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Abstract 

Background: Predicting outcomes of critically ill intensive care unit (ICU) patients with coronavirus-19 disease 
(COVID-19) is a major challenge to avoid futile, and prolonged ICU stays.

Methods: The objective was to develop predictive survival models for patients with COVID-19 after 1-to-2 weeks in 
ICU. Based on the COVID–ICU cohort, which prospectively collected characteristics, management, and outcomes of 
critically ill patients with COVID-19. Machine learning was used to develop dynamic, clinically useful models able to 
predict 90-day mortality using ICU data collected on day (D) 1, D7 or D14.

Results: Survival of Severely Ill COVID (SOSIC)-1, SOSIC-7, and SOSIC-14 scores were constructed with 4244, 2877, and 
1349 patients, respectively, randomly assigned to development or test datasets. The three models selected 15 ICU-
entry variables recorded on D1, D7, or D14. Cardiovascular, renal, and pulmonary functions on prediction D7 or D14 
were among the most heavily weighted inputs for both models. For the test dataset, SOSIC-7’s area under the ROC 
curve was slightly higher (0.80 [0.74–0.86]) than those for SOSIC-1 (0.76 [0.71–0.81]) and SOSIC-14 (0.76 [0.68–0.83]). 
Similarly, SOSIC-1 and SOSIC-7 had excellent calibration curves, with similar Brier scores for the three models.

Conclusion: The SOSIC scores showed that entering 15 to 27 baseline and dynamic clinical parameters into an 
automatable XGBoost algorithm can potentially accurately predict the likely 90-day mortality post-ICU admis-
sion (sosic.shinyapps.io/shiny). Although external SOSIC-score validation is still needed, it is an additional tool to 
strengthen decisions about life-sustaining treatments and informing family members of likely prognosis.
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Introduction
Since January 2020, the world has been massively 
affected by the coronavirus-19 disease (COVID-19) out-
break. In that context, intensive care units (ICUs) are fre-
quently forced to expand bed capacity in many countries. 

Unusually long mechanical ventilation (MV) duration 
and ICU stays observed during the first wave are some 
of the most distinctive characteristics of treating severe 
acute respiratory syndrome-coronavirus 2 (SARS-CoV-
2)-infection-related acute respiratory distress syndrome 
(ARDS), with 90-day mortality ranging from 31 to 53% 
[1–4]. Although accurately predicting patients’ clinical 
outcomes throughout this prolonged ICU stay can be 
difficult, effective recognition—at ICU admission and 
within the first 14  days—of those at high risk of death 
in-ICU is crucial to inform clinical decision-making and 
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families of likely prognoses. It could also facilitate ade-
quate resource allocation, including hospital beds and 
critical care resources, and risk-adjusted comparison of 
center-specific outcomes. Predicting outcomes of criti-
cally ill patients with COVID-19 being treated in the ICU 
is a major challenge, aimed at avoiding futile prolonged 
ICU stays and resource use, and provide additional 
reliable information for decision-making concerning 
withholding or  withdrawing  life-sustaining treatment, 
especially within disease epicenters needing to triage the 
high-volume influx of patients.

COVID-19-survival models published to date tried to 
predict the risk of clinical deterioration of acute cases [5, 
6] using data from hospitalization day (D)1 [7]. To the 
best of our knowledge, none focused on predicting the 
survival of patients after 1-to-2  weeks in ICU. Taking 
advantage of the COVID–ICU-cohort database contain-
ing prospectively collected characteristics, management, 
and outcomes of patients admitted to ICUs for severe 
COVID-19 in France, Belgium, and Switzerland, between 
February and May 2020 [3], we used machine learning to 
develop three dynamic, clinically useful models able to 
predict 90-day mortality using in-ICU data collected on 
ICU D1, D7 or D14, respectively.

Patients and methods
Study population and data collection
COVID–ICU is a multicenter, prospective cohort study, 
conducted in 149 ICUs from 138 centers, across three 
countries (France, Switzerland, and Belgium), launched 
by the Reseau Europeen de recherche en Ventilation 
Artificielle (REVA) network. Most of the centers were in 
France (135/138) whereas two were in Belgium and one 
in Switzerland. All consecutive patients, over 16  years 
old, admitted to the participating ICUs between Febru-
ary 25, 2020, and May 4, 2020, with laboratory-confirmed 
SARS-CoV-2 infection, were included. Among the 4643 
patients admitted to the ICU, 4244 had available survival 
status up to D90 post-ICU admission.

Every day, study investigators completed a standard-
ized electronic case report form. Details of the infor-
mation collected are described elsewhere [3]. Briefly, 
baseline information collected within the first 24 h post-
ICU admission (D1) were: age, sex, body mass index 
(BMI), Simplified Acute Physiology Score (SAPS)-II [8], 
Sequential Organ-Failure Assessment (SOFA) score [9], 
comorbidities, clinical frailty-scale category [10], date of 
the first symptom(s) and ICU admission date. A daily-
expanded dataset included respiratory support devices 
(oxygen mask, high-flow nasal cannula, noninvasive 
ventilation, or invasive MV), arterial blood gases, stand-
ard laboratory parameters, and adjuvant therapies for 
ARDS until D90. In-ICU organ dysfunctions included 

acute kidney failure requiring renal replacement therapy, 
proven thromboembolic complications, confirmed venti-
lator-associated pneumonia (VAP) or bacterial coinfec-
tion, and cardiac arrest. Each patient’s vital status was 
obtained 90 days post-ICU admission.

COVID–ICU received approval from the French Inten-
sive Care Society Ethics Committee (CE-SRLF 20–23) in 
accordance with local regulations. All patients, or close 
relatives, were informed that their data were included in 
the COVID–ICU cohort. This study was conducted in 
accordance with the amended Declaration of Helsinki.

Candidate predictors
We included candidate predictors considered in our 
previous multivariate Cox regression analyses, which 
assessed baseline risk factors of death by D90 [3]. D7 and 
D14 candidate predictors were defined a priori among 
data available in the COVID–ICU cohort [3] (i.e., before 
the building of the SOSIC models), based on recent pub-
lications describing risk factors and specific complica-
tions associated with COVID-19 prognosis [11, 12]. VAP 
was diagnosed by quantitative distal bronchoalveolar 
lavage cultures growing ≥  104  CFU/mL, blind protected 
specimen-brush distal samples growing ≥  103  CFU/mL, 
or endotracheal aspirates growing ≥  106  CFU/mL. Pul-
monary embolism was proven by pulmonary computed-
tomography angiography or echocardiography.

Statistical analyses
Model development
We implemented a systematic machine learning-based 
framework to construct three mortality-prediction 
models (SOSIC-1, SOSIC-7, and SOSIC-14) from ran-
domly selected development datasets, comprising 90% 
of the study sample; the remaining 10% were randomly 
assigned to the test datasets. Each prediction model was 
built using a gradient-boosting machine with decision 
trees, as implemented in the eXtreme Gradient-Boost-
ing (XGBoost) classification algorithm [13]. XGBoost 
algorithm contains several tuning parameters (e.g., the 
number of decision trees, the maximal length of the com-
ponent decision trees). The best set of parameters was 
chosen among a large grid of tuning parameters using 
tenfold cross-validation to maximize the prediction mod-
el’s discrimination ability, as assessed by the area under 
the receiver operating characteristics curve (AUC). We 
aimed to build models that could accurately estimate D90 
survival for patients alive on D1, D7, or D14 following 
ICU admission. The SOSIC-1 model included only base-
line candidate predictors, while SOSIC-7 and SOSIC-14 
models combined baseline and D7 or D14 patient char-
acteristics. The variable importance, which quantifies 
how much each variable contributed to the classification 



Page 3 of 15Schmidt et al. Annals of Intensive Care          (2021) 11:170  

was extracted from the models. SHAP (SHapley Additive 
exPlanations) values were also computed to visualize the 
influence of each input variable on the final score [14].

Model validation
The performances of the three SOSIC models predicting 
90-day mortality were evaluated using AUC-assessed dis-
crimination (i.e., the probability that patients who expe-
rience the outcome will be ranked above those who do 
not), and calibration (i.e., the agreement between pre-
dicted and observed risks) assessed by the calibration 
curve (i.e., the ideal calibration intercept is 0 and ideal 
calibration slope is 1). The Brier score was also computed; 
it combines calibration and discrimination by quantify-
ing how close predictions are to the observed outcomes 
(i.e., better performance is observed with a lower Brier 
score) [15].

A double internal validation was applied for the three 
SOSIC prediction models. First, internal validity was 
assessed by estimating the model performance corrected 
from optimism using bootstrap resampling with 100 
repetitions. All the steps leading to the final prediction 
model (including the selection of the set of XGBoost tun-
ing parameters) were applied to every bootstrap sample 
[16]. Second, model performance was assessed on the 
independent test datasets, distinct from development 
datasets used for model construction. One of the advan-
tages of the XGBoost algorithm is its sparsity awareness 
that can handle the possibility of missing values [17]. 
Therefore, no missing value was imputed before model 
development or validation. Because the COVID-19 pan-
demic did not hit similarly all regions, we tested the per-
formances of the three SOSIC models in two distinct 
populations namely in centers from Paris-greater areas 
and Grand Est compared to centers from other regions. 
Lastly, the performances of the SOSIC-1 were also com-
pared to the SOFA and the SAPS II scores in the develop-
ment and test datasets.

Descriptive analysis
Characteristics of the data included in the SOSIC scores 
are expressed as number (percentage) for categorical 
variables and means ± standard deviations or medians 
(interquartile ranges) for continuous variables. In a uni-
variate analysis, categorical variables were compared 
with χ2 or Fisher’s exact test and continuous variables 
were compared with Student’s t-test or Wilcoxon’s rank-
sum test. A P value < 0.05 was considered statistically 
significant. Statistical analyses and predictive model con-
struction were computed with R v4.0.3, caret package 
v6.0-86, and XGBoost package v1.3.2.1.

Results
Study population
Among 4643 patients enrolled by May 4, 2020, 399 
were lost to follow-up by D90. Thus, the predictive sur-
vival models were built based on the remaining 4244 
patients with available D90 vital status. Then, 4244, 
2877, and 1349 patients, respectively, were included 
in the development datasets to construct the SOSIC-
1, SOSIC-7, and SOSIC-14 scores, with 424, 292, and 
185 from each group, respectively, randomly assigned 
to the corresponding test datasets (Fig.  1). The three 
models selected 15 ICU (baseline) variables: i.e., age; 
sex; BMI; treated hypertension; known diabetes; immu-
nocompromised status; clinical frailty-scale category; 
bacterial coinfection; ventilation profile; SOFA-score 
respiratory, cardiovascular, and renal components; lac-
tate concentration; and lymphocyte count). d-Dimers 
were also selected a priori but were not retained for 
model development because of their inconsistent col-
lection at ICU admission (Additional file  1). Selected 
in-ICU parameters obtained on D7 (SOSIC-7) or D14 
(SOSIC-14) were: SOFA-score respiratory, cardiovascu-
lar, and renal components; lactate level, and ventilation 
profile. In addition, on D7 or D14, the duration of inva-
sive MV, extubation procedure, prone-positioning, con-
tinuous neuromuscular blockade, VAP, cardiac arrest, 
and/or proven pulmonary embolism since ICU admis-
sion were integrated into the SOSIC-7 and SOSIC-14 
scores. Table 1 reports the distributions of these varia-
bles according to D90 vital status in the D1, D7, or D14 
development and test datasets.

Univariate analyses of patient characteristics in the 
development datasets showed that those who died were 
significantly older and had a higher clinical frailty-scale 
category, lower BMI, and shorter intervals between first 
symptom(s) and ICU admission (except for the SOSIC-
14 dataset) compared to D90 survivors (P < 0.01). Sim-
ilarly, patients who had died by D90 were more likely 
on invasive MV in ICU D1 and had significantly higher 
SOFA-score respiratory, cardiovascular, and renal com-
ponents. Their lactate levels during the first 24  h in-
ICU were significantly higher and lymphocyte counts 
were lower.

Among patients still in-ICU on D7 or D14, the same 
differences were observed regarding their SOFA-score 
components, lactate levels, and ventilation profiles on 
those days (Table  2). As expected, patients who died 
were more likely to have undergone prone-positioning 
or received neuromuscular blockade and experienced 
significantly more complications in-ICU (i.e., VAP, car-
diac arrest, pulmonary embolism) within the first 7 or 
14 days.
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Importance of the 90‑day mortality predictors
Figure 2 and Additional file 2 illustrate variable-weight-
ing in the machine-learning models used to build the 
D1, D7, and D14 SOSIC scores. Briefly, age, clinical 
frailty-scale category, D1 lymphocyte count, and the 
interval between first symptom(s) and ICU admission 
were given significant weight to predict D90 mortality. 
However, the weights of these baseline characteristics 
tended to decrease when the prediction was estimated 
after 7 or 14  days in-ICU. Conversely, other baseline 
comorbidities, such as known diabetes, immuno-
compromised status, or treated hypertension, were 
accorded similar weights in all three scores.

Interestingly, when the prediction was estimated on D7 
(SOSIC-7) or D14 (SOSIC-14), SOFA-score respiratory 
and cardiovascular components, and respiratory sup-
port at ICU admission were accorded greater importance 
compared to the D1 prediction. Moreover, cardiovas-
cular, renal, and pulmonary functions on the prediction 
D7 or D14 were among the inputs with the highest pre-
ponderance in both models, while in-ICU complications 
since admission had only modest weight.

Performance of the SOSIC scores
We developed three models using XGBoost algorithms 
that accurately predicted 90-day mortality using data 
from ICU D1 and the prediction day. Apparent-, boot-
strap-corrected-, and test-dataset-validation metrics are 

reported in the Additional file 3. Based on the test data-
set the AUC was slightly higher for SOSIC-7 (0.80 [0.74–
0.86]) than for SOSIC-1 (0.76 [0.71–0.81]) and SOSIC-14 
(0.76 [0.68–0.83]). Similarly, SOSIC-1 and SOSIC-7 
calibration curves were excellent (Fig. 3). Those findings 
indicate fair agreement between predicted and observed 
risks in those two scores. Although calibration of SOSIC-
14 was lower (slope 0.83 [0.49–1.22]) compared to the 
SOSIC-1 and SOSIC-7, the Brier scores, which assess 
both calibration and discrimination of the predictive 
models, were similar for all three models. Besides, the 
correlations between the three scores were good (Addi-
tional file  4). We did not identify any center effect, as 
evidenced by the AUC of SOSIC-1 which was similar in 
Paris-greater areas and Grand Est vs other regions (0.75 
95%CI [0.69;0.81] vs 0.76 95%CI [0.67;0.85]). Similarly, 
calibration slope close to one whatever the region (Paris-
greater area and Grand Est AUC: 0.92 95%CI [0.65;1.21] 
versus other regions AUC: 0.90 95%CI [0.53;1.33]). Simi-
lar results were observed for SOSIC-7 and SOSIC-14 
models and are reported in Additional file 5. The internal 
validation of SOSIC-1 on the test dataset exhibited fair 
performance (AUC: 0.76 [95%CI 0.71;0.81]) in contrast 
to much poorer discrimination of the SAPS II (AUC:0.64 
[95%CI 0.58;0.70]) and SOFA scores (AUC:0.62 [95%CI 
0.56; 0.69]). Graphic representation of the SOSIC-1, 
SAPS II, and SOFA discrimination performances is 
shown in Fig. 4. Similarly, performances of the SOSIC-7 

Fig. 1 Flowchart of COVID-19 patient screening, inclusion, and assignment to the development and test datasets. ICU intensive care unit, SOSIC 
Survival of Severely Ill COVID score
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Fig. 2 Variable weighting in the machine-learning models: Survival of Severely Ill COVID (SOSIC) scores on days 1, 7 and 14. A color gradient is used 
to show variable strength in the machine-learning models at different times, ranging from yellow for the highest preponderance input variables to 
progressively darker shade of purple for lower input variables. D day, BMI body mass index, ICU intensive care unit, MV mechanical ventilation, SOSIC 
Survival of Severely Ill COVID score, SOFA Sequential Organ-Failure Assessment, VAP ventilator-associated pneumonia

Fig. 3 Calibration and discrimination of the Survival of Severely Ill COVID (SOSIC)-1, SOSIC-7 and SOSIC-14 scores using the test dataset
(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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and SOSIC-14 were slightly better than SOFA at day-7 
and day-14, respectively (Additional file 6).

Discussion
We developed and validated three prognostic models 
(SOSIC-1, SOSIC-7, and SOSIC-14) to predict 90-day 
mortality of 4244 critically ill patients with COVID-
19 treated in France, Belgium, and Switzerland, evalu-
ated during the 2  weeks following ICU admission. The 
SOSIC scores showed that entering 15 to 27 baseline and 
dynamic clinical parameters (depending on the score 
day) into an automatable XGBoost algorithm had the 
potential to accurately predict likely mortality 90  days 
post-ICU admission. Although external validations of 
the SOSIC scores in other critically ill populations with 
COVID-19 are still needed, these dynamic tools could 
enable clinicians to objectively assess the in-ICU mor-
tality risk of patients with COVID-19 for up to 14 days. 
It offers an additional tool to strengthen decisions about 
life-sustaining treatments, hospital and ICU resources, 
and informing family members of likely prognosis.

Predicting outcomes of critically ill COVID patients 
is challenging. Patients hospitalized with COVID-19 
can be classified into three phenotypes that have prog-
nostic implications [18]. Indeed, patients with more 
chronic heart, lung, or renal disease(s), obesity, diabetes, 
an intense inflammatory syndrome, higher creatinine 
level, and poorer oxygenation parameters were classi-
fied as having the highest risk of deterioration that was 
associated with poorer outcomes [18]. Age is frequently 
associated with higher rates of hospitalization, ICU 
admission, and mortality of patients with COVID-19 

[18–20]. Frailty is a useful tool to stratify the risk of death 
90  days post-ICU admission and offers important addi-
tional prognostic information to combine with age over 
70 years for patients with COVID [21]. Interestingly, the 
weights accorded age and frailty in our predictive mod-
els declined over the ICU stay. In other words, those two 
variables more weakly affected mortality prediction after 
7 or 14 days in-ICU, compared to the prediction at ICU 
admission (Fig. 2). Similarly, a shorter interval from the 
onset of COVID-19 symptom(s) to ICU admission, which 
was associated with a higher risk of death [22], weighed 
less in SOSIC-7 and SOSIC-14.

Despite being collected on D1, SOFA-score cardio-
vascular, respiratory, and renal components strongly 
impacted later predictions but only modestly affected the 
D1 prediction. Similarly, in an observational multicenter 
cohort of patients with moderate to severe COVID-19 
ARDS, the decrease of the static compliance of the res-
piratory system observed between ICU day-1 and day-14 
was not associated with day-28 outcome [23]. Besides, 
cardiac injuries appear frequent with nearly 70% of 
COVID-19 patients experienced cardiac injury within 
the first 14 days of ICU stay [24].

The poor discriminant accuracy of the SOFA-score 
to predict mortality of patients before intubation for 
COVID-19 pneumonia was recently highlighted [25]; 
indeed, these patients generally have severe single-organ 
dysfunction and globally less SOFA-score variations. 
However, the impacts D7 and D14 respiratory, car-
diovascular and renal statuses are of the utmost impor-
tance in the mortality prediction at those times. The 
SOSIC scores put the spotlight on the possibility of some 

Fig. 4 Graphic representation of the SOSIC-1, the SAPS II, and the SOFA performances in the A development and B the test datasets. SOSIC Survival 
of Severely Ill COVID score; SAPS II Simplified Acute Physiology Score II, SOFA Sequential Organ-Failure Assessment
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variables exerting variable influence to predict mortal-
ity of patients with COVID-19, e.g., demographic vari-
ables had less weight after 1 or 2 weeks in-ICU. However, 
the discrimination of the SOSIC scores did not improve 
over time. Indeed, the AUC was not better at day-7 or 
14 compared to day-1 and its better performance com-
pared to the SOFA-score was reduced over time. A 
greater number of variables inducing a higher heteroge-
neity associated with a reduction of the sample size of the 
development and the test datasets at day-7 and 14 could 
explain this finding.

Because no models predicting COVID-19 outcomes 
focused on patients already in the ICU [5, 6, 26], the 
SOSIC scores have the potential for clinical usefulness 
and generalizability. Internal validations of the SOSIC 
scores showed consistent discrimination and calibra-
tion, which obviously deserves further external valida-
tion. With an AUC around 0.80, external validation is 
desirable to assess the mortality prediction beyond popu-
lation levels and to fully assess the mortality risk of the 
individual being admitted and cared for up to 2 weeks in-
ICU. Although discrimination was largely consistent for 
the different validation methods, SOSIC-14’s calibrations 
were lower; that finding suggests its performance using 
an external independent sample might be lower than 
those of SOCIC-1 or SOSIC-7. By construction, SOSIC-
14 was developed on a smaller sample size than the other 
two models, which might explain its lower quality in 
terms of predicting 90-day mortality.

Despite being developed and validated on a substantial 
cohort with a large number of participating ICUs, these 
scores were constructed during the first COVID wave in 
Europe, a period with high pressure on the health sys-
tems and before the publication of core randomized trials 
[4, 27]. Moreover, ventilator strategies have also changed, 
as the pandemic has evolved and the medical community 
acquired a greater understanding of the pathophysiology 
of the disease and how to treat it. Caregiver reluctance 
to provide noninvasive oxygen strategies has been over-
come [3], leading to higher percentages of patients on 
high-flow oxygen and noninvasive ventilation, and lower 
rates of intubation on ICU D1 [3, 28].

Debates are still ongoing as to the best timing of intu-
bation in that population, as recent data have suggested 
poorer outcomes associated with an early intubation 
strategy [29–31]. Thus, the very high percentages of our 
patients intubated on ICU D1 will probably differ during 
subsequent COVID-19 outbreaks, in countries with dif-
ferent public healthcare organizations or ICU admission 
policies.

Indeed, SOSIC predictions should be interpreted as 
reflecting a profile of critically ill patients with COVID-
19 not routinely treated with corticosteroids and outside 

vaccination campaigns, which may have changed since 
May 2020. Besides, this cohort was conducted at a time 
where the national health system was extremely pres-
sured which lead to an important reorganization of 
intensive care supplies in some regions although we did 
not find a region effect on the performances of the SOSIC 
scores. However, we cannot rule out that outside a surge 
situation, the model could slightly overestimate the mor-
tality. As commonly done for other scoring systems [32], 
prospective external validations of the SOSIC scores are 
warranted to determine the need for temporal recalibra-
tion and to evaluate model performance in diverse inter-
national settings. External validations in more recent 
cohorts of patients who received recent treatments and 
ventilation management are warranted. The publicly 
available calculator (sosic.shinyapps.io/shiny) should 
help achieve these goals. Another limitation is that we 
only included predictors that were routinely collected 
in the COVID–ICU database during the study period. 
Thus, we cannot rule out that some additional laboratory 
or ventilatory parameters reflecting respiratory mechan-
ics (especially measured on ICU D7 or D14) would have 
improved SOSIC-score performances. We were also 
unable to integrate d-dimer concentrations as initially 
planned [33], because of their inconsistent collection at 
ICU admission. Although the XGBoost algorithm incor-
porates missing data in its split finding algorithm, we 
cannot guarantee that this method can handle any pat-
tern of missing data effectively [34]. As this algorithm 
potentially exploits the data missingness patterns for pre-
diction, a major shift in the missingness mechanism in 
an external independent sample may affect SOSIC scores 
performance. Lastly, important detailed information on 
therapy withholding or withdrawing is lacking.

Conclusion
The SOSIC-1, -7, and -14 scores were able to fairly 
predict 90-day mortality of critically ill patients with 
COVID-19 admitted and managed in-ICU (sosic.shin-
yapps.io/shiny). These machine-learning models, built 
with XGBoost algorithms, showed good discriminations 
and excellent calibrations. The patient’s demographic 
characteristics contributed most to SOSIC-1, while ven-
tilatory status and extrapulmonary dysfunctions were 
the preponderant predictors in SOSIC-7 and SOSIC-14. 
Further studies are now warranted to externally validate 
these scores in recent cohorts of critically ill COVID-19 
patients and assess their performances at individual lev-
els as the pandemic evolves.
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