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Abstract 

Background: Diaphragm dysfunction is defined by a value of twitch tracheal pressure in response to magnetic 
phrenic stimulation (twitch pressure) amounting to less than 11 cmH2O. This study assessed whether this threshold or 
a lower one would predict accurately weaning failure from mechanical ventilation. Twitch pressure was compared to 
ultrasound measurement of diaphragm function.

Methods: In patients undergoing a first spontaneous breathing trial, diaphragm function was evaluated by twitch 
pressure and by diaphragm ultrasound (thickening fraction). Receiver operating characteristics curves were com‑
puted to determine the best thresholds predicting failure of spontaneous breathing trial.

Results: Seventy‑six patients were evaluated, 48 (63%) succeeded and 28 (37%) failed the spontaneous breathing 
trial. The optimal thresholds of twitch pressure and thickening fraction to predict failure of the spontaneous breath‑
ing trial were, respectively, 7.2 cmH2O and 25.8%, respectively. The receiver operating characteristics curves were 0.80 
(95% CI 0.70–0.89) for twitch pressure and 0.82 (95% CI 0.73–0.93) for thickening fraction. Both receiver operating 
characteristics curves were similar (p = 0.83). A twitch pressure value lower than 11 cmH2O (the traditional cutoff for 
diaphragm dysfunction) predicted failure of the spontaneous breathing trial with a sensitivity of 89% (95% CI 72–98%) 
and a specificity of 45% (95% CI 30–60%).

Conclusions: Failure of spontaneous breathing trial can be predicted with a lower value of twitch pressure than the 
value defining diaphragm dysfunction. Twitch pressure and thickening fraction had similar strong performance in the 
prediction of failure of the spontaneous breathing trial.
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Background
Diaphragm dysfunction is common in critically ill 
patients exposed to mechanical ventilation [1]. It 
can occur soon after intubation [2]. It can also occur 
later, where it may be a consequence of intensive care 
unit acquired weakness or the result of the specific 
time-dependent impact of mechanical ventilation on 
the diaphragm [3–7], a phenomenon referred to as 

ventilator-induced diaphragm dysfunction [8]. Dia-
phragm dysfunction is associated with increased mor-
tality [2, 3, 9] and delayed liberation from mechanical 
ventilation [3, 4, 10, 11].

Diaphragm dysfunction manifests as a reduced capac-
ity to generate inspiratory pressure and flow [12]. This 
can be assessed in term of the negative pressure swing 
measured at the opening of an endotracheal tube in 
response to bilateral phrenic nerve stimulation (Ptr,stim) 
[1]. Outside of the intensive care context, a Ptr,stim value 
amounting to less than 11 cmH2O is considered indica-
tive of diaphragm dysfunction [12–14]. In critically ill 
patients, this value of − 11  cmH2O has proven useful 
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from a prognostic point of view. In a prospective study 
of ICU patients in whom Ptr,stim was measured at time 
of weaning, patients with a Ptr,stim below the 11 cmH2O 
threshold were less likely to survive to discharge from 
the ICU or hospital than those with a Ptr,stim above this 
threshold [3]. Yet, lower Ptr,stim values are commonly 
encountered in ICU patients at various points of their 
ICU stay [2–4, 15] and two recent studies have reported 
successful weaning from mechanical ventilation despite 
lower values of Ptr,stim [3, 4]. Therefore, our hypothesis 
was that the Ptr,stim threshold value used to define dia-
phragm dysfunction (− 11 cmH2O) would be not neces-
sarily the best threshold that allows successful or failed 
weaning from mechanical ventilation. The present study 
was designed to identify the optimal Ptr,stim value to 
predict failure of the spontaneous breathing trial. In view 
of the recently reported utility of diaphragm thickening 
fraction (TFdi) [16] to predict failure of the spontaneous 
breathing trial, the predictive value of this variable was 
also evaluated.

Patients and methods
This study was an ancillary analysis of a study prospec-
tively conducted over 9  months (November 1, 2014, to 
July 31, 2015) in a medical 10-bed ICU. Human research 
ethics committee approval for the study was provided by 
the Comité de Protection des Personnes—Ile de France 
6 (ID RCB: 2014-A00715-42). Informed consent was 
obtained from all patients or their relatives. Data from 
this cohort have been previously published [3, 17].

Patients
Patients were eligible for inclusion if they had been intu-
bated and ventilated for at least 24  h and if they met 
predefined readiness-to-wean criteria on daily screen-
ing [18] and were therefore ready for a first spontane-
ous breathing trial (Additional file  1: readiness criteria 
to initiate a spontaneous breathing trial). Readiness-to-
wean criteria were searched for while patients were ven-
tilated on existing mechanical ventilation setting prior to 
spontaneous breathing trial (SBT). Patients with clinical 
factors potentially interfering with phrenic nerve stimu-
lation, who had a tracheostomy, or who were unable to 
follow simple orders were excluded (Additional file  1: 
exclusion criteria).

Measurements
All measurements were taken a few minutes before start-
ing the SBT. Phrenic nerve stimulation was performed 
while patients were briefly disconnected from the ven-
tilator (Additional file  1: description of the phrenic 
nerves stimulation technique), and diaphragm ultra-
sound (Additional file  1: description of the ultrasound 

technique) was conducted while patients were mechani-
cally ventilated under pressure support ventilation with 
ventilator settings decided by the attending physician. In 
our unit, pressure support level is set in order to provide 
a tidal volume of 6–8 ml/kg of ideal body weight without 
any sign of acute respiratory distress or discomfort. Posi-
tive end-expiratory pressure is set at 5 cmH2O.

Diaphragm function was assessed in terms of changes 
in tracheal pressure during a magnetic stimulation 
(Ptr,stim), as described elsewhere [2, 4, 5, 14, 15]. Stimu-
lations were delivered at the maximum intensity allowed 
by the stimulator (100%) known to result in supramaxi-
mal diaphragm contraction in most patients [2, 10, 13, 15, 
19]. Diaphragm ultrasound was conducted using a 4–12-
MHz linear array transducer (Sparq ultrasound system, 
Philips, Philips Healthcare, MA, USA). Diaphragm thick-
ness was measured at end-expiration (Tdi,ee) and end-
inspiration (Tdi,ei), and thickening fraction (TFdi) was 
calculated offline as (Tdi,ei–Tdi,ee)/Tdi,ee. Two observers 
blinded to the results of phrenic nerve stimulation per-
formed diaphragm ultrasound. As previously reported 
elsewhere [3], the reproducibility of ultrasound measure-
ments was assessed on the first 20 patients while the two 
observers were blinded to each other’s measurements 
and after they performed at least 20 diaphragm ultra-
sounds during a 2-month training period before starting 
the study [3, 17]. Intra-class correlation (ICC) for Tdi,ei, 
Tdi,ee and TFdi were, respectively: ICC = 0.95 (p < 0.001), 
ICC = 0.96 (p < 0.001) and ICC = 0.87 (p < 0.001) [3].

Study design
After obtaining study measurements, patients under-
went a SBT. During the SBT, patients were ventilated 
with a pressure support level 7  cmH2O and 0  cmH2O 
end-expiratory pressure for 30  min. Failure of the SBT 
was defined if patients developed criteria for clinical 
intolerance defined as follows [18]: (1) pulsed oxygen 
saturation < 90% with a fraction of inspired oxygen ≥ 50%, 
acute respiratory distress (respiratory rate ≥ 40/min 
with agitation or cyanosis), systolic arterial blood pres-
sure ≥ 180  mmHg, or pH < 7.32 with an arterial carbon 
dioxide tension ≥ 50  mmHg. For patients with multiple 
failed SBT, only their first SBT was considered for the 
analysis.

Statistical analysis
Continuous variables are expressed as median (inter-
quartile range), and categorical variables are expressed 
as absolute and relative frequency. Continuous variables 
were compared with Mann–Whitney U test.

The manuscript conforms to the STARD checklist for 
reporting of studies of diagnostic accuracy [20]. Receiver 
operating characteristic (ROC) curves were constructed 



Page 3 of 7Dres et al. Ann. Intensive Care  (2018) 8:53 

to evaluate the performance of the two index to predict 
SBT failure: Ptr,stim and TFdi. Sensitivities, specificities, 
positive and negative predictive values, positive and neg-
ative likelihood ratios and areas under the ROC curves 
(AUC-ROC) were calculated. AUC-ROC were performed 
to identify optimal cutoff values of Ptr,stim and TFdi in 
predicting SBT failure, and these estimates were obtained 
using bootstrapping with 1000 replications. The best 
threshold value for each index was determined as the 
value associated with the best Youden index for the pre-
diction of SBT failure. AUC-ROC were compared using 
the nonparametric approach of DeLong et al. [21].

For all final comparisons, a two-tailed p value less than 
or equal to 0.05 was considered statistically significant. 
Statistical analyses were performed with MedCalc (Med-
Calc Software bvba).

Results
Between November 1, 2014, and July 31, 2015, 330 
patients were admitted in our ICU. One hundred and 
eighty-four patients received invasive mechanical ventila-
tion for more than 24 h leading to the enrollment of 76 
consecutive patients in the study (Additional file 1: Figure 
E1. Flowchart of the study). The characteristics of these 
patients upon inclusion are given in Table 1.

Forty-eight patients (63%) passed the SBT and were 
subsequently extubated, while 28 patients (37%) devel-
oped criteria for SBT failure and initial ventilator settings 
were accordingly resumed. Of the 48 extubated patients, 
seven patients required resumption of ventilatory sup-
port (six were reintubated and 1 had curative noninvasive 
ventilation) within 48 h: five patients for respiratory dis-
tress and two patients for loss of consciousness. No stri-
dor was reported. Prophylactic noninvasive ventilation 
was used in two patients.

Prediction of spontaneous breathing trial failure
Median Ptr,stim was 8.2 (5.9–12.6)  cmH2O; Ptr,stim was 
10.0 (7.3–14.3) and 6.5 (3.0–8.8)  cmH2O in patients with 
successful and failed SBT, respectively (p < 0.001). The 
optimal threshold value of Ptr,stim to predict SBT fail-
ure was 7.2 cmH2O (Table 2). A Ptr,stim value lower than 
11 cmH2O (the traditional cutoff for diaphragm dysfunc-
tion) predicted SBT failure with a sensitivity of 89% (95% 
CI 72–98%) and a specificity of 45% (95% CI 30–60%). 
Patients with SBT success and SBT failure according 
to both 7.0 and 11.0  cmH2O thresholds of Ptr,stim are 
shown in Fig. 1a, b.

Median TFdi was 28% (19–35) in the whole popula-
tion; TFdi was 33% (29–43) and 19% (11–25) in patients 
with successful SBT and SBT failure, respectively 
(p < 0.001). The optimal threshold value of TFdi to predict 

Table 1 Patient’s characteristics at inclusion

Continuous variables are expressed as median (interquartile range), and 
categorical variables are expressed as absolute value (%)

SOFA sequential organ failure assessment, PEEP positive end-expiratory pressure, 
PaO2/FiO2 ratio of arterial oxygen tension to inspired oxygen fraction

Characteristics

 Female, n (%) 24 (32)

 Age, years 58 (48–68)

 SOFA 5 (4–7)

 Duration of mechanical ventilation, days 4 (2–6)

Main reason for mechanical ventilation, n (%)

 Acute respiratory failure 28 (37)

 Shock 24 (32)

 Coma 23 (31)

Ventilator parameters

 Pressure support level,  cmH2O 10 (8–10)

 Tidal volume, ml/kg ideal body weight 7 (5–8)

 PEEP,  cmH2O 5 (5–6)

Clinical parameters

 Breaths,  min−1 22 (20–25)

 Mean arterial pressure, mmHg 80 (69–98)

 Heart rate,  min−1 89 (78–100)

Arterial blood gases

 pH 7.44 (7.40–7.45)

 PaCO2, mmHg 38 (34–44)

 PaO2/FiO2 279 (214–357)

Table 2 Threshold, area under the receiver operating characteristics curves (AUC-ROC), sensitivity, specificity, posi-
tive and negative likelihood ratios and positive and negative predictive values of endotracheal pressure induced by a 
bilateral phrenic nerve stimulation (Ptr,stim) and diaphragm thickening fraction (TFdi) to predict weaning failure 
from mechanical ventilation

CI confidence interval

Threshold AUC-ROC (95% CI) Sensitivity (%) (95% CI) Specificity (%) (95% CI) Likelihood ratios (95% 
CI)

Predictive values (%) 
(95% CI)

Positive Negative Positive Negative

Ptr,stim 7.2  cmH2O 0.80 (0.70–0.89) 68 (47–84) 79 (64–89) 3.2 (1.7–5.8) 0.4 (0.2–0.7) 66 (51–78) 80 (70–88)

TFdi 25.8% 0.82 (0.73–0.93) 79 (59–92) 73 (58–85) 2.9 (1.8–4.8) 0.3 (0.1–0.6) 63 (51–74) 85 (74–92)
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SBT failure was 25.8%. Figure  1c shows the number of 
patients with SBT success and SBT failure according to 
25.8%-TFdi threshold. Predictive performances of TFdi 
are shown in Table  2. The comparison of AUC-ROC of 
Ptr,stim and TFdi is displayed in Fig. 2. Ptr,stim and TFdi 
had similar AUC-ROC (p = 0.83).

Discussion
This study reports a dual assessment of diaphragm 
function and its relationship with weaning outcome in 
mechanically ventilated medical patients undergoing 
a first spontaneous breathing trial. Our findings can be 
summarized as follows: (1) a lower value of Ptr,stim (i.e., 
7.0 cmH2O) than the value commonly accepted value to 
define diaphragm dysfunction (i.e., 11.0 cmH2O) is more 
reliable to predict SBT failure, (2) Ptr,stim and TFdi are 
equivalent to predict SBT failure.

Diaphragm function and weaning from mechanical 
ventilation
The negative impact of diaphragm dysfunction on suc-
cessful weaning from mechanical ventilation has been 
established by several investigations in critically ill 
patients [3, 4, 11, 22]. At the time of weaning, diaphragm 
dysfunction is highly prevalent [1] with reported rates 
ranging from 25–30% [11, 22] to 60–80% [3, 4]. To our 
knowledge, only three studies have assessed diaphragm 
dysfunction at the time of attempted liberation from 
mechanical ventilation using the gold standard tech-
nique, namely the phrenic nerves stimulation [3, 4, 23]. 
However, none of them provided any threshold values 
for Ptr,stim to predict weaning outcome. Of note, these 
studies including ours indicate that a substantial propor-
tion of patients (up to 44%) can be successfully weaned 
from the ventilator despite having diaphragm dysfunc-
tion defined as Ptr,stim < 11  cmH2O [3, 4]. Therefore, 

Fig. 1 Patients with successful spontaneous breathing trial and failed 
spontaneous breathing trial according to 7  cmH2O (a) and 11  cmH2O 
(b) thresholds of endotracheal pressure induced by a bilateral phrenic 
nerve stimulation (Ptr,stim) and 26% (c) threshold of diaphragm 
thickening fraction (TFdi). Numbers indicate the number of patients 
in each category

Fig. 2 Receiver operating characteristics curves of endotracheal 
pressure induced by a bilateral phrenic nerve stimulation (Ptr,stim) 
and diaphragm thickening fraction (TFdi) to predict failure of the 
spontaneous breathing trial
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normal diaphragm function according to a definition 
established in healthy subjects [12] is not a prerequisite 
for a successful SBT. This finding is not altogether sur-
prising as many patients with chronic diaphragm dys-
function do not require mechanical ventilation [24, 25]. 
While diaphragm dysfunction might limit exercise capac-
ity, the clinical consequences of diaphragm dysfunction 
in successfully liberated patients are uncertain. However, 
the impact of respiratory muscles dysfunction (not spe-
cifically the diaphragm) after critical illness may be of 
importance since it is associated with worse long-term 
outcomes [26, 27]. Overall, our findings are of impor-
tance since they highlight that presence of diaphragm 
dysfunction at the time of weaning should not discourage 
clinicians from attempting liberation from ventilation. By 
contrast, not all patients (23/27) with a Ptr,stim higher 
than 11.0 cmH2O had a successfully SBT. As a matter of 
fact, the 11.0 cmH2O threshold of Ptr,stim was associated 
with a lower specificity but a higher sensitivity than the 
7.0  cmH2O threshold in the prediction of SBT failure. 
The lower 7.0  cmH2O Ptr,stim threshold provides the 
optimal combination of sensitivity and specificity in the 
prediction of SBT failure.

Diaphragm ultrasound in the prediction of SBT failure
The use of diaphragm ultrasound is growing in the ICU 
[28, 29]. It has many advantages over phrenic nerve 
stimulation, which requires costly equipment and exten-
sive technical expertise. Ultrasound is a noninvasive and 
highly feasible bedside imaging modality, and ultrasound 
devices are widely available in ICUs. Several studies have 
proposed various ultrasound-derived markers aiming at 
assessing diaphragm function. Importantly, in our study, 
Ptr,stim and TFdi demonstrated similar performance in 
the prediction of weaning. Of note, the optimal TFdi cut-
off (26%) identified in our study is very close to the cutoffs 
reported in previous investigations [16, 30, 31]. Consid-
ering ultrasound as a substitute of the phrenic nerves 
stimulation technique, it will make diaphragm evaluation 
much easier at the bedside. However, the indication of 
diaphragm ultrasound during the weaning process is not 
yet clearly defined. In addition, it is important to remind 
that the majority of patients are shortly and safely sepa-
rated from the ventilation. As it happens, the place of dia-
phragm ultrasound might be viewed as a complementary 
investigation and not as a surrogate of clinical judgment. 
It may be used as a screening tool to identify patients 
who are at high risk of SBT failure (before conducting the 
SBT) or as a diagnostic method to determine the cause of 
SBT or extubation failure [32].

Strengths and limitations of our study
This study is the largest to report a dual approach pro-
viding comparison between the gold standard evaluation 
method of diaphragm function and diaphragm ultra-
sound during the weaning phase. However, this study 
has limitations. First, the generalizability of our findings 
may be limited by the characteristics of the patients of 
our cohort. Accordingly, our study might be viewed as a 
hypothesis generator and further trials are warranted to 
confirm the clinical relevance of our findings. Second, 
while we obtained good inter- and intra-reproducibility 
in the measurements of diaphragm ultrasound, centers 
employing the technique must also demonstrate ade-
quate technical skill (based on reproducibility) before 
implementing the technique for clinical purposes. Third, 
we performed diaphragm ultrasound while patients were 
ventilated with pressure support and not during the SBT. 
While this approach is easier to implement (no change in 
ventilator setting) and less stressful for patients, it could 
underestimate diaphragm thickening [33]. However, the 
amount of pressure support was standardized in order 
to target a tidal volume between 6 and 8 ml/kg predicted 
body weight. Reassuringly, any effect of ventilatory sup-
port on TFdi is likely to introduce ‘noise’ in its correla-
tion with weaning outcome and this would tend to bias 
the observed association toward the null. Fourth, we have 
assessed diaphragm function by using the changes in tra-
cheal twitch pressure rather than the changes in trans-
diaphragmatic twitch pressure. This last measurement is 
more specific to the diaphragm function but requires the 
placement of two balloons, which make it more invasive. 
Although the two twitch pressures are not interchange-
able, they are well correlated [15].

Conclusions
Diaphragm ultrasound is a reliable surrogate of the 
phrenic nerve stimulation method in the assessment of 
diaphragm function to predict weaning outcome. A mul-
ticenter investigation is now required to confirm whether 
the 26% value of TFdi cutoff could or could not be used 
widely to predict SBT outcome. Diaphragm ultrasound 
could be combined with cardiac echo or lung ultrasound 
to tailor post-extubation management according to the 
risk of weaning failure. Although diaphragm dysfunction 
did not systematically impair weaning outcome, it may 
behave as a marker of severity and poor prognosis. Future 
studies should address this hypothesis and investigate 
mid- and long-term consequences of diaphragm dysfunc-
tion on patient functional status and quality of life.
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