
Ryan et al. Annals of Intensive Care 2014, 4:28
http://www.annalsofintensivecare.com/content/4/1/28
REVIEW Open Access
Pulmonary vascular dysfunction in ARDS
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Abstract

Acute respiratory distress syndrome (ARDS) is characterised by diffuse alveolar damage and is frequently
complicated by pulmonary hypertension (PH). Multiple factors may contribute to the development of PH in this
setting. In this review, we report the results of a systematic search of the available peer-reviewed literature for
papers that measured indices of pulmonary haemodynamics in patients with ARDS and reported on mortality in
the period 1977 to 2010. There were marked differences between studies, with some reporting strong associations
between elevated pulmonary arterial pressure or elevated pulmonary vascular resistance and mortality, whereas
others found no such association. In order to discuss the potential reasons for these discrepancies, we review the
physiological concepts underlying the measurement of pulmonary haemodynamics and highlight key differences
between the concepts of resistance in the pulmonary and systemic circulations. We consider the factors that
influence pulmonary arterial pressure, both in normal lungs and in the presence of ARDS, including the important
effects of mechanical ventilation. Pulmonary arterial pressure, pulmonary vascular resistance and transpulmonary
gradient (TPG) depend not alone on the intrinsic properties of the pulmonary vascular bed but are also strongly
influenced by cardiac output, airway pressures and lung volumes. The great variability in management strategies
within and between studies means that no unified analysis of these papers was possible. Uniquely, Bull et al.
(Am J Respir Crit Care Med 182:1123–1128, 2010) have recently reported that elevated pulmonary vascular
resistance (PVR) and TPG were independently associated with increased mortality in ARDS, in a large trial with
protocol-defined management strategies and using lung-protective ventilation. We then considered the existing
literature to determine whether the relationship between PVR/TPG and outcome might be causal. Although we
could identify potential mechanisms for such a link, the existing evidence does not allow firm conclusions to be
drawn. Nonetheless, abnormally elevated PVR/TPG may provide a useful index of disease severity and progression.
Further studies are required to understand the role and importance of pulmonary vascular dysfunction in ARDS in
the era of lung-protective ventilation.

Keywords: ARDS; Pulmonary haemodynamics; Pulmonary vascular resistance; Pulmonary vascular dysfunction;
Acute cor pulmonale; Outcome
Review
Introduction
Acute respiratory distress syndrome (ARDS) is charac-
terised by diffuse alveolar damage and is frequently com-
plicated by pulmonary hypertension [1]. The single
biggest advance in the management of ARDS has been the
institution of lung protective ventilation (ARDSNet) [2].
However, mortality remains unacceptably high, ranging
from the 32% to 41% reported in randomised controlled
trials up to 44% in published observational studies [3,4].
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Intensivists and researchers have long been aware of
the occurrence of pulmonary hypertension and cor pul-
monale in ARDS. However, there has been uncertainty
about the underlying pathophysiology and the link be-
tween the degree of pulmonary hypertension and out-
come from ARDS. Is pulmonary hypertension simply an
indicator of the severity of lung injury or is it part of the
underlying pathophysiological process contributing to
the development of ARDS? Recent studies have pointed
to the importance of pulmonary vascular dysfunction
(PVD) in predicting mortality from ARDS [5], but the
exact mechanism by which PVD and mortality are
linked is not known.
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The focus of this review is to examine the nature of
the relationship between pulmonary hypertension/PVD
and mortality in ARDS.

Search strategy
Studies were identified after a literature search using key
terms (ARDS or acute respiratory distress or ALI or
acute lung injury) together with any of the following:
pulmonary haemodynamics, pulmonary artery pressure,
pulmonary vascular resistance, pulmonary vascular dys-
function, right ventricle, right ventricular failure, acute
cor pulmonale, or pulmonary artery catheter. The refer-
ences of articles found in this manner were also exam-
ined for similar studies. Manuscripts that reported a
relationship between pulmonary haemodynamics and
mortality in ARDS/ALI were included. In addition, pa-
pers that reported a relationship between right ventricu-
lar failure/right ventricular dysfunction and outcome
were included. We have included definitions of com-
monly used terms in this article in Table 1.

Assessment of pulmonary haemodynamics in ARDS
Many indices of pulmonary haemodynamics have been
measured in patients with ARDS. Pulmonary arterial
pressure, wedge pressure and pulmonary vascular resist-
ance have all been reported as well as measures of right
ventricular function. The two most commonly reported
measures are pulmonary arterial pressure and pulmon-
ary vascular resistance.

Pulmonary arterial pressure and ARDS
A number of studies (Table 2) have documented the
changes in pulmonary haemodynamic measurements in
patients with ARDS. All measurements were derived
from the use of pulmonary artery catheter except for the
study by Cepkova [8], where PA systolic pressures were
estimated using echo. Some of these studies are small,
and the majority were conducted before the widespread
Table 1 Definitions of terms used in this article

Terms Definition

Pulmonary hypertension (PH) Mean pulmonary a

Moderate PH - mP

Severe PH - mPAP

Pulmonary vascular resistance (PVR) mPAP-PAOP/cardia

Pulmonary vascular resistance index mPAP-PAOP/cardia

Pulmonary vascular dysfunction (PVD) Abnormal elevation
(mPAP-PAOP) and/

Right ventricular dysfunction (RVD) Pulmonary artery c

(i) RVD = CVP > PAO

(ii) RAP > PAOP

Acute cor pulmonale (defined by echo) Ratio of RV to LV e
introduction of low tidal volume ventilation. Neverthe-
less, certain observations can be made from the data.
Mild to moderate elevations in mean pulmonary artery

pressure (mPAP) are seen in most patients with ARDS
[15,16]. Squara et al. found moderate elevation in mean
pulmonary pressure in 526 patients, 48 h after the diag-
nosis of ARDS [6]. Patients with worse PaO2/FiO2 ratios
had higher mPAP than those with better oxygenation
(27.9 ± 8.1 vs. 22.3 ± 6.5 mmHg, p = 0.0001). Systolic pul-
monary arterial pressure (PAP) was deemed to be of ‘in-
dependent and sustained prognostic significance during
the course of ARDS’. In a later study, Osman et al. also
found mPAP to be an independent predictor of mortality
in a multivariate model [13]. Other studies either found
PAP not to be predictive of death or else did not specif-
ically examine for a relationship [5,9-12,14].
In patients with severe ARDS, Beiderlinden et al. [14]

found an incidence of pulmonary hypertension of 92.2%
but did not find any association between pulmonary
hypertension and death. Hemilla et al., in a review of pa-
tients with severe ARDS who subsequently received
ECMO, found evidence of moderate pulmonary hyper-
tension using pulmonary artery catheter data acquired
prior to the institution of extracorporeal support [12].
Again, direct measurements of PAP were not identified
as being of prognostic significance.

Pulmonary vascular resistance and ARDS
Pulmonary vascular resistance (PVR) is known to be ele-
vated in patients with ARDS (Tables 2 and 3). Zapol and
Jones were the first to document that raised pulmonary
vascular resistance was a common finding in patients with
severe respiratory failure [9]. They observed that pulmon-
ary vascular resistance tended to fall in survivors but
remained elevated in those who died. This is the only study
to report pulmonary haemodynamic indices longitudinally.
Zapol and Jones subsequently documented a three-

fold elevation in PVR in patients with ARDS [22]. These
rtery pressure (mPAP) >25 mmHg

AP between 30 and 45 mmHg

> 45 mmHg [6,7]

c output

c index

s in PVR identified by measurement of either transpulmonary gradient
or pulmonary vascular resistance index (mPAP-PAOP/cardiac index) [5]

atheter-based definitions:

P and MPAP > 25 mmHg and SVI < 30 ml m−2, or

nd-diastolic area >0.6 with interventricular septal flattening at end-systole



Table 2 Studies that relate pulmonary haemodynamic variables to outcome from ARDS

Study period Number PAP mmHg (mean
PAP unless specified)

PVRI wood
units (m−2)

PAOP mmHg Independent predictors of survival

PAP PVR (I)

Zapol and Snider [9] Pre 1977 30 28 to 32 (2.5 to 4.8) n/a N Y (trend)

Villar et al. [10] 1983 to 1986 30 27 to 28 ± 4 to 7 4.5 ± 1.69 to 5.7 ± 2.06 10 ± 4 to 11 ± 5 N Y

Squara et al. [6] 1985 to 1987 586 26 ± 8.5 3.21 ± 1.75 11.7 ± 4.5 Y N

Suchyta et al. [11] 1987 to 1990 162 26 ± 8 n/a n/a N -

Hemmila et al. [12] 1989 to 2003 255 Systolic 46 ± 13.5 n/a 17.6 ± 5 N -

Diastolic 28.5 ± 8.9

Osman et al. [13] 1999 to 2001 145 28 ± 8 4.5 ± 2.4 12 ± 5 Y N

Cepkova et al. [8] 2004 to 2006 42 Systolic 42 ± 9 N

Echo derived

Beiderlinden et al. [14] Pub 2006 95 35.4 ± 8.8 4.625 ± 2.04 16 ± 5.4 N -

Bull et al. [5] 2000 to 2005 501 31.6 ± 8.3 3.825 (2.49 to 6.48) 17.13 ± 5 N Y

All haemodynamic data was derived from pulmonary artery catheter use unless otherwise stated. mPAP, mean pulmonary artery pressure; PVRI, pulmonary
vascular resistance index; PAOP, pulmonary artery occlusion pressure; PAP, pulmonary artery pressure. Wood units (mmHg/L/min) are multiplied by 80 to convert
to standard metric units (dynes.sec.cm−5). Normal values for PVR range from 0.3 to 1.6 Wood unit.
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findings were replicated by Villar et al. They showed a
marked elevation in pulmonary vascular resistance in as-
sociation with reduced right ventricular cardiac index
(CI) in 30 patients with ARDS [10].
In a secondary analysis of the haemodynamic data

from the fluid and catheter treatment (FACTT) trial of
501 patients with ARDS who were managed with a pul-
monary artery catheter, Bull et al. showed that the trans-
pulmonary gradient (mPAP-pulmonary arterial occlusion
pressure (PAOP)) and the pulmonary vascular resistance
index (mPAP-PAOP/CI) were the only pulmonary
haemodynamic indices that showed a significant differ-
ence between those who died and those who survived.
Multivariate analyses showed them to be independent
predictors of mortality in ARDS [5]. They used the term
‘pulmonary vascular dysfunction’ to describe these two
variables. Covariates in their multivariate analyses in-
cluded sex, race, age, APACHE II score, the presence of
shock at baseline, level of positive end-expiratory
Table 3 Studies of indices of RVD and outcome in ARDS

Study period Recruitment
period

Number Data
source

Jardin and Vieillard-Baron
[17]

1980 to 2006 352 Echo

Monchi et al. [18] 1992 to 1995 259 PAC

Vieillard-Baron et al. [19] 1996 to 2001 75 Echo

Osman et al. [13] 1999 to 2001 145 PAC

Bull et al. [5] 2000 to 2005 501 PAC

Boissier et al. [20] 2004 to 2009 226 Echo

Lhéritier et al. [21] 2009 to 2012 200 Echo

CVP, central venous pressure; EDA, end-diastolic area; IVS, interventricular septum; M
sure; RAP, right atrial pressure; SVI, stroke volume index.
pressure (PEEP), the PaO2:FiO2 ratio and fluid treatment
strategy. They did not find any difference in P:F ratios,
PASP, PADP, mPAP, PAOP or cardiac index between
those who survived with ARDS and those who did not.
The Pplat and PEEP levels were not different among the
groups. It is worth noting that 21% of the screened pa-
tients were excluded because they had a pulmonary ar-
tery catheter in place at the time of randomization and
that 30% of the enrolled patients showed a PAOP >
18 mmHg at enrollment, therefore not meeting the ABC
definition of ARDS. This may have explained why the
PAP-PAOP gradient may have been significant, when
PAP was not.
There are marked differences among these studies,

with some showing that pulmonary arterial pressure is
independently associated with mortality, and in others’
findings, it is not. Similarly, increased PVR was found to
be a predictor of adverse outcome in some studies and
not in others.
RVD definition Independent predictor
of mortality?

RV:LV EDA >0.6 and IVS flattening at end-systole N

RAP > PAOP Y

RV:LV EDA >0.6 and IVS flattening at end-systole N

CVP > PAOP and MPAP > 25 mmHg and SVI <
30 ml m−2

N

CVP > PAOP N

RV:LV EDA >0.6 and IVS flattening at end-systole Y

RV:LV EDA >0.6 and IVS flattening at end-systole N

PAP, mean pulmonary artery pressure; PAOP, pulmonary artery occlusion pres-



Figure 1 Mean arterial pressure plotted against flow (cardiac
output) in the systemic (A) and pulmonary (B) circulations.
The blue curve in each panel represents the normal condition of the
circulation, and the red curve a hypertensive condition. (A) In the
systemic circulation, the mean pressure (P)-flow (Q) plot is well
described as a linear (Ohmic) relationship. The two points identified
(open circles) show a normal cardiac output and a reduced cardiac
output, respectively, in the hypertensive condition. At each of these
cardiac outputs, it is clear that the ratio of P to Q is the same and
therefore can be used to easily characterise the resistance of the
systemic circulation. (B) In the pulmonary circulation, the plot of
mean pressure against flow is curvilinear with an intercept on the
pressure axis that is equal to left atrial pressure. The blue curve
represents a normal pressure flow curve (healthy lung), while the
red curve represents pressure flow curve in the presence of hypoxic
pulmonary hypertension. The two points identified (open circles)
show a normal cardiac output and a reduced cardiac output,
respectively, in the hypertensive condition. At each cardiac output
the pulmonary vascular resistance, (Ppa-LAP)/Q, is illustrated as the
slope of the straight dashed line. Even though the two points are
each on the same pressure flow curve, the calculated pulmonary
vascular resistance is different at the different cardiac outputs. Psa,
systemic arterial pressure (mean); Ppa, pulmonary arterial pressure
(mean); Q, cardiac output (flow).
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Before considering these discrepancies in more detail,
it is helpful to examine the relationship between PAP
and PVR in healthy subjects and to look at the patho-
physiology of elevated pulmonary vascular resistance.

Physiology of pulmonary haemodynamics
There is a complex, non-linear relationship between pul-
monary arterial pressure and pulmonary vascular resist-
ance in normal, non-diseased lungs.
In the lungs, the PVR is conventionally calculated as

follows:

PVR ¼ mPAP−LAP=CO

where PVR = pulmonary vascular resistance, mPAP =
mean pulmonary arterial pressure, LAP = left atrial pres-
sure and CO = cardiac output.
In the systemic circulation, an Ohmic relationship be-

tween driving pressure and flow through the blood ves-
sel provides a reasonable approximation (Figure 1A). In
such a system, the plot of pressure against flow is a
straight line passing through the origin and the resist-
ance to flow is well characterised as the ratio of the ar-
terial pressure to the flow (cardiac output) at all points
along the pressure flow line.
In contrast, the blood flow through the lungs is not

well described by a linear relationship passing through
the origin but by a curvilinear plot that has a positive
intercept on the pressure axis (Figure 1B). This curvilin-
ear relationship arises because of the marked distensi-
bility of the pulmonary vasculature. An increase in
pulmonary arterial pressure results in an increased flow
due both to the higher driving pressure and the disten-
sion of the vessels so that the diameter of the vascular
lumen is increased. Thus, increases in pulmonary arter-
ial pressure have a disproportionate effect on pulmonary
blood flow.
As a consequence, a reduction in cardiac output leads

to an increase in the ratio of the pressure drop across the
pulmonary circulation (PAP-LAP) to flow, even though
there is no change in vasomotor tone (Figure 1B).
Blood flow through the lungs also depends on the

transmural pressure in the pulmonary vessels (pressure
within lumen minus airway pressure) to a much greater
extent than in systemic vessels. Airway pressure can have
a marked effect on pulmonary blood flow, as originally
determined by West [23].
Lung volume has an important effect on PVR which is in-

dependent of vascular transmural pressure. Whittenberger
et al. [24] described how low (near residual volume) lung
volumes were associated with a slight elevation in PVR
(extra-alveolar vessels are narrowed) and high lung volumes
(near total lung capacity) were associated with the highest
PVR (alveolar capillaries are stretched). This contributes to
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a marked elevation in pulmonary vascular resistance,
even if the vascular transmural pressure is kept constant
[25]. Pulmonary arterial pressure is not only affected by
changes in pulmonary vascular resistance but also
changes in right ventricular (RV) output. RV output, in
turn, is affected by factors that are extrinsic to the lung.
It is evident, even from this brief summary, that pulmon-

ary arterial pressure and pulmonary vascular resistance
cannot be used as interchangeable measures of the state of
pulmonary haemodynamics in patients with ARDS. For a
comprehensive review of this problem of interpreting
changes in pulmonary vascular resistance, the reader is re-
ferred to the work of Vesprille and Naeije [26,27].
Mechanisms of increased PVR in ARDS
Many of the candidate mechanisms that explain an ele-
vation in PVR in ARDS have been recently reviewed
[28]. We will highlight the pathophysiology of some of
these mechanisms.
Lung disease-related mechanisms
HPV
Bradford and Dean were among the first to recognise
that hypoxia resulted in sustained elevations in pulmon-
ary arterial pressure [29]. The mechanisms that underlie
hypoxic pulmonary vasoconstriction (HPV) are complex
and primarily relate to intracellular increases in calcium
concentration and Rho kinase-mediated sensitisation in
pulmonary arterial smooth muscle cells [30-33].
HPV causes an increase in PVR to 100% to 150% of

baseline when healthy volunteers are exposed to hypoxia
(PO2 50 mmHg) [34]. Marshall et al. have shown that
when HPV is acutely reduced in ARDS by the adminis-
tration of 100% inspired oxygen, pulmonary arterial
pressure was reduced by the order of 10% to 15% from
its peak [35]. This may be an underestimate of the ex-
tent of HPV in the lung, as it does not take into account
the contribution of HPV in non-ventilated lung units.
To assess the contribution of non-ventilated lung units

to HPV, Benzing et al. took a group of 11 patients with
severe ARDS treated by veno-venous extracorporeal
lung assist and ventilated them with an FiO2 of 1.0 for a
period of 20 min prior to taking measurements (thereby
minimising HPV in ventilated lung units).
They then manipulated the mixed venous partial pres-

sure of oxygen (PvO2) by adjusting the proportion of
blood flow diverted through the oxygenator in order to
assess HPV in non-ventilated regions. When PvO2 was
high (83.6 ± 2.4 mmHg), the total lung PVR was 339
(±29) dyne.s.cm−5.m2 and increased by 28.9% to 437
(±36) dyne.s.cm−5.m2 when PvO2 was reduced to low
values (46.6 ± 0.1 mmHg) [36], clearly demonstrating
that HPV in non-ventilated lung units contributes
significantly to the increase in pulmonary vascular re-
sistance in ARDS.
In addition to the influence of HPV, disruption of the

endothelium in ARDS results in an alteration in the normal
balance of mediators of vasodilation (NO, prostacyclin)
and vasoconstriction (thromboxane, leukotrienes, endothe-
lin, serotonin, angiotensin II) favouring vasoconstriction.
These factors have been reviewed recently [28,37].

Thrombosis
Tomashefski et al., in a landmark post-mortem study of
22 patients with ARDS, found that 19 patients had evi-
dence of microthrombi. Nineteen had macrothrombi in
the pulmonary arterial and capillary vessels [38]. They
also found endothelial injury in all stages of ARDS in all
cases on both standard histological preparations and
electron microscopy. There is now ample evidence sup-
porting the concept of lung injury causing local, as
opposed to systemic, coagulation in ARDS [28,39,40].
Tissue factor (TF) is released from endothelial cells that
have been injured, in response to a variety of pro-
inflammatory stimuli [41]. TF is a strong activator of the
extrinsic clotting cascade. Increased activation of pro-
coagulant processes occurs in the lung in ARDS and
does not result from the systemic activation of coagula-
tion (such as is seen in sepsis) [42,43]. Animal data sug-
gest that blockade of the TF-factor VIIa-factor Xa
complex may reduce the degree of pulmonary hyperten-
sion in ARDS [44]. Levels of protein C, a natural anti-
coagulant, are also reduced in ARDS [45] while levels of
plasminogen activator inhibitor-1 are increased in ARDS
patients, and both are prognostic of increased mortality
in ARDS [46]. More recently, biomarkers of coagulation
and inflammation have been shown to provide good dis-
crimination for the diagnosis of patients with ARDS
[47,48], and analysis of SARS-CoV infection in labora-
tory models has shown that the delicate balance between
coagulation and fibrinolysis is shifted towards fibrin de-
position during infection leading to ARDS [49]. Therap-
ies targeting this pulmonary coagulopathy may also have
an anti-inflammatory effect and attenuate the severity of
ARDS [50].
Therefore, ARDS represents a procoagulant, anti-

fibrinolytic phenotype and results in the local formation
of microthrombi, which may, in turn, act to increase the
pulmonary vascular resistance by the mechanical ob-
struction of blood flow.

Vascular remodelling
Fibroproliferation is a characteristic of the late stage of
ARDS, and is present in approximately 55% of patients
who die of this condition [51]. It is associated with in-
creased mortality, and the presence of fibrosis on thin
cut CT scan has been used to predict outcome in ARDS
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[52,53]. In a small post-mortem study of the lungs of pa-
tients who had died with ‘severe respiratory failure’,
Zapol et al. demonstrated that there is increasing de-
struction of the capillary bed as ARDS progresses, which
may contribute to elevations in the PVR of the same pa-
tients measured ante-mortem [54]. Many mediators have
been linked to the fibroproliferative response, but those
that have an association with vascular effects include
angiotensin II and vascular endothelial growth factor
(VEGF) [55-57].
Tomashefski et al. [38] noted that there was electron

microscopy evidence for extensive vascular remodelling
in ARDS. The intermediate phase was characterised by
fibrocellular obliteration of the arteries, veins and even
lymphatic vessels. In the late stage, vascular remodelling
was associated with distorted, tortuous arteries and
veins. These tortuous channels were concentrated in
regions of dense or irregular fibrosis. The number of
capillaries was reduced, and they were often dilated.
Muscularisation of the arteries was identified in the
intermediate phase and was very marked in the late
phase. This mechanical disruption of the course of blood
vessels is likely to contribute to the sustained elevation
in PVR seen in non-survivors.

Ventilator-related mechanism of raised PVR in ARDS
PEEP
A key difference between normal lungs and injured
lungs in ARDS is the use of mechanical ventilation in
the latter, requiring the application of PEEP and positive
inspiratory plateau pressures. When PEEP is applied to a
diseased lung, the change in PVR is determined by the
balance between overdistension of lung units and re-
cruitment of areas with previously low numbers of open
alveoli. When the number of open alveoli increases fol-
lowing a recruitment manoeuvre and application of high
PEEP, then PVR may even fall in keeping with Whitten-
berger’s-U shaped relationship between pulmonary vas-
cular resistance and lung volume. Any increase in
ventilated alveolar area may also reduce HPV. Canada
et al., found that the pulmonary vascular resistance
index (PVRi) was lowest at 5 cm H2O in the normal
lung but 10 cm H2O had to be applied to the injured
lung in order to achieve minimal PVRi [58]. Above ‘opti-
mal PEEP’ levels, the PVR increased, presumably due to
compression of intra-alveolar capillaries by the increased
airway pressure resulting in an increase in zone 1 and 2
characteristics [23,59].

Plateau pressure
There are very few studies which have measured pul-
monary vascular resistance in ARDS patients ventilated
with lower tidal volumes, perhaps due to the reduction
in the use of the pulmonary artery catheter just as lung-
protective ventilation was gaining widespread acceptance
[60].
Limitation of plateau pressures has, however, been

shown to be associated with lower rates of right ven-
tricular failure than in historical studies [17,19]. The ap-
plication of higher tidal volume to the patients in these
studies was associated with a significant increase in right
ventricular afterload [61].

Is PVR affected by the way patients are ventilated?
There is currently no evidence to suggest that one mode
of ventilation has more or less effect than any other
mode on pulmonary vascular haemodynamics. Any ef-
fect of the mode of ventilation on PVR is likely to be
related to the amount of PEEP and plateau pressure that
is applied.

Why do the studies of pulmonary haemodynamics report
inconsistent relationships with mortality?
As is apparent, PVR is directly influenced by factors that
are intrinsic to the lung and can be increased by the
pathophysiological insults that occur in ARDS. In con-
trast, PAP is affected both by factors extrinsic to the
lung (e.g. RV output preload and contractility) and by
factors intrinsic to the lung (PVR).
In clinical practice, there is considerable variability in

the preload of patients with ARDS. Both volume loading
and venous tone have a considerable influence on the
amount of venous return reaching the heart. The pres-
ence of sepsis and the use of vasopressors will both
affect venous tone. Likewise, raised intra-thoracic pres-
sure can have a compressive effect on the intra-thoracic
veins, including the superior and inferior venae cavae
[62] and limit venous return in patients with ARDS.
Sepsis-induced cardiac dysfunction may result in RV im-
pairment in as many as 24% of patients [63].
The studies in Table 2 have reached different conclu-

sions about the significance of PAP and PVR and their
relationship to outcome in ARDS. What might account
for these differences?
All except one of the studies quoted are observational

in nature and did not employ standard patient manage-
ment protocols. The studies were not designed to an-
swer specific questions about the nature of pulmonary
haemodynamics in ARDS, and the data were drawn from
patients who were managed differently in terms of
mechanical ventilation (mode and pressures applied),
fluid status and vasopressor use, all of which adds to the
statistical noise when trying to draw useful conclusions.
Bull et al.’s data came from patients who all had a stan-

dardised approach to ventilator management (in particular
the use of low tidal volume ventilation), pulmonary artery
catheter data acquisition as well as fluid management. Bull
et al.’s study, the largest in the modern era of ‘protective
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ventilation’ found no association between PAP and out-
come but showed a highly significant and independent
link between two indices of pulmonary vascular dysfunc-
tion (mPAP-PAOP and PVRi) and mortality.
PVR is primarily affected by factors that are intrinsic to

the lung, while PAP is influenced by both PVR and RV
preload and contractility. When the variability in manage-
ment was controlled for (as in Bull et al.’s study), the mea-
sured PVR was more likely to have reflected the vascular
changes induced by the disease process in ARDS. This is
because the protocol standardised many of the extrinsic
factors (airway pressure, tidal volume, fluid loading) that
can influence PA pressure independently of changes in
pulmonary vascular resistance. Importantly, in this well-
controlled study, indices of elevated pulmonary vascular
resistance were found to independently predict greater
mortality in ARDS.

PVR, ARDS and mortality - association or causation?
This highly significant association between mortality and
measures of pulmonary vascular resistance, in a carefully
controlled study, raises the question as to whether PVD
directly causes increased mortality or is it associated
with mortality.
There are two potential mechanisms by which an

elevation in PVR could cause mortality in ARDS. Either
it results in right ventricular failure, with subsequent
multi-organ dysfunction or it exacerbates the acute lung
injury directly.

Is RVD the cause of increased mortality in ARDS?
The right ventricle is more sensitive to acute increases
in its afterload than the left ventricle. We know from
studies of major pulmonary embolism, that a normal
right ventricle cannot acutely generate pulmonary pres-
sures greater than 40 mmHg (mean) and quickly fails in
this clinical context [64]. Is the same true for patients
with ARDS?
Sustained pulmonary hypertension may result in right

ventricular failure (RVF) in ARDS patients [65]. Over
the years, the incidence of right ventricular dysfunction
(RVD) has declined as improvements in mechanical ven-
tilation have been adopted and lessened the intrathoracic
airway pressure in patients with ARDS [17,19], but RVD
is variably defined and diagnosed among studies which
makes comparison difficult.
Clinically, right ventricular failure has no agreed defin-

ition, but criteria (using pulmonary artery catheter data)
include pulmonary hypertension associated with an RV
cardiac index <2.5 L min−1 m−2 and a right atrial pres-
sure >8 mmHg [9]. Using these criteria, Osman et al.
found an incidence of right ventricular failure of 9.6% in
145 patients with ARDS [13]. The presence of RVF was
not associated with death. In Bull et al.’s analysis of 501
patients with ARDS, they reported an incidence of right
ventricular failure (RVF) of 12% (using Monchi’s definition
of right atrial pressure > pulmonary artery occlusion pres-
sure [5,18]); RVF was not predictive of mortality.
The presence of RVF can also be inferred using echo-

cardiographic criteria. Acute cor pulmonale (ACP) has
been defined as the presence of RV dilation (ratio of RV
end-diastolic area to left ventricle end-diastolic area
>0.6) in association with dyskinesia of the interventicular
septum in response to an increased afterload [19]. Jardin
et al. originally described the two-dimensional echo
characteristics in a group of 23 patients with acute re-
spiratory failure, showing that the right ventricular end-
diastolic area increased as the PVRi (measured using a
PAC) increased and RV stroke volume declined [66].
Vieillard-Baron et al. have demonstrated an incidence

of echocardiographic cor pulmonale of 25% in a study of
75 patients with ARDS [19,61]. However, ACP was
found to be reversible in those patients whose ARDS re-
solved, and it did not have a negative prognostic signifi-
cance. Similar results were found by Cepkova in a study
of 42 patients with acute lung injury [67].
In a retrospective analysis of 352 patients with ARDS

admitted to their unit since 1980, Jardin’s group found a
correlation between increasing levels of plateau pressure
and the incidence of acute cor pulmonale [17]. As mea-
sured plateau pressure increased, the incidence of ACP
rose up to 42% with plateau pressures of >35 cm H2O.
While they also noted an association between the pres-
ence of ACP and mortality in the overall group, this did
not hold true when the airway pressure was aggressively
limited, in line with current practice [19].
Vieillard-Baron’s group [17,19,61,68,69] have suggested

that the increases in RV afterload due to elevations in
PEEP and plateau pressure, as well the underlying lung
injury, result in RV dysfunction that is sufficient to in-
crease mortality. This reflects what we know of the
pathophysiology of pulmonary embolism, but the evi-
dence is not as definitive in ARDS. The presence of ACP
has not been consistently demonstrated to be associated
with excess mortality in ARDS in the modern era of pro-
tective ventilation. Perhaps this is because the authors
modified their approach to mechanical ventilation in
these studies when ACP was recognised, in order to
limit the distension of the right ventricle by reducing the
airway pressures (PEEP and plateau) and putting the pa-
tient in a prone position [17,21]. Recent echocardio-
graphic derived data on right ventricular dysfunction
from Boissier et al. [20] suggest that even when tidal
volume and plateau pressure are limited in line with
best practice, the incidence of ACP in ARDS is still 22%
and is independently associated with mortality in spite
of greater use of prone positioning and nitric oxide.
Lheritier et al. [21] found a similar incidence of ACP
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(22.5%) in moderate to severe ARDS patients ventilated
with a lung protective strategy, but they could not find
an association between the presence of ACP and out-
come. In both studies, the groups with ACP had a higher
use of nitric oxide and prone positioning compared to
those without ACP. It is unclear what accounts for the
different findings in these studies.
The relationship between ACP/RVD and outcome in

ARDS is therefore unclear, and it remains to be determined.

Is pulmonary vascular dysfunction a cause of ARDS?
It is worth asking the question as to whether there is a
plausible mechanistic basis that would allow pulmonary
vascular dysfunction to worsen ARDS. High-altitude pul-
monary oedema (HAPE) is a condition that occurs in
previously healthy individuals within 2 to 4 days after
rapid ascent above altitudes of 3,500 to 4,000 m [70,71].
While it is not a form of ARDS, it is a severe form of
non-cardiogenic pulmonary oedema, which can develop
in susceptible individuals (5% to 10% of the normal
population) in the presence of hypoxia alone [72].
Individuals who develop HAPE have an increased de-

gree of HPV compared to unaffected members of the
population. Pulmonary artery pressure at an altitude of
4,559 m is about 30% to 50% higher in individuals who
are prone to HAPE compared with non-susceptible con-
trols, and this higher pressure precedes oedema forma-
tion [70]. The increase in HPV can also be demonstrated
at low altitude in susceptible individuals exposed to a
brief hypoxic challenge [73,74].
Lowering pulmonary artery pressure during the ascent to

high altitude can prevent HAPE. A non-specific pulmonary
vasodilator (nifedipine) [70] or the phosphodiesterase-
5-inhibitor tadalafil [75] reduced the prevalence of pulmon-
ary oedema in HAPE-susceptible individuals after rapid
ascent to 4,559 m from 60% to about 10%. This suggests
that excessive HPV may contribute to the development of
acute oedema, possibly by redistributing pulmonary blood
flow away from areas with high degrees of HPV to other
sections of the lung, with resultant hyper-perfusion, endo-
thelial injury and capillary leak. This causes a secondary
inflammation which is clinically indistinguishable from
ARDS [76].
The finding that a subset of the population is prone

to the development of non-cardiogenic pulmonary oedema,
as a result of exposure to hypoxia alone, is of relevance
to our understanding of ARDS. ARDS is characterised
by heterogeneous areas of alveolar hypoxia and in-
appropriate vascular responses to these areas of hyp-
oxia may partially explain the finding that individuals
with pulmonary vascular dysfunction have worse out-
comes in ARDS. There is, as of yet, no evidence to sup-
port this hypothesis in the general population who
present with ARDS.
Is PVD a marker of the severity of ARDS?
As patients recover from ARDS, there is resolution of the
pulmonary vascular dysfunction. Many of the mechanisms
of PVD in ARDS (the release of multiple vasoactive medi-
ators, vascular remodelling and the formation of vaso-
occlusive microthrombi) are caused by the disruption of
the normal endothelial-inflammation-coagulation path-
ways. PVD may be a good summative index of vascular
damage from these mechanisms. Nuckton et al. has pre-
viously reported that an increased dead space fraction
was associated with increased mortality in ARDS [77],
which they postulated might be due to injury to the pul-
monary capillaries from inflammation and thrombosis
and obstruction of pulmonary blood flow in the extra-
alveolar pulmonary circulation. There is evidence that
extra-pulmonary organ dysfunction in ARDS is caused
by the systemic inflammatory response, which in turn is
driven by the initiating pulmonary injury [78]. If PVD is
primarily a downstream result of the activation of the
inflammatory-coagulation cascade in the lung, then, the
reason it is associated with mortality in ARDS may be
because it reflects the severity of the underlying in-
flammatory process. This hypothesis may also help to
explain why PVD is associated with mortality in well-
controlled studies of patients with ARDS whereas right
ventricular dysfunction has not been consistently shown
to be associated with mortality.
ARDS studies are rarely adequately powered to look at

mortality as they do not recruit sufficient numbers of pa-
tients to be able to draw valid conclusions. Using PVD as
an index of disease severity might allow researchers an
additional way to stratify the severity of lung injury and to
test the efficacy of new treatments for ARDS by measuring
the change in PVD, which is known to improve as the pa-
tient recovers from lung injury. In order to develop new
treatments for ARDS, we need better methods for exam-
ining their efficacy. Using PVD as an endpoint might im-
prove the predictive value of phase II trials prior to
embarking on full scale clinical studies of new treatments.
Assessment of pulmonary vascular resistance may be pos-
sible using non-invasive echocardiographic technology
[79] which would increase the applicability of this ap-
proach and may be worth pursuing.

Conclusions
Pulmonary vascular dysfunction is an independent pre-
dictor of mortality in ARDS. An examination of the physi-
ology of pulmonary haemodynamics in ARDS helps to
explain why it may be a clearer mortality signal, when com-
pared to the inconsistent link between mortality and pul-
monary arterial pressure or right ventricular dysfunction.
Further study is needed to determine precisely the

dominant pathways involved in causing PVD in ARDS.
This is an area of research that may yet lead to greater
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understanding of the complex interplay between the
pulmonary circulation, endothelial dysfunction and acti-
vation of the inflammatory-coagulation cascades that
underlie ARDS.
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