagram of Automated Cilia Detection in Cells 
(ACDC) software. The ACDC software for automatic detection of cilia 
comprises four main steps, which are lightly color-coded in four 
boxes: data input (red), pre-processing (yellow), detection (green), 
and analysis (blue); later figures follow this color-coding scheme. 
Step One: users can import hundreds of microscope images that 
comprise a cilia reporter and a nuclei reporter. Step Two: the images 
are pre-processed to facilitate formation of a binary mask. Step Three: 
based on a manually marked-up representative image, the software 
auto-optimizes the detection of true candidates by determining 
which combination of the four listed parameters yields the greatest 
accuracy score (F1 score). The parameter combination is then used 
to automatically detect true candidates from images of the same 
or similar image series. Step Four: analysis and exportation of data, 
which includes accuracy metrics such as false-positive (FP) and 
false-negative (FN) rates and typical cilia metrics such as frequency 
and length. The analysis time is also reported for comparison 
between manual, automated, and semi-automated analysis (i.e., 
automated analysis mode with the ability to manually correct 
detection errors)
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automated analysis process focuses on the very first 
image in the series, which is used as a representative 
image for training and calibration. This begins with image 
pre-processing and involves five sub-steps—extraction of 
green channel, histogram equalization with Gaussian fil-
tering, top-hat transformation, binarization using adap-
tive threshold, and preliminary candidate selection. The 
purpose of pre-processing, as explained in detail in the 
‘Methods’ section, is to generate potential candidate cilia 
from the raw image and binary mask of the raw image 
(Fig. 2). The third step occurs after initial candidate iden-
tification and relies on automated parameter optimiza-
tion to better detect true cilia. We have determined that 

four key parameters—(i) minimum (min.) cilia length, 
(ii) signal-to-noise ratio, (iii) intensity standard devia-
tion, and (iv) directional score—are needed to distinguish 
actual cilia from other cellular structures. The result of 
the detection auto-optimization process yields the opti-
mal combination of parameter values. In the fourth and 
final step, the optimal, computer-assigned parameter set 
is used on the representative image and the rest of the 
image series. Upon completion of the analysis session, 
cilia data can be exported to a Microsoft Excel docu-
ment. Additionally, through semi-automated analysis, 
the user can obtain metrics about the performance of 
fully automated analysis such as false-positive (FP) count, 
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Fig. 2  Image pre-processing and initial candidate detection. a Upon initiation of automated analysis, each imported raw image undergoes a series 
of pre-processing steps that aid in identifying prospective candidate cilia and excluding other non-relevant objects present in the image. After 
binarization using adaptive threshold and preliminary selection, only the most likely tens of candidate cilia will be shown. b The detection of true 
candidates can be further automatically optimized using the software’s four tuning parameters. Data pertaining to length and directional score 
depend only on the binary mask, while data pertaining to signal-to-noise ratio (SNR) and standard deviation (STD) depend on both the binary mask 
and raw cilia ROI
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false-negative (FN) count, precision (α), recall (β), F1 
accuracy score {F1 = 2αβ/(α + β)} [40], image-specific 
surface plots of possible F1 scores (Additional file 1: Fig. 
S1), and correction analysis time. Each image requires 
only several seconds to automatically analyze and thus 
allows for efficient analysis of large data sets of ciliated 
cells.

Automated detection parameters
A screenshot of the user interface of the ACDC software 
is shown in Fig. 3a. Features of the “Image Control” panel 
include importation, analysis, adjustment of image con-
trast, and the ability to switch between DAPI, green, and 
merged channels. Detected candidates that are outlined 
in green boxes are considered true cilia (TC), as shown in 
the center display. Features of the “Label Control” panel 
include the ability to convert all detected true objects 
into detected false objects and vice versa, the ability to 
add a candidate to the analysis in the event of a missed 
detection, and the ability to visualize candidate skele-
tons. The interface that appears when the user selects the 
“Tune Parameters” option is shown in Fig. 3b. Here, the 
user can adjust the threshold values of the four param-
eters for detection optimization. Signal-to-noise ratio 
(SNR) compares the intensity of the cilium to the inten-
sity of the surrounding background, as true cilia generally 
have high intensity values that can easily be distinguished 
from background intensity. SNR values range from 1.0 to 
2.0. Minimum cilia length sets the threshold for long and 
short cilia, regardless of whether cilia are straight or cur-
vilinear. Minimum cilia length values range from 1 pixel 
to 50 pixels; detected objects with lengths less than the 
set threshold will be rejected from detection. Directional 
score accounts for the curvature of cilia. Cilia with higher 
directional scores are straighter and more rod-like, while 
cilia with lower directional scores are curvier and more 
spherical. Directional score values range from 0.01 to 
0.51. This parameter is useful in differentiating between 
actual cilia and other bright objects such as ciliary extra-
cellular vesicles and endosomes that can be 0.5–2.0 μm in 
diameter, as the majority of primary cilia tend to be more 
rod-like in shape. Intensity standard deviation (STD) 
accounts for the distribution of the different pixel intensi-
ties along the entire cilium. Pixels that belong to true cilia 
should have larger standard deviations, since, in theory, 
these pixels are generated from a 2D-point spread func-
tion (like the Gaussian distribution) with a relatively high 
standard deviation. Thus, candidates with high STD val-
ues are likely to be true cilia. STD values range from 0 
to 0.50, and higher STD threshold values will reject more 
candidates. Examples of primary cilia with low and high 
values for SNR, cilia length, directional score, and stand-
ard deviation are shown in Fig.  3c. Of note, the “Tune 

Parameters” interface in Fig.  3b offers an “Auto Param-
eters” feature that allows for detection auto-optimization 
of post-binarization candidates. The “Auto-Optimization” 
panel in Fig. 3b provides output metrics including preci-
sion (α), recall (β), and accuracy (F1 score), described in 
detail in Fig. 4.

Detection auto‑optimization based on a representative 
‘Ground Truth’
The process for automated detection optimization of 
candidates is described in Fig. 4. Whether the user wants 
to analyze a single image or a series of images, the soft-
ware will use the first image as the representative image 
to auto-calibrate parameter settings; users can save 
these parameter settings for future analyses of images 
from similar experiments. Upon importation of images, 
all post-binarization candidates will appear in red out-
lines, indicating that they are false objects that should 
be rejected and excluded from any analysis. These can-
didates comprise both true cilia and possibly non-cilia 
objects such as membranous structures, mitotic struc-
tures, vesicles, and fixation artifacts. Initially, the user 
must manually select the candidates that they consider 
true cilia. As a time-savings, the user does not have to 
manually trace candidates and only has to click a box that 
already automatically outlines candidates. Upon selec-
tion, these candidates will appear in green outlines, indi-
cating that they are true cilia that should be accepted and 
included in the analysis. These green-outlined candidates 
comprise a reference standard known as the ‘Ground 
Truth.’ The user then selects the “Auto Parameters” fea-
ture under the Auto-Optimization panel (Fig.  3b), and 
from this point forward, the analysis process is com-
pletely automated. Based on the Ground Truth, the 
software will iteratively sift through over 5.5 million com-
binations of the four detection parameters until a combi-
nation is found that best selects for the candidates in the 
Ground Truth. The software will determine the accuracy 
of each iterative trial according to each trial’s F1 score, 
which can range from 0 (least accurate) to 1.00 (most 
accurate). The F1 score is a mathematical function of two 
variables: precision (α), which describes the frequency of 
incorporated false positives (FPs), and recall (β), which 
describes the frequency of false negatives (FNs; true cilia 
that were missed and overlooked for detection). In sta-
tistical analysis of binary classification, α is the number 
of correct positive results divided by the number of all 
positive results returned by the program, while β is the 
number of correct positive results divided by the number 
of all relevant samples (all samples that should have been 
identified as positive). Values for α and β both range from 
0 (entirely FPs and FNs, respectively) to 1.00 (no FPs 
and FNs, respectively). Higher α values indicate fewer 
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Signal-to-Noise
Ratio

Minimum Cilia
Length (μm)

Directional
Score
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Deviation

Low
Value
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1.5 4.0 6.5

0.01 0.10 0.20

0.02 0.25 0.48

1.2 1.6 1.9

Fig. 3  Parameters for detection optimization. a A screenshot of the user interface of the ACDC software. b The interface that appears when the 
“Tune Parameters” option in the left panel in part (A) is selected. The user can manipulate four parameters that aid in detection optimization of 
candidate cilia (blue dashed box). Signal-to-noise ratio (SNR) compares the intensity of a cilium to the intensity of surrounding background. SNR 
values range from 1.0 to 2.0. Minimum cilia length values range from 0 to 100 pixels. Users can assign a distance per pixel. Brightness standard 
deviation accounts for the distribution of different pixel intensities along the entire cilium. Standard deviation values range from 0 to 0.50. 
Directional score accounts for cilia curvature. Cilia with high directional scores are straighter and rod-like, while cilia with low directional scores 
are curvier and spherical. Directional threshold values range from 0.01 to 0.51. Higher parameter threshold values result in the rejection of more 
candidates. c Examples of primary cilia with different values for SNR, cilia length, directional threshold, and standard deviation. Typically, candidates 
with higher parameter values, aside from length, are more likely to be true cilia, but it is still possible for non-cilia objects such as bright aggregates 
to be selected
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Fig. 4  Automated detection optimization of candidate cilia. Auto-optimization of cilia detection consists of seven steps (i–vii). (i) The resulting 
image of the pre-processing step. Because this was the first image of the imported data series, it is used as a representative image for training 
and calibration. (ii) Initially, all post-binarization candidates considered to be false objects (outlined in red). (iii) Users must tell the software which 
candidates to accept by clicking on those true candidate cilia (now outlined in green). (iv) After the “Auto Parameters” feature is selected (see 
Fig. 3b; orange dashed box), the remainder of the analysis process is automated. Based on the candidates that were manually selected to be true, 
the software sifts through ~ 5.5 million iterations of parameter combinations and chooses the feature space (depicted as dashed black boxes) that 
encloses only the true candidates and excludes the other false candidates. The software determines the accuracy of each iterative trial by searching 
for the feature space that yields that greatest F1 score. The F1 score is a function of two variables—precision (α), which describes the frequency 
of false positives (FPs), and recall (β), which describes the frequency of false negatives (FNs). Here, the automatically detected true candidates are 
represented by ‘TC.’ (v–vi) This best feature space is used to automatically analyze the remainder of the image series. If necessary, the user has the 
ability to adjust the optimized feature space to their preference. (vii) After analysis of the last image in the series, the data are exported for further 
study
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incorporated FPs, while higher β values indicate fewer 
FNs.

In the equations above, ‘TC’ represents only the num-
ber of actual true cilia that were detected by automated 
analysis, ‘FP’ represents the number of false positives, 
and ‘FN’ represents the number of false negatives. If 
there are multiple parameter combinations that yield the 
same maximal F1 score (see Additional file 1: Figure S1 
for surface plot visualizations of this phenomenon), the 
software’s default is to choose the parameter combina-
tion that minimizes all parameter values while retaining 
that maximal F1 score. Once the best feature space (best 
multivariate set of parameters) is established, it is used 
for continuous automated analysis of the entire data set. 
However, the user can adjust the optimized feature space 
parameter thresholds to their preference at any time dur-
ing the analysis session by pausing the analysis of the next 
image, re-opening the “Tune Parameters” interface, alter-
ing the threshold values, observing how the detection of 
cilia in the current image changes, and continuing the 
analysis of the rest of the data set (Fig. 3b). Additionally, 
before continuing the analysis of the next image, the user 
can add cilium manually to account for FNs or click the 
outlines of any FPs to mark them as not true cilia (i.e., 
they will then be in red outlines). Naturally, the trade-off 
here is a longer analysis time. Upon automated analysis of 
the last image in the series, the cilia data are exported for 
further study.

In the automated analysis mode of the ACDC soft-
ware, the established optimized feature space is ‘locked’ 
and applied to every image in the series. The software 
usually identifies most true cilia, but the presence of FPs 
and FNs is possible during automated analysis, which 
can skew observations and conclusions. Because the 
software uses a Ground Truth data set for optimiza-
tion, it is important that the established Ground Truth 
attempts to accurately reflect the entire data set popula-
tion. For instance, if an image with very bright, straight 
cilia is used for auto-optimization, but the next image in 
the series has one or two low intensity, curvilinear cilia, 
these cilia might not be detected if they do not meet the 
optimized parameter thresholds, resulting in one or two 
FNs. There are two routes the user can pursue from here. 
First, the user can accept the presence of some FPs and 
FNs if the FP and FN rates are low enough to meet expec-
tations. Second, during automated analysis, the user can 
manually correct for any FPs and FNs that they notice 
(i.e., semi-automated analysis). Correcting images for FPs 
and FNs by semi-automated analysis will yield the same 
detection and analysis results as manual analysis, but the 

α =
TC

TC+ FP
β =

TC

TC+ FN
F1 =

2αβ

α + β

trade-off is a longer analysis time than fully automated 
analysis. The extent to which semi-automated analysis 
is slower than fully automated analysis is directly cor-
related with the amount of FPs and FNs that need to be 
corrected. To correct for FPs, the user can simply click 
on the green outline of the detected candidate to change 
it to a red outline, telling the software to reject the candi-
date from analysis. To correct for FNs, the software has 
an ‘Add Cilia’ feature (Fig.  3a) that lets the user draw a 
box around a candidate, whereupon the software will 
automatically draw a yellow spline overlay that measures 
the candidate’s length. The yellow spline overlay of any 
candidate can be edited and re-drawn by the user. During 
manual analysis with the software, the user must draw a 
box around and trace over candidates that they consider 
to be true cilia.

It is important to note that it is possible for the auto-
optimization process to yield an optimized feature space 
in which the F1 score < 1.00. The ideal result of the auto-
optimization process, as illustrated in Fig.  4, is to end 
up with only the Ground Truth candidates in green out-
lines and every other post-binarization non-cilia candi-
date without an outline (i.e., rejected and excluded from 
detection). The alternate outcome, however, is that all the 
Ground Truth candidates appear in green outlines, along 
with several false objects with green outlines that should 
have been excluded. These false objects cannot be filtered 
out because they are too similar in intensity and shape to 
the Ground Truth cilia. One could manually adjust the 
parameter thresholds to exclude these false objects, but it 
would be impossible to do so without also excluding one 
or several Ground Truth candidates. In this instance, the 
user has three options: (1) simply accept any false object 
as part of the initial Ground Truth, (2) manually adjust 
the detection parameter thresholds to filter out the false 
objects along with one or several Ground Truth cilia, or 
(3) attempt to auto-optimize by choosing another repre-
sentative image from the data set.

Software performance on real samples
To assess the accuracy of the software’s analysis, we 
looked at three cilia reporters (AcTub, Smo-GFP, 
Arl13b) across two different cell lines (NIH3T3, RPE-
1). The analysis results of several of these combina-
tions are shown in Fig.  5, with raw input images (left 
column), marked-up images from manual analysis 
(center column), and marked-up images from auto-
mated analysis (right column). Although most true 
cilia appear to be visibly detected, automated detec-
tion occasionally gives FPs (indicated by red arrow-
heads) and FNs (indicated by orange arrowheads). The 
rate of FPs and FNs could vary depending upon the 
cellular and imaging conditions such as cell type and 
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cilia reporter. In fully automated analysis mode, the 
software appeared to perform differently for different 
reporters, with Arl13b appearing to have fewer FPs 
and FNs, relative to other reporters such as AcTub and 
Smo-GFP.

Quantification of false‑positive/negative rates 
and accuracy scores across different experimental 
conditions
Our goal was to see how similarly automated detec-
tion performed to manual detection and determine the 
FP and FN rates of automated analysis across cell types, 
cilia reporters, and image acquisition magnifications 
(Fig.  6; Additional file  2: Table  S2). Thus, we analyzed 
9–25 images (up to 300 cilia) from each condition in 
Fig. 5 and images of other conditions as well. In Fig. 6a 
and Additional file 2: Table S2A, the ACDC software was 

used to manually, automatedly, or semi-automatically 
detect primary cilia in both NIH3T3 cells stably express-
ing Smo-GFP and wild-type NIH3T3 cells labeled with 
antibodies against either AcTub or Arl13b. Cells labeled 
with AcTub, Smo-GFP, and Arl13b were from separate 
experiments. For clarity, we graphed the cilia count per 
image on the y-axis, as opposed percent (%) cilia, because 
primary cilia—not nuclei—contribute to FNs and largely 
to FPs. Of note, manual and semi-automated analysis 
always yielded the same cilia frequency after correcting 
for FPs and FNs during automated analysis. Automated 
detected TC (dark green bar) plus the correspond-
ing FNs (orange bar) equals the manual TC (light green 
bar). Among the three reporters, AcTub had the high-
est average FP rate on a per-image basis (2.7 ± 1.9 cilia), 
which is 23% of the manually detected 11.9 ± 2.8 cilia 
per image. Thus, for every 11.9 AcTub-labeled cilia, 2.7 

Raw Input ImageReporter Automated AnalysisManual Analysis

AcTub NIH3T3

Arl13b

= True Cilia
= False Positive
= False Negative

Smo-GFP RPE1

RPE1

Cells

Fig. 5  Identification of false-positive and false-negative candidate cilia during automated analysis with ACDC software. In order to evaluate how 
the rates of false positives (FPs) and false negatives (FNs) change across conditions, two different cell types (NIH3T3 and htert-RPE1) and three 
different ciliary reporters (AcTub, Smo-GFP, Arl13b) were analyzed. Left column: examples of raw input images. Middle column: the software’s “full 
manual analysis” mode was used to detect and accept every candidate based on user criteria. Right column: the software’s “automated analysis” 
mode was used to detect cilia. As shown, most of the manually selected true cilia were detected. However, there were occasionally some FPs (red 
arrowheads) and FNs (orange arrowheads). Note: for these representative images, FPs and FNs were identified manually (i.e., during semi-automated 
analysis). Images were acquired with a ×60 (1.4 NA) magnification objective. Scale bars = 10 μm
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Fig. 6  Quantitative analysis of ACDC accuracy in detecting cilia across different experimental conditions. a Manual and automated detection of 
NIH3T3 primary cilia labeled with AcTub, Smo-GFP, and Arl13b. Manual true candidates (TC) represent the total number of true cilia. Automated TC 
represents the number of manual TC that was detected in automated analysis mode. Among the three reporters, Arl13b had the lowest FP rate (1%) 
and shared the lowest FN rate with AcTub (4%), resulting in the highest F1 score (F1 = 0.97). Automatically detected TC (dark green bar) plus the 
corresponding FNs (orange bar) equals the same count as Manual TC (light green bar). b Manual and automated detection of htert-RPE1 primary 
cilia labeled with AcTub, Smo-GFP, and Arl13b. Among the three reporters, Arl13b had the lowest FP rate (6%) and shared the lowest FN rate with 
AcTub (1%), resulting in the highest F1 score (F1 = 0.96). c Manual and automated detection of Arl13b-labeled primary cilia in htert-RPE1 cells at 
two different image magnifications (×60 vs. ×40). Precision and recall values were similar across both groups, and the F1 scores were identical 
for images taken at both magnifications (F1 = 0.96). Each condition (i.e., AcTub-labeled NIH3T3 cilia, Arl13b-labeled RPE cilia) was its own separate 
experiment that was conducted once, so as to demonstrate the cilia FP and FN rates of each condition. The image analysis process for the data set 
of each condition was repeated three times and each iteration yielded the same values for FP and FN rates. All main bars and error bars are reported 
as average absolute cilia count per image ± standard deviation per image
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additional non-cilia objects will be detected and treated 
as true cilia. As expected, AcTub had the lowest preci-
sion score (α = 0.81). Smo-GFP had the highest aver-
age FN rate on a per-image basis (0.7 ± 0.9 or 14% of 
the manually detected 5.0 ± 1.5 cilia). This means that 
for every 5.0 true cilia, 0.7 of those true cilia will not be 
detected. Consequently, Smo-GFP had the lowest recall 
score (β = 0.86). Cilia labeled with Arl13b had the lowest 
FP and FN rates (1% and 4%) and thus had the highest F1 
score (F1 = 0.97), demonstrating that the software’s per-
formance was most accurate when cilia were labeled with 
Arl13b. Next, we looked at the same three cilia report-
ers in RPE cells (Fig.  6b; Additional file  2: Table  S2B). 
Among the three reporters, AcTub had the highest aver-
age FP rate on a per-image basis (3.0 ± 2.1 cilia), which is 
16% of the manually detected 18.3 ± 4.9 cilia per image. 
This means that for every 18.3 AcTub-labeled RPE cilia, 
3.0 non-cilia objects will be detected and treated as true 
cilia. Consequently, AcTub had the lowest precision score 
(α = 0.86). However, Smo-GFP had nearly similar FP and 
FN rates as AcTub, which explains why they had similar 
precision, recall, and F1 scores. Interestingly, Smo-GFP 
in RPE cells yielded more FPs and fewer FNs compared 
to Smo-GFP in NIH3T3 cells, indicating detection vari-
ability between cell types. In agreement with Fig.  6a, 
the software’s performance was most accurate in RPE 
cells when cilia were labeled with Arl13b, given its low 
FP and FN rates (6% and 1%, respectively) and high F1 
score (F1 = 0.96). Lastly, we sought to assess the soft-
ware’s automated performance across image magnifica-
tions (Fig. 6c; Additional file 2: Table S2C). Images from 
the same experiment of RPE cells with Arl13b cilia stain-
ing were taken at 60× magnification (25 images) and 
40× magnification (191 images) and analyzed manually, 
automatedly, and semi-automatedly. Naturally, more cilia 
were detected with lower magnification (10.9 cilia per 
60× image vs. 27.5 cilia per 40× image). We observed 
comparable FP and FN rates between 60× and 40× mag-
nification (FP: 6% vs. 4%; FN: 1% vs. 5%). The F1 score for 
both magnifications was F1 = 0.96. We conclude that the 
software’s automated performance is equally robust and 
accurate across these two image magnifications. For fur-
ther detail of Fig. 6, see Additional file 2: Table S2.

Assessing variability of cilia count, nuclei count, and cilia 
frequency across separate experiments, different Ground 
Truths within the same experiment, and different cell 
confluency levels
Next we wanted to determine how the FP and FN rates 
for automated cilia and nuclei detection varied: (i) 
across two different experiments of the same condition 
and (ii) within the same experiment but using different 
representative images for detection auto-optimization 

(Additional file 3: Fig. S3; Additional file 4: Fig. S4). Thus, 
we analyzed images of RPE cells with Arl13b-stained cilia 
and DAPI-stained nuclei from two separate experiments, 
described here as Experiment 1 and Experiment 2 (Addi-
tional file 3: Fig. S3A). The images for Experiment 1 were 
the same images that were analyzed for the RPE Arl13b 
cilia condition in Fig. 6b. We also tested the performance 
of the ACDC software on Experiment 2 when using two 
different images from Experiment 2 for detection auto-
optimization. The two representative images from Exper-
iment 2, along with their parameter threshold values after 
auto-optimization, are shown in Additional file  3: Fig. 
S3B. Manual and automated software analysis of images 
from Experiment 1 and Experiment 2 showed that the 
FP rates, FN rates, and F1 scores were similar across the 
separate experiments (Additional file 3: Fig. S3C, D). Fur-
thermore, using two different images from Experiment 2 
for cilia detection auto-optimization yielded similar FP 
and FN rates (1–3%) and identical F1 scores (F1 = 0.98). 
Extending our work with Experiment 2, we demonstrate 
that the software can detect and trace nuclei in images 
(Additional file  4: Fig. S4A). In regards to nuclei detec-
tion, repeating the automated analysis of the Experi-
ment 2 data set using two different representative images 
yielded identical FP and FN rates (0.9%) and identical F1 
scores (F1 = 0.99) (Additional file 4: Fig. S4B, C). This is 
due to the fact that the ACDC software segments and 
detects nuclei irrespective of the representative image 
used for auto-optimization of cilia detection. After dem-
onstrating the software’s ability to detect cilia and nuclei, 
we show that these data can be used to calculate cilia fre-
quency (Additional file 4: Fig. S4D). Cilia frequency val-
ues for Experiment 2 were calculated by dividing the cilia 
count per-image values by the nuclei count per-image 
values. Alternatively, the software conveniently reports 
cilia frequency for each image in the exported excel file 
after the analysis ends. Manual analysis of the Experi-
ment 2 data set yielded 72 ± 7% ciliated cells. Automated 
analysis with detection auto-optimization based on rep-
resentative image #1 yielded 69 ± 8% ciliated cells. Auto-
mated analysis with detection auto-optimization based 
on representative image #2 yielded 71 ± 9% ciliated cells. 
We conclude that the software’s automated performance 
is equally robust and accurate across different experi-
ments of the same condition—in this case with RPE 
cells with Arl13b-labeled cilia—and also within the same 
experiment (Experiment 2) but using two different repre-
sentative images for detection auto-optimization.

We also assessed the software’s performance in two 
separate experiments in which RPE cells were fixed and 
stained against Arl13b and DAPI at low and high cell 
confluency levels to see if there was an effect on cilia fre-
quency measurements (Additional file  5: Fig. S5). The 
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images for both experiments are shown in Additional 
file  5: Fig. S5A. Low-confluency images possessed, on 
average, 5.9 ± 2.2 cilia per image, while high-confluency 
images possessed, on average, 15.7 ± 6.4 cilia per image. 
For both confluency levels, FP and FN rates for auto-
mated cilia detection remained between 1 and 4%, and F1 
scores were nearly identical (low confluency, F1 = 0.98 vs. 
high confluency, F1 = 0.97) (Additional file 5: Fig. S5B, C). 
Low-confluency images possessed, on average, 10.4 ± 4.2 
nuclei per image, while high-confluency images pos-
sessed, on average, 39.6 ± 6.4 nuclei per image. In regards 
to nuclei detection, low-confluency images tended to 
yield low FN rates (1%) but larger FP rates (4.5%) (Addi-
tional file 5: Fig. S5D, E). This means that for every 10.4 
nuclei, 0.10 actual true nuclei will not be detected dur-
ing automated analysis, and 0.47 additional non-nuclei 
objects will be detected and treated as nuclei. Together, 
the data show that low-confluency images were accu-
rately detected by automated analysis, as demonstrated 
by the high F1 score (F1 = 0.97). Interestingly, high cell 
confluency images yielded no FPs at all (FP rate = 0%), but 
yielded a high FN rate (12%). This means that for every 
39.6 nuclei, 4.8 actual true nuclei will not be detected 
during automated analysis (Additional file 5: Fig. S5D, E). 
We attribute this large FN rate of high-confluency images 
to the phenomenon of more overlapping nuclei. In these 
events, the software will sometimes treat two overlap-
ping nuclei as a single nucleus. The large FN rate of 12% 
for nuclei detection in high-confluency images yielded a 
worse accuracy score (F1 = 0.94) for nuclei detection rel-
ative to that of low-confluency images. Lastly, we looked 
at cilia frequency and confluency (Additional file 5: Fig. 
S5F). Cilia frequency remained nearly identical between 
manual and automated analysis for low-confluency 
images (manual, 59 ± 12% vs. automated, 58 ± 13%), but 
cilia frequency values varied more between manual and 
automated analysis for high-confluency images (manual, 
39 ± 12% vs. automated, 45 ± 17%). This difference is 
mainly due to the disparity in nuclei detection between 
manual and automated analysis for high-confluency 
images. Thus, we conclude that at a high cell confluency, 
automated detection of primary cilia remains accurate, 
but automated detection of nuclei becomes less accurate 
due to the presence of more overlapping, indistinguisha-
ble nuclei, which can obscure subsequent cilia frequency 
calculations. We therefore recommend using images in 
which cell confluency is not extremely high.

Quantitative assessment of automated cilia length analysis 
and speed enhancement
In addition to accurately detecting nuclei and cilia, the 
ACDC software measures cilia length. Thus, after deter-
mining the FP and FN rates across various conditions, 

we aimed to assess the software’s performance for cilia 
length (Fig.  7). We used images of RPE cells with cili-
ary Arl13b staining because of the software’s high pre-
cision, recall, and F1 scores associated with Arl13b as a 
cilia reporter. In Fig. 7a, we analyzed two different groups 
of RPE cells from the same experiment—one grown in 
serum starvation media and one grown in serum starva-
tion media with overnight supplementation of cytocha-
lasin D (CytoD), an actin depolymerizing agent that 
induces ciliogenesis. Images of both culture conditions 
were taken on the same day at 60× magnification and 
analyzed manually, automatedly, and semi-automatedly. 
Within treatment conditions, mean length measure-
ments were considerably consistent, as no statistically 
significant differences were observed (serum starva-
tion: manual = 3.96 ± 1.02  μm, auto = 4.18 ± 1.06  μm, 
semi-auto = 4.26 ± 1.04  μm; CytoD treatment: man-
ual = 6.32 ± 1.93  μm, auto = 5.90 ± 1.88  μm, semi-
auto = 6.13 ± 1.86  μm). However, when comparing 
mean lengths between treatment conditions by manual, 
automated, and semi-automated analysis, statistical sig-
nificance (p < 0.001) was observed across all three detec-
tion modes. Similar results were observed for images of 
ciliated cells taken at 40× magnification (serum starva-
tion: manual = 3.79 ± 0.84  μm, auto = 3.95 ± 0.95  μm, 
semi-auto = 3.97 ± 0.96  μm; CytoD treatment: man-
ual = 6.32 ± 1.81  μm, auto = 6.12 ± 1.60  μm, semi-
auto = 6.26 ± 1.50 μm) (Fig. 7b). Thus, by comparing the 
manual, automated, and semi-automated analysis results 
with each other within treatment groups, we showed 
that the ACDC software, even with the presence of some 
FPs and FNs, can accurately report cilia length. Notably, 
the automated and semi-automated analyses of the 40× 
images allowed for a more thorough study of large popu-
lations of cells, as nearly 200 images (n > 5000 cilia) were 
imported and rapidly analyzed.

The major benefit of the ACDC software is the stream-
lined analysis time (Fig.  7c, d). For the images taken at 
60× magnification, automated analysis was 28× to 29× 
faster than manual analysis, and semi-automated analy-
sis was 10× faster than manual analysis (Fig.  7c). Each 
60× image required, on average, 5.2  s to automatically 
analyze everything without corrections (Additional 
file 6: Table S6). For images taken at 40× magnification, 
automated analysis was 85× to 96× faster than manual 
analysis, and semi-automated analysis was 20× to 22× 
faster than manual analysis (Fig.  7d). Each 40× image 
required, on average, 5.6 s to automatically analyze eve-
rything without corrections (Additional file 6: Table S6). 
The graphs in Fig. 7c, d correspond to the analyses of the 
images of serum-starved cells without CytoD treatment 
in Fig.  7a, b, respectively; analysis times for 60× and 
40× images of CytoD-treated cells were nearly identical 
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Fig. 7  ACDC accurately measures cilia length and provides a major speed enhancement in cilia analysis. a htert-RPE1 cells were grown in 
serum-containing media and then in serum starvation media for 2 days supplemented with or without 100 nM cytochalasin D (CytoD) for the 
last 8–16 h. Cells were stained against Arl13b and DAPI and images were captured at 60× magnification. Images were acquired on the same day 
from the same experiment. For both conditions, the ACDC software was used to manually, automatedly, and semi-automatically measure primary 
cilia length from 25 images. All analysis modes showed that CytoD-treated cilia were significantly longer than cilia that were just serum-starved. 
There was no significant (n.s.) difference in length between analysis modes within each condition. Cilia count is shown above each data series. For 
both serum starvation and +CytoD conditions, 10–25 images were used for analysis. b Images of ciliated cells were taken at ×40 magnification 
(mag.) and then analyzed. Similar mean lengths were observed between ×60-mag. and ×40-mag. serum-starved conditions and also between 
×60-mag. and ×40-mag. +CytoD conditions. All analysis modes showed that CytoD-treated cilia were significantly longer than cilia that were just 
serum-starved. There was no significant (n.s.) difference in length between analysis modes within each condition. Scatter plots are represented 
as mean length ± standard deviation from one experiment. Statistical significance in which p < 0.001 is represented by (***). Cilia count is shown 
above each data series. For both serum starvation and +CytoD conditions, 5 images were analyzed by ACDC manual analysis and 190–200 images 
were analyzed by automated and semi-automated analysis. c, d Cilia analysis rate (number of cilia analyzed/hour) for manual, automated, and 
semi-automated analyses of the ×60-mag. and ×40-mag. serum condition images from (a) and (b), respectively. Speed enhancement, relative to 
ACDC manual analysis, is shown at the top of each graph
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to those reported in Fig.  7c, d. To report cilia analysis 
rates for automated and semi-automated analyses shown 
in Fig. 7c, d, we recorded the time required to measure 
every cilium from the imported data sets of Fig.  7a, b, 
respectively, and then extrapolated those analysis rates to 
a per-hour basis. The difference in speed enhancements 
between 60× and 40× images can be explained by the 
fact that 60× images possess an average of 10.9 cilia per 
image while 40× images possess an average of 27.5 cilia 
per image. More nuclei and more cilia will require several 
more milliseconds of automated analysis. As previously 
stated, the quality of data from semi-automated analy-
sis is naturally as good as that from full manual analysis, 
but with the benefit of spending only 5–10% of the time 
required for manual analysis. Thus, in these examples the 
software offers large time-savings while losing none of 
the robustness and accuracy of standard manual analy-
sis. Of note, the time required to manually analyze nuclei 
and cilia using the ACDC software was similar to that of 
other manual analysis approaches (e.g., using ImageJ’s 
segmented line tool) (Additional file  7: Fig. S7). Instead 
of showing analysis time on the y-axis, we show cilia 
analysis rate, adjusted to a per-hour basis. From these 
data, we believe our comparisons in this study to ACDC 
manual analysis are reflective of currently used analysis 
methodologies.

To show the value of this application in a proof of con-
cept case study, we looked at measuring cilia length over 
an extended period of time (Fig. 8). A 370-min movie of 
CytoD-treated RPE-Smo-GFP cells was obtained by live-
cell confocal imaging at 60× magnification. Image frames 
of the GFP channel were taken from every 5 min of the 
movie and analyzed using the ACDC software (Fig. 8a). 
Despite changes over time in cilium position, length, 
intensity, and curvature, the software’s automated length 
measurements were nearly identical to those of its man-
ual length measurements in each frame (Fig. 8b). A his-
togram of length differences between the two analysis 
modes shows a mean difference of 0.23  μm ± 0.23  μm 
(Fig.  8c). Given that the setting for 60× images is 1 
pixel = 0.143  μm, this translates to less than a 2-pixel 
discrepancy between manual and automated analysis. 
Further, when the few extreme outliers are corrected for 
by semi-automated analysis, the mean length difference 
decreases to 0.18 μm ± 0.14 μm.

Discussion
Quantifying cilia frequency and length is typically done 
by time-consuming manual analysis, yet there are no 
image analysis programs developed specifically for the 
automated detection of primary cilia. In this work, we 
present the ACDC software as a viable solution. First, we 
demonstrated the software’s versatility and robustness 

by successfully detecting primary cilia across different 
reporters and cell types (Figs. 5, 6a, b; Additional file 2: 
Table  S2A, B). While many cilia reporters work with 
ACDC, Arl13b had the lowest FP and FN rates. We also 
looked at different image magnifications and found that 
Arl13b-labeled cilia from images taken at 60× magnifica-
tion were just as accurately detected (F1 score = 0.96) as 
Arl13b-labeled cilia from images taken at 40× magnifica-
tion (Fig. 6c; Additional file 2: Table S2C). This is benefi-
cial for cilia researchers, as 40× images typically possess 
more cilia than do 60× images. Next, we demonstrated 
that the ACDC software measured similar FP and FN 
rates, for both cilia and nuclei detection, across two dif-
ferent experiments of the same condition (RPE cells with 
Arl13b-labeled cilia) and within the same experiment 
but using different representative images for detection 
auto-optimization (Additional file  3: Fig. S3; Additional 
file 4: Fig. S4). In doing so, we showed that the software 
could detect cilia and nuclei and subsequently calculate 
cilia frequency. Furthermore, we showed that very high 
cell confluency can possibly obscure cilia frequency cal-
culations, as the nuclei count for high-confluency images 
tended to possess more false negatives (FN rate = 12%) 
compared to low-confluency images (Additional file  5: 
Fig. S5). We therefore recommend using images in which 
cell confluency is not extremely high. Then, we demon-
strated as a proof of concept the software’s functional-
ity in two biological contexts: (i) accurately measuring 
statistically significant changes in cilia length after drug 
treatment (Fig.  7a, b), and (ii) monitoring cilia length 
from 75 individual movie frames, which yielded an aver-
age length difference of 1–2 pixels compared to man-
ual analysis (Fig.  8). Importantly, we demonstrated the 
remarkable time-savings offered by the software (Fig. 7c, 
d). Nearly 200 images (n > 5000 cilia) taken at 40× mag-
nification were analyzed in one session, yielding a con-
sistent analysis time of 5.6  s per image. This translated 
to almost a 100-fold enhancement in analysis time com-
pared to the software’s manual analysis time of the same 
data set, which required around 476  s per 40× image 
(Additional file 6: Table S6). Thus, by automated analysis, 
nearly 18,000 cilia could be analyzed per hour, depend-
ing on the confluency of cells at the time of fixation. Even 
semi-automated analysis, in which FPs and FNs were cor-
rected, yielded a 20- to 22-fold enhancement compared 
to manual analysis of the same data set (Fig. 7d).

The notable performance of the software stems partly 
from its pre-processing algorithm. While we utilize 
standard equalization and smoothing operations seen in 
other studies [41–43], we also employ an enhanced bina-
rizations step with a Gaussian filter to better account for 
the dynamic intensity variations of different cilia candi-
dates (Fig.  2). The robust performance of the software 
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Fig. 8  Application of ACDC to automated analysis of cilia movies. a A gallery of images from a live-cell spinning-disk confocal microscopy movie 
(370 min, 60× magnification) of a single cilium from an htert-RPE1 cell stably expressing Smoothened-pHluorin GFP, serum-starved and treated 
with 100 nM CytoD to promote ciliogenesis. Image frames of the GFP channel were taken from every 5 min and analyzed with the ACDC software. 
Yellow lines (shifted 10 pixels up and 10 pixels right) show the cilia ‘spline’ generated by the software during automated length measurement. 
Scale bar = 5 μm. b Movie frames were both manually and automatically analyzed for cilia length (0.143 μm/pixel). Line graph shows cilium growth 
over time; pink data points on both lines represent the analyzed frames. c Histogram of length measurement differences between manual and 
automated analysis reveals only a nominal difference of less than 2 pixels
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also stems from its detection auto-optimization abil-
ity, based on the four previously discussed parameters 
(Fig.  3). With over 5.5 million parameter combinations 
to choose from, automated detection of candidates can 
be optimized despite vastly differing experimental con-
ditions. We believe this auto-optimization feature also 
reduces the potential for user bias, as the predominant 
source of bias would originate only from manually choos-
ing the representative image for the data set. Indeed, in 
this study, we observed low error rates associated with 
the software’s automated analysis mode (Fig.  6). Other 
studies that have conducted screens with automated 
detection programs such as IN Cell Analyzer 2000 Imag-
ing system and IN Cell Developer software (GE Health-
care) have not reported associated error rates [10]. Yet 
in these types of studies, significant error could arise 
in the form of FPs, wherein numerous secreted ciliary 
vesicles are interpreted as actual cilia by the detection 
software [44, 45]. Other high-throughput screens have 
used the ‘GPCR Segmentation’ algorithm of CytoShop 
HCS analysis software for cilia detection [11], but had 
to manually adjust threshold values for multiple param-
eters such as object scale for aggregate cilia detection 
and minimum intensity peak height. A process like this 
introduces potential selection bias, and the ACDC soft-
ware attempts to mitigate this possibility by optimizing 
detections parameters based on a comprehensive rep-
resentative image. Therefore, we recommend choosing 
a representative image with a cilia count close to that of 
the data set’s estimated per-image average, as well as an 
image with some examples of cilia varying in shape and 
intensity (depending on the cilia reporter). Once the rep-
resentative image is chosen, the user must establish the 
Ground Truth by manually selecting the candidates they 
consider actual, true cilia (Fig.  4 iii). We believe selec-
tion bias is essentially non-existent here, as cilia stained 
against AcTub, Smo-GFP, and Arl13b seem to be distin-
guishable from other objects such as fixation artifacts, 
random aggregates, cytoplasmic projections, mitotic 
structures, and secreted vesicles [5, 33, 46, 47]. Thus, 
choosing the representative image itself, but not estab-
lishing the Ground Truth from that image, stands as the 
predominant source for detection bias.

Ideally, this software would be used for fully automated 
analysis, in which case the FP and FN rates need to be 
acceptable to the user. Semi-automated analysis is also 
a viable option, as it guarantees the accuracy of manual 
analysis at the cost of extra time to correct for detection 
errors. In either method, we recommend using Arl13b 
as a cilia reporter, as Arl13b-labeled cilia were most 
accurately detected across all experimental conditions 
(Fig.  6). However, we do not discourage using AcTub 
and Smo-GFP as reporters, as they still yielded high F1 

scores comparable to that of Arl13b. AcTub had lower 
F1 scores due to the presence of more FPs from cytosolic 
structures and mitotic events that also possessed bright 
tubulin labeling. Smo-GFP had lower F1 scores due to the 
presence of more FPs from plasma membrane Smo-GFP 
and due to the presence of more FNs from variable Smo 
expression among cilia (very dim cilia that were over-
looked during detection).

Herein, we have demonstrated the applicability of this 
developed approach and have essentially established 
the basis for more extensive, high-throughput stud-
ies. Additionally, this software could be modified and 
implemented in other image analysis platforms, and our 
validation data from this study could be used to test the 
equivalency of such an approach. In the future, we plan 
on evaluating the software’s detection accuracy for cilia 
labeled with other reporters such as INPP5E, IFT88, 
SSTR3, 5HT6, MCHR1, and ACIII [48–53]. Eventu-
ally, we also plan on using the software to analyze videos 
containing multiple cilia by developing a cilium-tracking 
algorithm. Lastly, we hope to extend this software to the 
analysis of 3D images of ciliated cells. In doing so, we 
would consider the different methods for length analysis 
evaluated by Dummer et al. [54] and Saggesse et al. [55], 
including maximum intensity projection, Pythagorean 
theorem, 3D alternative angled slicing, and reconstruc-
tion of each cilium through processes of deconvolution 
and Gaussian blurring.

Conclusions
Studying properties of primary cilia such as frequency 
and length is important for understanding multiple com-
plex human diseases. However, current methods for pri-
mary cilia image analysis are time-consuming and prone 
to selection bias. We developed a new image analysis 
software, ACDC, specifically for the automated detec-
tion and analysis of images of ciliated cells. The software 
is robust and accurate, and can offer nearly two orders 
of magnitude in time-savings compared to conventional 
manual analysis. Future versions of ACDC could pre-
sumably be extended to 3D image analysis and screening 
assays.

Additional files

Additional file 1: Figure S1. Surface plots of F1 scores for different cilia 
reporters. Although the F1 score is ultimately based on four parameters, 
here we depict a 3D surface plot with two of the parameters on the x- and 
y-axes and F1 score on the z-axis for visualization purposes. Each plot is 
based on the corresponding image of ciliated RPE cells. F1 score values 
for automated analysis of each image were calculated by incrementally 
increasing one parameter threshold while holding the other parameter 
threshold constant and then counting the number of FPs and FNs. These 

https://doi.org/10.1186/s13630-019-0061-z
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plots illustrate that there could be many parameter combinations that 
results in the same maximal F1 score, in which case the program’s default 
is to choose the parameter combination that minimizes all parameter 
values while retaining that maximal F1 score. Of the three cilia reporters, 
Arl13b seems to be the ‘best’ reporter, as its surface plot has the largest 
area at F1 = 1.00. Thus, at most combinations of SNR and STD threshold 
values, all Arl13b-labeled true cilia will be detected and no FPs will be 
included.

Additional file 2: Table S2. Tabular data of Fig. 6. For each group (e.g. 
AcTub-labeled cilia in NIH3T3 cells, etc.), absolute cilia count from ana-
lyzed images were averaged and reported as manual true cilia (“Manual 
TC”) averages ± standard deviations. Thus, a data set with a Manual TC 
of 11.9 ± 2.8 indicates an average of 11.9 cilia per image with a standard 
deviation of 2.8 cilia per image. “Automated TC” average counts differ from 
those of “Manual TC” because in automated analysis mode some true cilia 
might not be detected by the software. An “Automated TC” of 11.4 ± 2.4 
(96% of “Manual TC”) indicates that, on average, the software auto-detects 
96% of true cilia in each image. A false positive (FP) rate of 2.7 ± 1.9 (23% 
of “Manual TC”) indicates that, on average, the software will include 2.7 
additional objects (23% more fake cilia) in each image, on top of the 
11.4 ± 2.4 (96%) detected true cilia per image. A false negative (FN) rate 
of 0.5 ± 0.9 (4% of “Manual TC”) indicates that, on average, the software 
will not detect 4% of the “Manual TC” in each image. Precision (α) is calcu-
lated using the data from the “Automated TC” and “FP” rows. Recall (β) is 
calculated using the data from the “Automated TC” and “FN” rows. F1 score 
is calculated using the data from the “Precision (α)” and “Recall (β)” rows. 
Accuracy ratings are based on F1 score values, which range from 0 to 1.00 
(0.95–1.00, ++++ ; 0.90–0.94, +++; 0.85–0.89, ++/+++).

Additional file 3: Figure S3. Ciliary FP/FN rates across separate 
experiments or different Ground Truths within the same experiment. 
(A) These are the analyzed images of RPE cells with Arl13b-stained cilia 
and DAPI-stained nuclei from two separate experiments (Experiment 1 
and Experiment 2). The images for Experiment 1 were the same images 
that were analyzed for the RPE Arl13b cilia condition in Fig. 6b. (B) The 
images from Experiment 2 were analyzed two times using two different 
representative images to establish two different Ground Truths. The 
two different representative images from the Experiment 2 data set are 
shown, and below are their respective parameter threshold values after 
detection auto-optimization. (C) Manual and automated detection of 
RPE primary cilia labeled with Arl13b in 60×-mag. images. Manual true 
candidates (TC) represent the total number of true cilia (light green bar). 
Automated TC represents the number of manual TC that was detected in 
automated analysis mode (dark green bar). Across different experiments 
(i.e. Experiment 1 vs. Experiment 2), the FP rates, FN rates, and F1 scores 
were similar. When repeating the same experiment (i.e. Experiment 2), 
but using different representative images of the data set for detection 
auto-optimization, FP and FN rates were similar (1–3%) and F1 scores 
were identical (F1 = 0.98). (D) Tabular data for the values depicted in (C). 
Accuracy ratings are based on F1 score values, which range from 0 to 1.00 
(0.95–1.00, ++++ ; 0.90–0.94, +++; 0.85–0.89, ++/+++). All measure-
ments are reported as averages ± standard deviations of multiple images 
from one experiment.

Additional file 4: Figure S4. Quantitative analysis of ACDC accuracy in 
detecting nuclei and cilia frequency. (A) Examples of nuclei detection with 
ACDC software of the two representative images used for Experiment 2. 
(B) Manual and automated detection of RPE nuclei labeled with DAPI in 
60×-mag. images. Manually-detected nuclei represent the total number 
of true nuclei (light green bar). Automatedly-detected nuclei represent 
the proportion of true nuclei that were detected in automated analysis 
mode (dark green bar). In regards to nuclei detection, repeating the analy-
sis using two different representative images from the same Experiment 
2 data set yielded identical FP and FN rates (0.9%) and identical F1 scores 
(F1 = 0.99). Note that detection auto-optimization from representative 
images is not utilized for nuclei segmentation and detection. (C) Tabular 
data for the values depicted in (B). Accuracy ratings are based on F1 
score values, which range from 0 to 1.00 (0.95–1.00, ++++ ; 0.90–0.94, 
+++; 0.85–0.89, ++/+++). (D) Manual and automated analysis of cilia 
frequency for the images from Experiment 2. Cilia frequency values were 

calculated by dividing the cilia count/image values by the nuclei count/
image values. All measurements are reported as averages ± standard 
deviations of multiple images from one experiment.

Additional file 5: Figure S5. High cell confluency can affect automated 
cilia and nuclei detection and cell frequency measurements. (A) Analyzed 
images from two separate samples of differing cell confluency (low and 
high). (B and C) Bar graphs and corresponding tabular data of manual 
and automated analysis of RPE Arl13b-labeled cilia in 60×-mag. images. 
Manual true candidates (TC) represent the total number of true cilia 
(light green bar). Automated TC represents the number of manual TC 
that was detected in automated analysis mode (dark green bar). Despite 
differences in cell confluency, FP and FN rates for cilia detection remained 
between 1 and 4% and F1 scores were similar (low confluency, F1 = 0.98 
vs. high confluency, F1 = 0.97). (D and E) Bar graphs and correspond-
ing tabular data of manual and automated analysis of RPE nuclei in the 
same 60×-mag. images. FP rates for nuclei detection were greater in low 
confluency images than in high confluency images (4.5% vs. 0%), but FN 
rates for nuclei detection were much greater in high confluency images 
than in low confluency images (12% vs. 1%). Consequently, the large 
FN rate of 12% for nuclei detection in high confluency images yielded 
a worse accuracy score (F1 = 0.94) compared to that of low confluency 
images (F1 = 0.97). (F) Manual and automated analysis of cilia frequency 
for the low and high confluency data sets. Cilia frequency was calculated 
by dividing the cilia count per image values by the nuclei count per image 
values. Cilia frequency remained nearly identical between manual and 
automated analysis for low confluency images, but cilia frequency values 
varied more between manual and automated analysis for high confluency 
images (manual, 39% ± 12% vs. automated, 45% ± 17%). This difference is 
due to the disparity in nuclei detection between manual and automated 
analysis for high confluency images. All measurements are reported as 
averages ± standard deviations of multiple images from one experiment.

Additional file 6: Table S6. Tabular data of Fig. 7. Images of RPE cells with 
Arl13b-stained cilia, taken at two different magnifications, were analyzed 
manually, automatedly, and semi-automaticallywith the ACDC software. 
Analysis times were recorded for each image and then averaged. Analysis 
times for fully automated analysis (“Auto) are greatly faster than those of 
manual analysis. Standard deviations of fully automated analysis times are 
much smaller than those of semi-automated analysis times (“Semi-Auto”), 
which are smaller than those of manual analysis times. Analysis times 
include the time required to count nuclei, count cilia, and measure cilia 
length. All measurements are reported as averages ± standard deviations 
of multiple images from one experiment.

Additional file 7: Figure S7. ACDC manual analysis versus ImageJ 
manual analysis. ACDC software’s manual analysis mode and ImageJ’s 
segmented line tool were used to manually measure microscopy images 
of Arl13b-labeled ciliated cells taken at 60× magnification. The analysis 
results of two independent, unbiased observers were compared.

Abbreviations
ACDC: automated cilia detection in cells; SNR: signal-to-noise ratio; STD: 
standard deviation; TC: true cilia; FP: false positive; FN: false negative; SDCM: 
spinning-disk confocal microscopy; AcTub: acetylated α-tubulin; Smo: 
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