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Abstract

Introduction: Helmet noninvasive support may provide advantages over other noninvasive oxygenation strategies
in the management of acute hypoxemic respiratory failure. In this narrative review based on a systematic search of
the literature, we summarize the rationale, mechanism of action and technicalities for helmet support in hypoxemic
patients.

Main results: In hypoxemic patients, helmet can facilitate noninvasive application of continuous positive-airway
pressure or pressure-support ventilation via a hood interface that seals at the neck and is secured by straps under the
arms. Helmet use requires specific settings. Continuous positive-airway pressure is delivered through a high-flow gen-
erator or a Venturi system connected to the inspiratory port of the interface, and a positive end-expiratory pressure
valve place at the expiratory port of the helmet; alternatively, pressure-support ventilation is delivered by connecting
the helmet to a mechanical ventilator through a bi-tube circuit. The helmet interface allows continuous treatments
with high positive end-expiratory pressure with good patient comfort. Preliminary data suggest that helmet nonin-
vasive ventilation (NIV) may provide physiological benefits compared to other noninvasive oxygenation strategies
(conventional oxygen, facemask NIV, high-flow nasal oxygen) in non-hypercapnic patients with moderate-to-severe
hypoxemia (PaO,/FiO, <200 mmHg), possibly because higher positive end-expiratory pressure (10-15 cmH,0) can
be applied for prolonged periods with good tolerability. This improves oxygenation, limits ventilator inhomogeneities,
and may attenuate the potential harm of lung and diaphragm injury caused by vigorous inspiratory effort. The poten-
tial superiority of helmet support for reducing the risk of intubation has been hypothesized in small, pilot randomized
trials and in a network metanalysis.

Conclusions: Helmet noninvasive support represents a promising tool for the initial management of patients with
severe hypoxemic respiratory failure. Currently, the lack of confidence with this and technique and the absence

of conclusive data regarding its efficacy render helmet use limited to specific settings, with expert and trained
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personnel. As per other noninvasive oxygenation strategies, careful clinical and physiological monitoring during the
treatment is essential to early identify treatment failure and avoid delays in intubation.

Introduction

The role of non-invasive respiratory support in the man-
agement of acute hypoxemic respiratory failure (AHRF)
is unclear, but evolving. Avoidance of intubation through
noninvasive support improves patient outcomes by pre-
venting the complications of invasive mechanical ventila-
tion [1-3]. However, intubation is needed in a significant
proportion of patients with AHRF treated with nonin-
vasive support (30-60%), and is associated with higher
mortality [4, 5]. This increased mortality may be due to
delays in endotracheal intubation and the possible occur-
rence of patient self-inflicted lung-injury during the
treatment [6-8].

The optimal balance between benefits and harms of
preserving spontaneous breathing in patients with AHRF
and/or acute respiratory distress syndrome (ARDS) is not
fully understood [9]. For these reasons, recent guidelines
have been unable to provide conclusive recommenda-
tions for facemask NIV in this setting [10]. In hypoxemic
patients, noninvasive support can improve gas exchange
and permit to avoid intubation in succeeding patients,
but carries the risk of delaying intubation in patients
failing the treatment. Delayed intubation worsens clini-
cal outcome due to the occurrence of self-inflicted lung
injury. Self-inflicted lung injury a form of injury simi-
lar to ventilator-induced lung injury, but mostly involv-
ing the dorsal, dependent lung zones and caused by the
dysregulated inspiratory effort that severely hypoxemic
patients may exhibit if spontaneous breathing is main-
tained [11-13].

NIV can be delivered through different interfaces,
namely, oro-nasal masks, full-face masks, and hel-
mets [14]. Most studies addressing the role of NIV dur-
ing AHRF focused on oro-nasal and face masks [15].
Recently, there has been renewed interest towards the
use of the helmet interface, mostly due to compelling
results of systematic reviews and pilot clinical trials [2,
16-18]. Furthermore, a more thorough understanding of
the physiology of spontaneous breathing during AHRF
and ARDS highlighted the possible role of specific ven-
tilator settings that can be delivered through the helmet
interface and can potentially mitigate the risk of self-
inflicted lung injury. These essentially include the possi-
bility to provide higher levels of positive end-expiratory
pressure (PEEP) for prolonged periods without interrup-
tions [19, 20].

In this narrative review, we discuss the physiologi-
cal rationale for the use of helmet support as first-line

treatment of AHRF/ARDS, and we describe the techni-
calities for its safe application in hypoxemic patients.

Methods
This narrative review was based on a systematic search of
the medical literature, which was performed according to
a protocol published in PROSPERO (CRD42020201563).
We performed a computerized search of MEDLINE,
PubMed, Embase and the Cochrane Central Register of
Controlled Trials (CENTRAL) database for relevant Eng-
lish-language studies from inception to June 2021. Most
relevant studies published up to August 2022 were subse-
quently included. Study inclusion for our review included
any observational study, interventional trial or reviews on
adults with AHRF treated with helmet NIV or describing
the physiological effects of spontaneous breathing dur-
ing hypoxemic respiratory failure. We included studies
describing (1) how to set up helmet support, (2) its physi-
ological effects, (3) ventilator settings capable of limiting
lung injury during spontaneous breathing and (4) clinical
outcomes of patients receiving helmet support, with or
without a comparison to other noninvasive oxygenation
strategies. Two independent reviewers performed an ini-
tial screening of all retrieved papers by title and abstract.
Then, full-text screening was performed. At any stage,
when discussion was unable to reach a definitive conclu-
sion, disagreements were solved by a third reviewer.
Among 510 citations, a total of 100 studies, includ-
ing 8 randomized trials and three meta-analyses, were
included.

Spontaneous breathing in hypoxemic respiratory
failure
Non-invasive respiratory support—a double-edged sword
In patients with AHRF in intensive care unit (ICU),
maintenance of spontaneous breathing avoids seda-
tion and passive ventilation, thereby limiting diaphragm
dysfunction and delirium, facilitating mobilization, and
reducing the risk of ventilator-associated complications
(e.g., ventilator-associated pneumonia, ICU-acquired
weakness) [21-23]. Moreover, spontaneous breathing
improves aeration of dependent lung regions and redis-
tributes pulmonary blood flow [24, 25], finally improving
ventilation/perfusion matching and oxygenation [26, 27].
Preserving spontaneous breathing with noninva-
sive support may yield, however, risks related to delays
in endotracheal intubation, with detrimental effects
on mortality [4, 28, 29]. Patients who fail NIV exhibit
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elevated inspiratory effort, leading to self-inflicted lung
injury and load-induced injury to the diaphragm [6,
30, 31]. High inspiratory effort generates tidal volumes
beyond the safe thresholds of lung protection, which can
be further exacerbated by the inspiratory assistance of
pressure support [32—-34].

Mechanisms of injury from spontaneous breathing

and the role of PEEP

In critically ill patients with AHRF, respiratory drive
and inspiratory effort are increased by lung injury, high
alveolar dead space, reduced pulmonary compliance,
increased neural ventilatory response to carbon dioxide
(CO,), and higher CO, production by respiratory mus-
cles [13]. This leads to increased activation of respira-
tory muscles, which may not be capable of matching the
brain’s desired CO, clearance [11, 12]. Several mecha-
nisms explain why elevated respiratory effort may be
injurious in patients with AHRF. High inspiratory effort
translates into large swings in transpulmonary pressure
and high tidal volumes, that yield high lung stress and
strain [27, 35]. Overinflating the normally aerated lung
tissue, which is markedly reduced because of inflamma-
tory edema (i.e., the baby lung), leads to lung injury and
multi-organ failure [36-38].

Atelectasis and consolidation are not distributed
homogeneously in the lung [39, 40]. Thus, the inflation-
ary forces generated by diaphragmatic contraction are
not uniformly transmitted throughout the tissue. In
terms of mechanical response to distending stress, col-
lapsed, dependent dorsal lung regions are likely to dem-
onstrate ‘solid-like’ rather than ‘fluid-like’ behaviour. As
a result, an alveolar pressure gradient develops between
the different lung zones leading to a ‘pendelluft’ phenom-
enon, which is an intra-tidal displacement of gas from
non-dependent (normally aerated regions with a liquid-
like behaviour) to dependent lung regions (solid-like
behavior) in the early phase of inspiration [41]. Dorsal
lung regions are, therefore, more distended than ventral
lung regions and subject to additional overstretch, per-
petuating lung injury. This pendelluft phenomenon is
largely dependent on the intensity of inspiratory effort,
and can result in hidden, local overstretch of the depend-
ent lung even if global transpulmonary pressure swings
and inspired tidal volume are within a safe range [42, 43].

Increased lung perfusion and hydrostatic edema can be
magnified by the high transvascular pressure produced
by intense negative swings in pleural pressure: this gener-
ates negative-pressure pulmonary edema, further aggra-
vating lung injury [44—46].

The diaphragm is also injured by intense inspiratory
effort, leading to diaphragm myotrauma and diaphragm
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dysfunction, which detrimentally affects clinical outcome
[47].

Strategies to directly reduce inspiratory effort (e.g., cor-
rection of metabolic acidosis, treatment of fever, analge-
sia and sedation) and the application of high PEEP levels
may mitigate the risk of lung injury due to dysregulated
inspiratory effort.

PEEP-induced alveolar recruitment improves hypox-
emia and may improve the homogeneity of inflation
across the different lung regions [48, 49]. High PEEP (10—
15 cmH,0) favours a more homogeneous distribution of
inspiratory pressure across the lung tissue, thus reducing
pendelluft (Fig. 1) and progression of lung injury; it also
leads to neuromechanical uncoupling and reduces inspir-
atory effort, tidal volume and transpulmonary driving
pressure, even if the neural stimulus remains unchanged
[20, 50, 51].

In summary, application of moderate-to-high PEEP
may be essential to minimize the risk of self-inflicted
lung injury in spontaneously breathing AHRF and
ARDS, especially in case of moderate-to-severe hypox-
emia (PaO,/FiO,<200 mmHg) [27]. During facemask
NIV, PEEP ranging between 5 and 8 cmH,O are usually
applied [52], while higher values are difficult to achieve
because of air leaks and patient discomfort [18]. By con-
trast, the helmet interface allows delivery of moderate-
to-high PEEP (10-15 ¢mH,0O) for prolonged treatments
with good tolerability and without significant leaks.

Helmet support

The Helmet is a transparent hood that covers the entire
head of the patient with soft neck collar that allows the
system to seal at the patient’s neck. The interface is fur-
ther secured by straps under the arms. At least 2 ports
are present, which are connected to separate tubes for
inhaled and exhaled gas, respectively. All commonly used
helmets are latex-free and available in multiple sizes.

Helmet interface may be used to deliver either continu-
ous positive airway pressure (CPAD, i.e., the sole applica-
tion of PEEP without any inspiratory pressure support)
or NIV in pressure support mode (PSV). For the same
PEEP level, the major difference between CPAP and
NIV in the capability of the latter to best reduce inspira-
tory effort. From a theoretical standpoint, in hypoxemic
patients, CPAP could be preferred in case the inspiratory
effort before treatment start is low (<10 cmH,0), while
NIV mostly benefits patients with high inspiratory effort
(>10 cmH,0) [53].

Given the unique characteristics of the interface, spe-
cific settings are required to optimize the treatment:
these are described in Table 1. Circuit set-up is displayed
in Fig. 2.
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Fig. 1 Comparison of representative tracings of airway pressure, transpulmonary pressure esophageal pressure and global and regional electrical
impedance tomography during spontaneous breathing with high-flow nasal, helmet CPAP and NIV in a patient with severe hypoxemic respiratory
failure. The left panel shows the respiratory mechanics during spontaneous breathing with high flow oxygen mask. Due to the high inspiratory
effort and to the inhomogeneity of the lung, it is possible to appreciate the Pendelluft effect. The start of inspiration (marked by the initial negative
deflection of the Pes) is coincident with the increase of electrical impedance tomography in the Global ROI tracing (AZ, %). However, while in

the dorsal regions of the lungs (dependent regions) there is an increase of AZ%, in the ventral region there is a decrease of AZ% (non-dependent
regions). This represents the “Pendelluft effect’, an intra-tidal displacement of air from non-dependent to dependent lung regions, causing local
overstretch of the latter. The first dotted line marks the moment when the AZ% signal in the most ventral ROI stops decreasing and local inflation
begins. In right panels, the respiratory mechanics of the same patient receiving helmet CPAP and pressure support are shown. High PEEP generates
recruitment in dorsal lung regions and mitigate the pendelluft effect and enhances more homogeneous lung inflation. Presence of pressure
support causes a decrease of the inspiratory effort APes swing. Heat maps describe lung regional inflation (blue pixels) and deflation (red pixels).

In the absence of PEEP, a significant pendelluft effect is documented (red pixels during inspiration), which reflects the intra-tidal shift of gas from
anterior non-dependent lung regions to posterior dependent lung regions. This is abolished by high PEEP delivered through the helmet interface,
which makes inflation homogenous across the whole lung tissue. Acronyms: PAW, airway pressure; PES, esophageal pressure; AZ %, electrical
impedance tomography signal variation; ROI, region of interest; VV, ventral-ventral; MV, middle-ventral; MD, middle-dorsal; DD, dorsal-dorsal

Specific settings

CPAP

Theoretically, helmet CPAP can be delivered through
a mechanical ventilator or by an adjustable continuous
flow-generator in combination with a PEEP valve [54].
Ventilator-delivered helmet CPAP may be inherently
unsafe, since the absence of inspiratory pressure sup-
port leads to a total system minute ventilation (washout
flow) significantly lower than the 30-50 L/min needed to
avoid CO, rebreathing [55-57]. For this reason, a high-
flow generator or a VenturiSystem providing 50—60 L/

min of flow and a PEEP valve (10-15 cmH,0O) represent
the safest set-up to deliver helmet CPAP. In this setting,
the application of a heated humidifier is needed, since
fresh gas flows > 40 L/min would otherwise lead to under-
humidification inside the helmet [58—60].

PSV-NIV
The main helmet-specific PSV settings are [13, 17,
61-64]:
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Fig. 2 Helmet interface and circuit set-up for CPAP and NIV. The helmet has a transparent hood and a soft collar that contacts the body at the neck
and/or shoulders. It covers the head and neck without making direct contact with the patient’s face and it is fixed around the axillae. At least 2 ports
are present, which are usually connected to two separate tubes for inhaled and exhaled gas (double-tube circuit). An antibacterial filter should be
placed on the expiratory port

Circuit set-up

Double-limb ventilators should be used to provide
helmet NIV. Both modern high-performance tur-
bine ventilators and gas-compressed ventilators can
be used, with the latter being preferable. A double-
tube circuit should be preferred over a Y-piece circuit,
in terms of ventilator pressurization performance,

patient-ventilator interaction and avoidance of CO,
rebreathing.

Higher PEEP level (10-15 cmH,0)

Increasing PEEP reduces interface compliance, thus min-
imizing the amount of pressure support wasted to pres-
surize the interface and reducing airway pressurization
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Table 1 Helmet settings in patients with acute hypoxemic respiratory, with and without pressure support

Ventilatory setting Helmet NIV

Helmet CPAP

Ventilatory circuit

PEEP
Pressure support

10-15 cmH,0

10-14 cmH,0

Fresh gas flow -

FiO, Titrated to obtain SpO, > 92% and < 98%
Pressurization rate
Inspiratory flow trigger 2 L/min or 2 cmH,0

10-50% of maximum inspiratory flow

125

Cycling
Maximum inspiratory time
Gas conditioning

Ventilator with bitube circuit and antimicrobial filter on expiratory port

0.00 s (or fastest possible pressurization rate)

No humidification needed if minute ventilation <35 L/min

High flow generator with PEEP valve and
antimicrobial filter on expiratory port

10-15 cmH,0
50-60 L/min
Titrated to obtain SpO, > 92% and < 98%

Active heating and humidification (37 °C
or 34 °C according to patient’s comfort)

time. Importantly, increasing PEEP contributes to reduce
air leaks by abutting the helmet against the patient’s
shoulders.

Higher pressure support (10-14 cmH,0)

Increasing pressure support further reduces helmet com-
pliance reducing the amount of pressure wasted to pres-
surize the interface and ensuring adequate inspiratory
support to unload the respiratory muscles. Moreover, a
higher-pressure support generates a higher washout flow,
which is crucial to avoid CO, rebreathing.

Fastest pressurization rate

This aims at minimizing the under-assistance of respira-
tory muscles during the peak inspiratory effort. Vargas
and colleagues demonstrated that increasing PEEP and
pressure support by 50% and use of the fastest pressuri-
zation rate significantly improved the unloading of res-
piratory muscles.

Gas conditioning

Gas conditioning by either heated humidifiers or heat
and moisture exchangers to reach a minimum absolute
humidity of 15 mgH,O/L is recommended during face-
mask NIV [65-68]. However, these data cannot be gen-
eralized to the helmet interface. Preliminary data seem
to show that no humidification is needed during hel-
met NIV if the total system’s minute ventilation does
not exceed a threshold of around 40 L/min, which is the
case for hypoxemic patients treated with helmet NIV. A
double-tube circuit without any humidification reduces
discomfort and provides sufficient conditioning of the
inspired gas, without any effect on inspiratory effort and
work of breathing [69].

Specific features

Internal volume, dead space and CO, rebreathing

The internal volume of the helmet is much larger than
any other NIV interface (around 18 L) and it behaves
as a semi-closed mixing chamber. As such, some of the
patient’s exhaled gas is not eliminated from the hel-
met and instead mixes with fresh gas coming from the
inspiratory limb of the circuit, possibly resulting in CO,
rebreathing [56, 70-72]. CO, concentration inside the
helmet depends on the balance between the patient’s CO,
elimination and the system’s washout flow. Consequently,
high fresh gas flows are needed to avoid rebreathing (flow
rates of at least 30—-50 L/min have been shown to be nec-
essary for this purpose) during CPAP [55], and pressure
support of 12 cmH,0 is usually efficient to avoid the risk
of clinically relevant CO, rebreathing during NIV [62].
During NIV, the use of a bi-tube circuit enables CO,
washout by ventilator expiratory flow-by, that can reach
15 L/min in modern gas-compressed mechanical ventila-
tors provided with a NIV-dedicated module.

Physiological effects of helmet NIV

During NIV, inspiratory pressurization is slower than
with mask interfaces due to significant trigger delays
(0.1-0.5 s) and because part of the pressure is dissi-
pated to distend the interface. Similarly, pressure decay
after cycling off is slower and delayed, often leading to
patient’s expiration against a positive pressure which is
higher than the set PEEP (this represents an additional
resistance to patient’s expiratory flow, it might contrib-
ute to enhanced alveolar recruitment) [62]. Inspiratory
desynchronization and patient-ventilator asynchronies,
although formal and common during helmet NIV, do
not lead to discomfort, as the patient is able to inhale/
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Fig. 3 Representative tracings of respiratory mechanics of a patient treated with helmet pressure support ventilation. Due to the high compliance
of the interface, asynchronies are common during helmet NIV. Inspiratory and expiratory trigger delays are displayed, together with the slow
increase and decay in airway pressure. Despite the short time of synchrony, the mean expiratory airway pressure is higher than the set PEEP (dotted
lines in the Paw tracing) and the mean expiratory transpulmonary pressure is higher than the end-expiratory transpulmonary pressure (dotted lines
in the PL tracing). Due to the significant trigger delays caused by interface compliance, inspiratory effort and ventilator assistance are (at least in
part) out-of-phase, avoiding excessive dumps in transpulmonary pressure during inspiration. This de-synchronization may further enhance lung
protection. Acronyms; PES, esophageal pressure; PL, transpulmonary pressure

exhale in the reservoir of the interface [62]. Inspiratory
de-synchronization may exert lung-protective effects, as
inspiratory effort and pressure support are in part out-of-
phase, finally limiting the amplitude of transpulmonary
pressure inspiratory swings [73, 74] (Fig. 3).

As compared to high-flow nasal oxygen, helmet NIV
improves oxygenation and reduces inspiratory effort
and dyspnoea without changes in PaCO,, comfort, or
transpulmonary pressures. Patients with lower inspira-
tory effort during high-flow nasal oxygen can develop
increased transpulmonary pressures on helmet NIV,
while patients with higher effort during high-flow nasal
oxygen show the most relevant reduction in transpulmo-
nary pressure swings on helmet NIV.

Taken together, these data indicate that helmet NIV
might have advantages over high-flow nasal oxygen in
most severely hypoxemic patients, especially among
those exhibiting intense inspiratory effort, perhaps
because of the higher achievable PEEP levels with their
attendant benefits in terms of alveolar recruitment and
reducing inspiratory effort. Conversely, helmet NIV may
increase transpulmonary pressures in patients with low
inspiratory effort, since the increase in delivered pres-
sure support is not offset by a clinically relevant decrease
in negative swings of pleural pressure. In this latter sub-
group, the use of a lower level of pressure support or
CPAP may help mitigate the increase in transpulmonary
pressure.
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Monitoring

As per any other noninvasive oxygenation strategy, hel-
met support should be used under strict clinical and
physiological monitoring. Careful monitoring is needed
to promptly identify treatment failure, and not to delay
endotracheal intubation and the institution of protective
ventilation [75-77].

Clinically, worsening hypoxemia, increased respira-
tory rate, lack of dyspnea relief are all factors that should
prompt the decision to intubate patients [17, 78—80].

Given the mechanical characteristics of the helmet
interface, such as the inability to transiently occlude
the airway, some of the non-invasive validated methods
to assess inspiratory effort and drive (occlusion pres-
sure, Py;) may not be reliable [81, 82]. The monitoring
of inspiratory effort in theory may help identify patients
with a higher likelihood of self-inflicted lung injury and
should prompt strategies to reduce this risk. While sev-
eral indices of respiratory drive and effort exist, these are
difficult to evaluate in nonintubated patients. Commonly
measured parameters as respiratory rate and dyspnea are
inaccurate measures of inspiratory effort, which is meas-
ured by esophageal manometry through the negative
deflection of esophageal pressure during inspiration [33,
34, 83]. This minimally invasive method is an advanced
monitoring technique achieved with nasogastric tube
equipped with an esophageal balloon to measure esopha-
geal pressure, which reflects pleural pressure. Esophageal
manometry allows inspiratory effort and transpulmonary
pressure measurement, assessment of the work of breath-
ing, detection of patient-ventilator asynchronies and,
possibly, titration of noninvasive support to personalize
protective ventilatory settings. Inspiratory effort persis-
tently greater than 10 cmH,O during NIV, both delivered
with facemask and helmet, is strongly associated with the
subsequent need for endotracheal intubation, suggesting
that inspiratory effort monitoring may play a crucial role
in assessing the risk of self-inflicted lung injury during
helmet NIV [33, 34, 62].

Patients with high severity of illness (Simplified Acute
Physiology Score II>34), older age, or those who fail to
improve PaO,/FiO, or maintain persistently high inspira-
tory effort after 1 h of treatment are at higher risk of fail-
ure [75]. Validated clinical scores such as the ROX index
(ratio of SpO,/[FiO,*respiratory rate]) and the HACOR
scale (heart rate, acidosis, consciousness, oxygenation
and respiratory rate) have been used to early predict fail-
ure during high-flow nasal oxygen and facemask NIV,
respectively [84, 85]. Their reliability under helmet sup-
port, although physiologically sound, is undemonstrated.

With standard equipment, tidal and minute ventila-
tion cannot be reliably monitored during helmet support,
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since a substantial portion of the tidal volume inflates the
helmet and does not reach the patient. During PSV, min-
ute ventilation displayed by the ventilator represents the
system’s washout flow.

Benefits related to helmet interface

Aside from the physiological benefits, the helmet inter-
face offers several practical advantages over other inter-
faces. First, it allows the patient to see, read, interact
with the environment, it facilitates coughing, improves
overall comfort, and can facilitate early mobilization and
physiotherapy. It also allows the patient to drink though
a specific straw independently. High tolerability allows
continuous treatment, reducing or eliminating the need
for intermittent sessions, that are unavoidable dur-
ing facemask NIV [78]. It can be applied to any patient
regardless of the face contour and allows the application
of higher PEEP levels without relevant air leaks or ocular
irritation.

Outcomes

A summary of the clinical studies comparing helmet sup-
port with other techniques is provided in Table 2. Nota-
bly, most of the studies were conducted in Italy.

Helmet vs. standard oxygen

In a small trial, helmet CPAP reduced intubation rate
(15% vs. 63%) and mortality (5% vs. 40%, 20% when res-
cue NIV was used in the low-flow oxygen group) in
patients with community-acquired pneumonia, com-
pared to conventional oxygen therapy [86].

In a recent meta-analysis by Ferreyro et al. hypoth-
esized the superiority of helmet support over standard
oxygen therapy in AHRF: helmet support showed the
most significant improvements in mortality (RR 0.40
[0.24-0.63], absolute risk difference —0.19 [—0.37 to
—0.09], low certainty of evidence) and intubation rate
(RR 0.26 [0.14—0.46], absolute risk difference —0.32
[-0.60 to —0.16], low certainty of evidence) [2]. This
meta-analysis included four randomized trials directly
comparing helmet CPAP to low-flow oxygen. In addition,
facemask NIV showed a lower risk of mortality (RR 0.83
[0-68-0.99], absolute risk difference —0.06 [—0.15 to
—0.01, moderate certainty of evidence]) and intubation
rates (RR 0.76 [0.62—-0.90], absolute risk difference —0.12
[—0.25 to —0.05], moderate certainty) compared to low
flow oxygen. These findings are based on an analysis of
13 randomized trials comparing facemask NIV vs. stand-
ard oxygen therapy. Interestingly, the beneficial effect of
facemask NIV on mortality as compared to standard oxy-
gen was no longer significant when considering patients
with more severe disease (PaO,/FiO,ratio <200 mmHg),
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whereas it remained significant for helmet NIV across all
degrees of hypoxemia.

Helmet vs. high flow nasal oxygen

In recent years, there has been significant interest in high
flow nasal oxygen as an alternative method to noninva-
sively manage AHRF. High-flow nasal oxygen provides
small, variable amounts of PEEP (2-5 cmH,0), anatomi-
cal dead space clearance, and an inspiratory flow capable
of matching the peak inspiratory flow of a hypoxemic
patient, an important advantage over conventional low-
flow oxygen therapy devices [87—89]. As a result, HFNC
reduces inspiratory effort and improves oxygenation
when compared to low-flow oxygen therapy, and its use
has become very common in several clinical settings
[90-92].

A seminal randomized trial reported that patients with
moderate-to-severe AHRF had both lower intubation
and mortality rates if treated with HFNC, compared to
those treated with NIV delivered through face-mask [78].

In a physiologic, helmet NIV was shown to improve
oxygenation and lower inspiratory effort, compared to
high-flow nasal oxygen. The most beneficial effects by
helmet NIV was observed among most severely hypox-
emic patients and those exhibiting intense inspiratory
effort (> 10 cmH,0) with high-flow nasal oxygen [62].

In the meta-analysis by Ferreyro et al. [2], helmet NIV
was associated with decreased mortality (RR 0.46 [0.26—
0.80]; absolute risk difference —0.15 [—0.34 to —0.05];
low certainty) and risk of intubation (RR 0.35 [0.18-0.66];
absolute risk difference — 0.20 [— 0.43 to — 0.08]; low cer-
tainty) when compared to high-flow oxygen, although no
randomized trials directly comparing these two inter-
faces were included in the metanalysis.

Recently, a multicenter, randomized trial compared
early continuous treatment with helmet NIV followed
by high-flow nasal oxygen vs. high-flow nasal oxygen on
days free of respiratory support in patients with COVID-
19 and moderate to severe hypoxemic respiratory failure
[17]. This first head-to-head comparison between these
two promising techniques demonstrated no difference
in respiratory support free days at 28 days. However, hel-
met NIV was associated with a reduction in the rate of
endotracheal intubation in comparison with high-flow
nasal oxygen (30% vs. 51%), with an absolute risk reduc-
tion of 21% (95% CI 3—-38%) and an unadjusted odds ratio
of 0.41 (95% CI 0.18-0.89; P=0.03), with no significant
effect on mortality. Treatment with helmet NIV was asso-
ciated with an increased number of days free of invasive
ventilation at 28 days from randomization. Patients in the
helmet NIV group experienced less dyspnea, improved
gas exchange values, with increased discomfort as com-
pared with high-flow nasal oxygen. The most significant
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clinical benefit of helmet NIV over high-flow nasal oxy-
gen was observed in patients exhibiting hypocapnia
before treatment start, which may identify the sub-pop-
ulation with the most dysregulated inspiratory effort [93].

Helmet vs. facemask NIV

In a matched-control pilot trial in early 2000s, helmet
was as effective as the conventional facemask NIV in
improving oxygenation and avoiding intubation with bet-
ter patient comfort and fewer complications (skin necro-
sis, gastric distension and eye irritation are unusual with
helmet interface) [64].

More recently, a retrospective observational study to
assess the differences between patients who succeeded
or failed noninvasive respiratory support showed that
the use of helmet CPAP was an independent predictor of
noninvasive respiratory support success and lower intu-
bation rate when compared with facemask NIV [94].

The most rigorous head-to-head comparison of hel-
met and facemask NIV comes from a randomized trial by
Patel and colleagues [18]: patients with ARDS undergoing
facemask NIV for at least 8 h were randomly assigned to
continue with the facemask or to switch to helmet inter-
face, to assess if helmet NIV could reduce intubation rate
and improve outcome. The trial was interrupted after the
first interim analysis for efficacy, as helmet use was asso-
ciated with a significant reduction in the intubation rate
(18% with helmet vs. 61% with facemask). Furthermore,
helmet NIV was associated with increased ventilator-free
days, shorter ICU length of stay and lower hospital and
90-day mortality. In addition, the 1-year follow-up study
showed that patients in the helmet group were more
likely to be functionally independent, showing a lower
incidence of ICU-acquired weakness [3].

A recent non-randomized study confirmed the possible
superiority of helmet over facemasks for delivering CPAP
in the specific population of COVID-19 patients: use of
helmet allowed prolonged treatments with higher PEEP,
and was associated with lower rate of intubation and
improved survival [95].

Three meta-analyses including studies comparing hel-
met with facemask NIV in patients with acute respiratory
failure confirmed a possible clinical benefit by helmet
support [2, 16, 96].

In the network meta-analysis by Ferreyro and col-
leagues [2], helmet NIV was associated with significantly
reduced mortality (RR 0.48 [0.29-0.76]; absolute risk dif-
ference —0.13 [—0.27 to —0.05]; low certainty) and risk
of endotracheal intubation (RR 0.35 [0.19-0.61]; absolute
risk difference —0.20 [—0.40 to —0.09]; low certainty)
when compared to facemask NIV.
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Immunocompromised patients

Theoretically, avoidance of intubation is particularly
important in immunocompromised patients, for whom
respiratory complications are a predominant cause of
morbidity and mortality. Squadrone et al. showed that
early helmet CPAP in immunosuppressed patients, when
compared to standard oxygen, may prevent evolution to
ARDS requiring ventilatory support and ICU admission
[97]. These results, however, were not confirmed by two
recent larger multicentre studies: in immunocompro-
mised patients with AHREF, facemask NIV did not reduce
the rate of intubation nor improved clinical outcome as
compared to high-flow or low-flow oxygen [98, 99]. It is
possible that the helmet interface might be more effective
than facemask NIV in immunocompromised patients as
well, as suggested by a case—control study conducted by
Rocco and colleagues, that compared helmet and face-
mask NIV in immunocompromised AHRF [100]. How-
ever, current evidence does not support a different
strategy among immunocompromised patients, since
underlying reasons and purposes are similar.

Conclusions

Noninvasive respiratory support is playing an increasingly
important role in the management of patients with severe
AHRE. Helmet support may enhance tolerability with
greater physiological effectiveness than other noninvasive
oxygenation strategies in patients with moderate-to-severe
hypoxemia. This is attributable to its ability to deliver
higher levels of PEEP for prolonged periods of time with
good comfort, which may improve outcomes by improving
oxygenation, relieving dyspnea and preventing self-inflicted
lung injury and diaphragm injury.

Clinically, helmet support appears to be an effective
tool to manage AHRE, especially in patients with the most
severe oxygenation impairment. In these patients, helmet
NIV could even reduce need for endotracheal intubation,
but further research is warranted to confirm findings from
preliminary randomized studies and to discriminate the
effect of helmet CPAP and NIV. Currently, the lack of con-
fidence with this and technique and the absence of conclu-
sive data regarding its efficacy render helmet use limited to
specific settings, with expert and trained personnel. As per
any other noninvasive oxygenation strategy, careful moni-
toring of the patient remains paramount to avoid delays in
intubation and institution of protective ventilation.
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