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Abstract 

Sepsis‑induced acute kidney injury (SAKI) remains an important challenge in critical care medicine. We reviewed cur‑
rent available evidence on prevention and treatment of SAKI with focus on some recent advances and developments. 
Prevention of SAKI starts with early and ample fluid resuscitation preferentially with crystalloid solutions. Balanced 
crystalloids have no proven superior benefit. Renal function can be evaluated by measuring lactate clearance rate, 
renal Doppler, or central venous oxygenation monitoring. Assuring sufficiently high central venous oxygenation most 
optimally prevents SAKI, especially in the post‑operative setting, whereas lactate clearance better assesses mortal‑
ity risk when SAKI is present. Although the adverse effects of an excessive “kidney afterload” are increasingly recog‑
nized, there is actually no consensus regarding an optimal central venous pressure. Noradrenaline is the vasopressor 
of choice for preventing SAKI. Intra‑abdominal hypertension, a potent trigger of AKI in post‑operative and trauma 
patients, should not be neglected in sepsis. Early renal replacement therapy (RRT) is recommended in fluid‑over‑
loaded patients’ refractory to diuretics but compelling evidence about its usefulness is still lacking. Continuous RRT 
(CRRT) is advocated, though not sustained by convincing data, as the preferred modality in hemodynamically unsta‑
ble SAKI. Diuretics should be avoided in the absence of hypervolemia. Antimicrobial dosing during CRRT needs to be 
thoroughly reconsidered to assure adequate infection control.
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Background
Both sepsis and acute kidney injury (AKI) are diseases 
of major concern in critically ill patients. Severe sepsis 
is often complicated by AKI [1–4]. The overall incidence 
of septic AKI (SAKI) among all intensive care unit (ICU) 
admissions ranges between 15 and 20 % [2]. Large stud-
ies in critically ill patients convincingly demonstrated the 
“intimate” bond between AKI and sepsis. For instance, 
the BEST Kidney and FINNAKI studies, which covered 
different time periods, both reported AKI in up to half 
of the septic patients [3, 4]. In a large analysis of 14,039 
SAKI patients from ICUs in Australia and New Zealand, 

the proportions of patients stratified for risk, injury, and 
failure according to the RIFLE criteria were 38.5, 38.8, 
and 22.7 %, respectively [1]. Medical admissions necessi-
tating mechanical ventilation and/or with a long ICU stay 
were at the highest risk. SAKI highly determines ICU 
outcome [1]. The BEST Kidney investigators reported a 
70 % overall hospital mortality in patients with SAKI [3]. 
Prognosis worsened with increasing age and severity of 
illness, use of vasoactive drugs, and mechanical ventila-
tion [3]. In contrast, an Indian study reported an overall 
mortality of 52 % which was directly correlated with age, 
disease severity, and degree of non-renal organ failure 
[5]. The recent IVOIRE study showed a similar mortal-
ity of around 50  % at 90  days in SAKI patients with a 
cardiovascular SOFA score of 3–4 and under CRRT [6]. 
This apparent decrease of mortality over time prob-
ably implies a more adequate management of SAKI [7]. 
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We review some important developments in preven-
tion and treatment of SAKI which have contributed to 
this improved prognosis or hold promise for further 
amelioration.

Pathophysiology of SAKI
The pathophysiology of SAKI is much more complex 
than previously anticipated [8]. Primary conditions asso-
ciated with AKI, such as sepsis, major surgery, heart fail-
ure, and hypovolemia, may all be complicated by shock. 
Thus, it is tempting to attribute AKI to ischemia and 
systemic hemodynamic changes [9]. However, renal dys-
function does not result from hypoperfusion alone but 
may emanate to a large extent from renal inflammation 
and tubular responses to various sepsis mediators. In 
many patients, AKI occurs without overt signs of global 
renal hypoperfusion and SAKI has been described in 
the presence of normal or even increased renal blood 
flow [9]. This explains why the sole correction of hemo-
dynamic parameters often fails to prevent SAKI [8, 9]. 
Taken together, the pathophysiology of SAKI is no longer 
based on an ischemia/reperfusion paradigm but rather 
embraces an aggregate of inflammation, microcircula-
tory dysfunction, perfusion deficit, bio-energetic reac-
tions, and tubular cell adaptation to injury [9]. It must be 
admitted, however, that an intrinsic role of these patho-
physiological “subsets” underlying SAKI has been derived 
more from hypothesis-generating experience than from 
concordant state-of-knowledge.

Prevention of sepsis‑induced AKI
Fluid resuscitation
Aim
The old “credo” stating that fluid harms the lung but 
benefits the kidney should be revised [10]. Liberal fluid 
administration is of key importance to optimize systemic 
hemodynamics in patients with SAKI. Yet, ongoing con-
troversy exists about efficacy, nature, extent and duration 
of fluid therapy in septic shock [11]. In fact, ICU physi-
cians are faced with a “double-edged” fluid dilemma. 
Volume resuscitation is indeed essential to restore and 
maintain cardiac output and oxygen delivery. Sustained 
or unrestricted infusion of fluids, however, will cause tis-
sue edema which significantly contributes to organ dys-
function. On the other hand, too rapid or excessive fluid 
removal with diuretics or extracorporeal techniques 
may expose patients to severe hypovolemia and recur-
rent renal injury. An optimal fluid management would 
be to guarantee a stepwise and smooth transition from 
initial unrestricted fluid administration (positive fluid 
balance) over a state of equilibrium (steady-state fluid 
balance) to appropriate fluid removal (negative fluid bal-
ance) [12]. This process is kept on track by meticulous 

serial assessments of fluid handling aiming at well-
defined cardiovascular and renal targets. Low intravas-
cular oncotic pressure—the typical hallmark of patients 
with systemic inflammatory response syndrome (SIRS) 
and septic patients without AKI—is also observed in 
patients who develop SAKI [13, 14]. This explains their 
particular vulnerability to potentially harmful fluid accu-
mulation as compared with non-septic AKI patients [13]. 
Moreover, renal ischemia and reperfusion is associated 
with reduced capillary blood flow and loss of glycocalyx 
integrity [14]. Early aggressive fluid resuscitation can be 
life-saving [15], yet several observational studies in criti-
cally ill patients with SAKI have linked fluid overload to 
increased mortality and reduced kidney recovery [16, 
17]. RRT may provide better control of fluid balance in 
this population. However, a mortality benefit of RRT is 
unproven and timing and dose remain matter of debate.

Type of fluid
Crystalloids versus  colloids Hypotension and hypov-
olemia during sepsis may cause or worsen AKI. Evidence 
is accumulating suggesting that crystalloid but not colloid 
solutions should be used for initial intravascular volume 
expansion in septic patients at risk for AKI [18–20]. The 
substantial risk for induction of osmotic nephrosis (by 
pinocytosis in the renal tubules) strongly pleads against 
the use of hydroxyethyl starch and dextran solutions [18–
22].

Balanced crystalloids versus  isotonic salt solutions Bal-
anced crystalloid perfusions (e.g., Ringer’s lactate, Plas-
malyte®) are associated with less occurrence of AKI than 
isotonic salt solutions [23]. The latter contain a too high 
chloride load which is thought to be detrimental for the 
kidney by inducing vasoconstriction in the renal vascu-
lar bed [23–25] and was independently associated with 
increased morbidity and mortality [22, 26]. Reported 
differences in incidence of AKI between patients receiv-
ing either buffered or saline crystalloids may also be 
influenced by unidentified confounding factors [27, 28]. 
Two recent retrospective trials in patients with sepsis 
[29] and SIRS [30] divulged an association between infu-
sion of normal saline and increased in-hospital mortal-
ity. However, a recent large prospective randomized trial 
(Split Trial) reported no difference in AKI incidence in 
patients receiving either balanced crystalloids or isotonic 
salt solutions [31]. Thus, any suggested superiority of bal-
anced crystalloids to isotonic saline for preventing SAKI 
remains to be proven.

Albumin
It is common belief that albumin solutions do force 
excess tissue water back into the endovascular space 
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by creating a hyperoncotic effect. Surprisingly, this has 
never been evidenced [32]! Albumin infusion may even 
promote extracellular fluid overload without improving 
hypovolemia in sepsis complicating advanced cirrhosis or 
diabetes [33]. Any beneficial effect of albumin on patient 
outcome remains controversial. Data from the SAFE 
study [34] and a systematic review [35] showed that the 
use of albumin-containing solutions for the resuscitation 
of patients with sepsis was associated with lower mor-
tality and did not impair renal function compared with 
other fluid resuscitation regimens. The recently pub-
lished ALBIOS trial failed to show a mortality benefit in 
patients with severe sepsis who were fluid resuscitated 
with albumin and crystalloids as compared with crys-
talloids alone [36]. However, a post hoc analysis showed 
a significantly lower 90-day mortality in a subgroup of 
1121 patients with septic shock treated with albumin 
[36]. Moreover, a recent review highlighted that ALBIOS 
patients who received albumin needed less vasopressive 
support and achieved a significantly better fluid balance 
[37]. Still, many uncertainties prevail as to the potential 
benefit, indications, and cost-effectiveness of albumin 
[38, 39].

Early use of continuous RRT (CRRT)
Fluid overload definitely increases kidney edema and 
enhances severity and irreversibility of SAKI [15–17]. 
Therefore, timely use of CRRT in case of fluid overload 
that is poorly responding or refractory to diuretics might 
be a reasonable approach to attenuate or control SAKI 
[40]. Weight gain at initiation of RRT has been associ-
ated with a poor outcome [41]. Awaiting further trials, 
the early use of CRRT is a reasonable yet not generally 
accepted approach to control fluid homeostasis.

Monitoring
Electronic AKI “sniffers”
Real-time electronic reporting systems have been devel-
oped to help recognizing AKI at an earlier stage [42] and 
to determine the eventual need for RRT [43, 44]. An AKI 
alert is based on either RIFLE [42, 44] or AKIN [43] cri-
teria. Ideally, AKI alert systems should be based on kid-
ney improving global outcomes (KDIGO) criteria [45]. 
Although preliminary results were promising, a recent 
trial using these criteria did not confirm that early elec-
tronic detection of AKI improved outcome [46].

Renal Doppler
The kidneys receive approximately 25 % of the total blood 
flow. Yet, they only use half of this flow mainly because of 
intricate intra-renal shunting [47]. Monitoring of global 
renal blood flow thus provides little information about 
the adequacy of oxygen supply to the kidneys [47]. As a 

consequence, renal Doppler is not a reliable tool to assess 
renal oxygen supply and its eventual response to fluid 
loading [48]. Future research rather should focus on the 
renal microcirculation. A pilot study of Schneider et  al. 
used contrast-enhanced ultrasound (CEUS) to evalu-
ate renal cortical perfusion in elective cardiac surgery 
patients. CEUS was feasible, well tolerated and results 
were reproducible. CEUS-derived parameters suggested 
a decrease in renal perfusion within 24 h of surgery [49] 
which persisted after correction of hemoglobin [49].
However, recently reported experience with CEUS was 
disappointing with regard to clinico-radiological correla-
tion and reproducibility [50, 51]. In addition, CEUS may 
have questionable accuracy in the presence of important 
intra-renal and eventual peri-glomerular shunting [52].

Central venous oxygen saturation (ScvO2) and lactate 
clearance rate
ScvO2 Boosting systemic oxygen delivery under guid-
ance of ScvO2 has recently been shown to prevent or 
avoid progression of AKI but had no effect on mortality 
[53]. Recent studies, however, did not find a correlation 
between ScvO2 values and AKI incidence [54]. Kidney 
performance is less influenced by enhanced oxygen deliv-
ery but strongly depends on adequate arterial perfusion 
pressure [55]. This explains why noradrenaline better 
preserves kidney function than dobutamine [56]. Setting 
higher ScvO2 targets is an attractive approach for prevent-
ing SAKI [57] but more robust data regarding its feasibil-
ity and effectiveness in clinical practice are awaited.

Lactate clearance rate Lactate levels more appropriately 
reflect arterial perfusion than oxygen supply, especially 
when accounting for the high level of intra-renal oxygen 
shunting [47]. Lactate clearance rate could thus mirror 
kidney perfusion more adequately than ScvO2 [47]. Lac-
tate is a powerful predictor of mortality in patients with 
SAKI and improving lactate clearance has been associated 
with a better outcome [57]. Janssen et  al. reported that 
lactate-guided therapy reduced the incidence of AKI in 
ICU patients [58]. In contrast, Jones et al. found that addi-
tional targeting of normal lactate levels as compared with 
aiming at higher ScvO2 did not influence in-hospital mor-
tality in septic shock patients resuscitated to normal cen-
tral venous and mean arterial pressure (MAP) [59]. More 
outcome data from prospective lactate-driven resuscita-
tion protocols are eagerly awaited.

Central venous pressure (CVP) and kidney “afterload”
For decades, clinicians estimated that preload was the 
main determinant of kidney function. Increasing preload 
was thought to increase renal blood volume and flow. 
Although a “critical” CVP level is required to ensure 
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optimal renal function, unrestrained preload increase 
may harm the kidneys by enhancing venous congestion 
and blocking venous outflow (i.e., increased “afterload”). 
Recently, higher CVP levels were found to be associated 
with an increased incidence and morbidity of AKI dur-
ing septic shock [54]. Relatively small increases in tho-
racic pressure already compromised venous return to 
the kidneys [54]. The kidneys are encapsulated and thus 
extremely vulnerable to compression by evolving edema. 
AKI due to such “kidney compartment syndrome” may 
be an early sign of abdominal hypertension [60]. CVP 
is a poor indicator of renal perfusion and, if used, serial 
readings are more useful than isolated values. An optimal 
CVP level is unknown but unrestrained “pumping up” of 
preload as protective measure for SAKI is obsolete [54, 
55, 60].

Differentiating transient (functional) SAKI from structural 
SAKI
Urine biochemistry
SAKI may present either as a functional or structural 
entity. The difference is clinically relevant since func-
tional SAKI can be reversed completely by early adequate 
treatment whereas structural kidney damage will mostly 
require RRT. Discriminating functional from structural 
SAKI at the bedside, however, remains challenging. Low 
fractional excretions of sodium (FENa) and urea (FEUrea) 
are highly prevalent during the initial phase of sepsis. 
Oliguria is an earlier sign of impending SAKI than the 
increase in serum creatinine. It is assumed that high FENa 
and low FEUrea values are associated with intrinsic SAKI 
whereas high values of both FENa and FEUrea concur with 
transient or functional SAKI. However, a definite dis-
criminative power of these urinary indices has not been 
established [61]. They are also less specific than currently 
tested biomarkers of SAKI [62] and less accurate for dif-
ferentiating transient from persistent AKI [63] and SAKI 
from non-SAKI [64].

Biomarkers
Among various biomarker assays, neutrophil gelati-
nase-associated lipocalin, urine insulin-like growth 
factor-binding protein 7, and tissue inhibitor of metallo-
proteinases-2 are the most promising [65, 66]. Still, these 
markers have limited availability and thus cannot be 
advocated for routine guidance of therapy. Bagshaw et al. 
prospectively showed that urinary sodium, FENa, and 
FEUrea did not reliably predict biomarker release, worsen-
ing of AKI, need for RRT or mortality [64].

Oliguria vs creatinine
Oliguria is an earlier sign of impending SAKI than the 
increase in serum creatinine [61]. Macedo et al. reported 

that oliguric episodes occurred frequently in ICU 
patients and allowed to identify more AKI as compared 
to serum creatinine [67]. In contrast, other investigators 
found a poor specificity of oliguria [68, 69]. To date, no 
biological or laboratory marker can be put forward that 
reliably distinguishes functional from structural SAKI.

Transfusion policy
An optimal hematocrit level may contribute to SAKI pre-
vention [70] but this is not supported by clinical data. 
A hematocrit value below 24 % was associated with sig-
nificantly more post-operative AKI in cardiac surgery 
patients with systemic inflammatory response syndrome 
who are known to display a sepsis-alike inflammatory 
state [71]. Whether a similar target should be pursued in 
patients with SAKI remains to be proven. A recent retro-
spective study showed that red blood cell (RBC) transfu-
sion in non-bleeding critically ill patients with moderate 
anemia and without shock was associated with higher 
nosocomial infection rates, more AKI, and increased 
mortality [72]. This apparent “transfusion-related AKI” 
could be coined by the acronym “TRAKI” in analogy to 
“TRALI” which stands for “transfusion-related acute lung 
injury” [72, 73]. As in TRALI, TRAKI may result from 
endothelial injury [74] as most of the protective glycoca-
lyx layer above the endothelium is damaged and lost dur-
ing severe sepsis [14]. Of note is that the introduction of 
citrate as an anticoagulant for CRRT resulted in signifi-
cantly lower transfusion needs. A potential beneficial role 
of citrate in prevention and/or recovery of SAKI has been 
suggested [75] but needs confirmation. The FINNAKI 
study showed that the age of transfused RBCs was inde-
pendently associated with in-hospital mortality but not 
90-day mortality or KDIGO stage 3 AKI [76].

Vasopressive and inotropic support
As discussed earlier, a decreased renal blood flow and 
oxygen supply were wrongly assumed to be the main 
instigators of SAKI [8, 77]. This directed treatment 
towards increasing filling pressures (i.e., fluid administra-
tion) and/or cardiac output (i.e., inotropic support). In 
an experimental hypotensive and hyperdynamic septic 
shock model, Di Giantomasso et  al. demonstrated that 
vasopression with noradrenaline significantly increased 
global and medullary renal blood flow and restored nor-
mal renal vascular tone [78]. In the same model, angioten-
sin II infusion decreased renal blood flow while markedly 
increasing diuresis and normalizing creatinine clear-
ance [79]. Low-dose vasopressin did not reduce mortal-
ity rates as compared with noradrenaline among patients 
with septic shock [80]. In patients with SAKI, vasopres-
sin only reduced progression to stage I but not to more 
severe AKI stages [81]. An optimal perfusion pressure 
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has not yet been determined. Asfar et al. proposed (in a 
randomized controlled trial) a MAP of 65–70 mmHg as 
reasonable objective [82] whilst another (observational) 
study found that MAP values between 72 and 82 mmHg 
were necessary to prevent AKI in patients with septic 
shock and initially impaired renal function [83].

Intra‑abdominal hypertension
Intra-abdominal hypertension (IAH) and its most 
dreaded presentation, the abdominal compartment 
syndrome (ACS), are frequently associated with AKI in 
surgical and trauma patients. Because signs and symp-
toms are non-specific and laboratory and imaging stud-
ies often remain inconclusive, the diagnosis of AKI as 
a manifestation of IAH requires a high index of clini-
cal suspicion. Early recognition and treatment improve 
clinical outcome [84]. IAH has also been described in 
up to one-third of cardiac surgery patients where it 
was found to be strongly associated with higher base-
line intra-abdominal pressure (IAP), increased CVP, 
positive fluid balance, extracorporeal circulation, use of 
vasoactive drugs and AKI. Determinants of IAH need 
accurate assessment and patients with any known risk 
factor(s) must be closely monitored during the perio-
perative period. In this context, the baseline IAP may 
be a valuable early warning parameter for IAH [85]. 
According to the most recent guidelines [86], IAP 
should be monitored in all surgical patients at risk for 
AKI (i.e., cardiac surgery, complicated abdominal sur-
gery and post-operative sepsis) [84–86]. IAP is best 
measured with a bladder catheter. No consensus exists 
on whether AKI can be prevented by early abdominal 
decompression or administration of diuretics [84–86]. 
RRT may facilitate or improve volume management in 
some cases but cannot be recommended as standard 
treatment [84–86]. IAH and ACS also increase mor-
bidity and mortality in medical ICU patients. Factors 
predisposing to IAH/ACS in this population include 
sepsis, large-volume fluid resuscitation, polytransfu-
sion, mechanical ventilation with high intrathoracic 
pressures, and acidosis.

Treatment of sepsis‑induced AKI
Dosing of CRRT
High-volume hemofiltration offers no mortality ben-
efit in SAKI [6, 87, 88]. Based on two large seminal trials 
with an important septic subpopulation [89, 90], a CRRT 
dose of 20–25 ml/kg/h is currently issued by the KDIGO 
guidelines [45]. The prescribed dose should be somewhat 
higher to ascertain delivery of at least 20–25  ml/kg/h 
[91]. A 25–30 ml/kg/h dose may be more convenient in 
sepsis but no strong data support its recommendation 
[92].

Timing of (C) RRT
(C)RRT should be initiated when fluid overload is poorly 
tolerated and only partly or not responsive to a diuretic 
challenge [15]. The IVOIRE study demonstrated that 
starting CRRT at RIFLE injury level in established SAKI 
was associated with a very low 90-day mortality [87]. ICU 
patients requiring RRT, however, showed marked varia-
tion in factors that influence start of RRT. RRT initiation 
with fewer clinical triggers was associated with lower 
mortality [93]. In the recent observational study from the 
FINNAKI group, applying RRT for conventional indi-
cations at an early stage was also associated with lower 
mortality [94]. Timing of RRT may modify survival but 
awaits appraisal in three forthcoming randomized tri-
als [95–97]. Meanwhile, it is acceptable to start CRRT 
at RIFLE injury/failure level as dictated by the KDIGO 
guidelines [45].

Renal replacement modalities
Prowle and Bellomo reported that hemodynami-
cally unstable patients with SAKI treated with CRRT 
remained significantly less dialysis-dependent than 
those receiving intermittent hemodialysis (IHD) [98]. A 
recent meta-analysis by Schneider also suggested that 
CRRT outperformed IHD in obtaining renal recovery 
in patients without cardiovascular instability [99]. This 
meta-analysis is prone to criticism because many of 
the included studies are old, uncontrolled, or compare 
CRRT with inappropriately managed IHD [99]. Continu-
ous veno-venous hemofiltration (CVVH) was associated 
with a trend towards early reduction of vasopressor sup-
port [100]. To date, however, there are no strong decisive 
arguments to prefer CRRT or IHD as primary treatment 
for SAKI, except maybe in severely hemodynamically 
unstable patients (level 2B in the KDIGO guidelines) 
[45]. A large and sufficiently powered randomized trial 
comparing the effect of CRRT vs. IHD on renal recovery 
as primary endpoint would end this controversy.

Diuretics
The use of diuretics to induce or increase urine produc-
tion in the absence of hypervolemia is associated with 
increased mortality [101] and should be discouraged. In 
contrast, diuretics might improve outcome when fluid 
balance remains positive or in case of overt fluid over-
load [102]. However, any beneficial effect of diuretics 
on mortality was lost after adjustment for fluid balance 
[102]. Ho and Power reviewed the use of furosemide in 
AKI and found no beneficial effects on mortality [103]. 
A furosemide stress test for early assessment of tubular 
function showed robust capacity to identify patients at 
risk for severe and progressive AKI [104] but needs vali-
dation in SAKI.



Page 6 of 10Honore et al. Ann. Intensive Care  (2015) 5:51 

Antimicrobial dosing during CRRT
CRRT significantly influences the pharmacokinetic 
and pharmacodynamic behavior of most antimicrobial 
agents. This is insufficiently anticipated by currently rec-
ommended dosing guidelines. Patients are particularly at 
risk for underdosing which may cause treatment failure 
and enhanced resistance. An in-depth discussion of anti-
microbial handling during CRRT is beyond the scope of 
this review. Table  1 summarizes literature-based [105–
112] dose recommendations for some major antibiotic 
and antifungal drugs during CVVH at a dose of 25  ml/
kg/h. Colistin deserves special attention. Our group has 
shown that patients undergoing CVVH can support 
long-term colistin therapy at doses up to 4.5 million IU 
tid [108]. CVVH thus may act as a “shield” providing suf-
ficiently high plasma colistin levels whilst avoiding toxic-
ity [113]. Importantly, safe application of such treatment 
requires the use of filter membranes that allow high colis-
tin adsorption in association with citrate anticoagula-
tion to preserve optimal convective elimination capacity 
[114].

Other blood purification strategies
Several strategies are under investigation including 
newly designed membranes [114], apheresis or selec-
tive plasma exchange [115] and polymyxin B hemop-
erfusion [116]. These purification strategies fit in the 

concept of host inflammatory response modulation, 
yet have not proven successful [117]. Hyperadsorp-
tive membranes such as the acrylonitrile 69 sur-
face-treated or polymethylmethacrylate filters very 
effectively adsorb crucial inflammatory mediators 
(e.g., high-mobility group box 1 protein (HMGB-1)) 
[118]. Although small-sized (26  kDa), HMGB-1 was 
not removed by convection but entirely by adsorption 
[118]. A preliminary study of polymyxin B hemop-
erfusion added to conventional therapy showed 
significantly improved hemodynamics, less organ dys-
function and reduced 28-day mortality in patients with 
severe sepsis and/or septic shock from abdominal ori-
gin [116]. However, a recently published multicenter 
randomized controlled study demonstrated a non-sig-
nificant increase in mortality and no improvement in 
organ failure with polymyxin B hemoperfusion com-
pared to conventional treatment of peritonitis-induced 
septic shock [119].

Medical therapies
A small randomized phase I trial showed that adjunc-
tive treatment with recombinant alkaline phosphatase 
(RAP) could prevent SAKI and even reversed some cases 
of advanced SAKI [120]. A phase II clinical trial is cur-
rently ongoing [121]. The exact mechanism and optimal 
timing of action of RAP is still unclear. RAP probably 
combats renal inflammation through dephosphorylation 
of lipopolysaccharide and adenosine triphosphate [122, 
123].

Conclusions
Prevention of SAKI starts with early and adequate fluid 
resuscitation. Crystalloids are preferred over colloids 
but balanced crystalloids do not appear superior to clas-
sic crystalloids for counteracting SAKI. Synthetic col-
loids and starches in particular should be withheld. No 
data support the use of albumin in patients with SAKI. 
Regarding SAKI prevention, ScvO2 monitoring performs 
better than lactate clearance rate or renal Doppler for 
monitoring kidney perfusion. Lactate clearance rate, 
however, is better correlated with SAKI-related mor-
tality. High filling pressures must be avoided in light of 
the detrimental effects imposed by an increased kidney 
“afterload”. Noradrenaline remains the vasopressor of 
choice for preventing SAKI. Vasopressin or analogs need 
further investigation. IAH is a potential, yet often over-
looked, trigger of SAKI. Early initiation of RRT is indi-
cated when fluid overload is excessive or refractory to 
diuretics. CRRT is increasingly considered as first-choice 
therapy in hemodynamically unstable SAKI. Expanding 
its use to “stable” SAKI patients is attractive but not sup-
ported by current literature. Except for life-threatening 

Table 1 Dose recommendations for some frequently used 
antimicrobials during CRRT, (CVVH mode; 25 ml/kg/h)

Adapted from references [105–113]

TDM therapeutic drug monitoring, od once daily, bid twice daily, tid three times 
daily, qid four times daily, amp ampules, CI continuous infusion, MIU million units

Antimicrobial Loading dose Maintenance dose

Amikacin 30–35 mg/kg TDM

Meropenem 2 g 2 g over 3 h tid

Piperacillin‑tazobactam 4 g/0.5 g 16 g/2 g (CI)

Vancomycin 35 mg/kg over 4 h 30 mg/kg 
(TDM = 25–30 mg/L)

Teicoplanin 15 mg/kg bid 600 mg od

Linezolid 600 mg tid

Ciprofloxacin 800 mg 400 mg tid

Tigecycline 150 mg 100 mg bid

Colistin 9 MIU 4,5 MIU tid

Voriconazole 8 mg/kg bid 6 mg/kg bid

Fluconazole 600 mg bid

Cefepime 2 g tid

Gentamycin 7 mg/kg od

Bactrim 1200 mg/240 mg 
(3amp)

800 mg/160 mg 
(2amp) tid

Clindamycin 900 mg qid
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hypervolemia, diuretics have no place in prevention or 
treatment of SAKI. Most antimicrobials require dose 
adaptation during CRRT.
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