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Abstract 

Interleukin-33 (IL-33) is a member of the interleukin-1 (IL-1) cytokine family. It is preferentially and constitutively 
expressed in different structural cells such as epithelial cells, endothelial cells, and smooth muscle cells. During necro-
sis of these cells (after tissue injury or cell damage), the IL-33 that is released may be recognized by different types of 
immune cells, such as eosinophils, basophils and, especially, mast cells. IL-33 needs the specific receptor ST2 (mem-
brane-bound receptor) and Interleukin-1 receptor accessory protein heterodimer for its binding, which instigates 
the production of different types of cytokines and chemokines that have crucial roles in the exacerbation of allergic 
diseases and inflammation. IL-33 and mast cells have been influentially associated to the pathophysiology of allergic 
diseases and inflammation. IL-33 is a crucial regulator of mast cell functions and might be an attractive therapeutic 
target for the treatment of allergic and inflammatory diseases. In this review, we summarize the current knowledge 
regarding the roles of IL-33 and mast cells in the pathogenesis of allergies and inflammation.
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Background
Interleukin-33 is a recently discovered cytokine that 
belongs to the IL-1 super-family and is mainly expressed 
by different types of structural cells [1, 2]. IL-33 binds to a 
specific receptor named T1/ST2 (also known as ST2) that 
belongs to the toll like receptor (TLR)/IL1R super fam-
ily [3]. The T1/ST2 receptor forms heterodimer with the 
IL-1 receptor accessory protein (IL-1RAcP). Both recep-
tors are required for the binding and action of IL-33. ST2 
receptor has two major isoforms: a transmembrane form 
(ST2 or ST2L) and a soluble form (sST2) [2]. The ST2L 
isoform is mainly expressed on mast cells, basophils, 
dendritic cells, natural killer cells and Th2 lymphocytes 
[1–3]. IL-33 is considered an alarm in molecule due to 
its release after necrosis or tissue damage. In contrast, 
apoptosis leads to the inactivation of IL-33 because it is 
cleaved by caspases. Different stimuli such as bacterial, 
viral, fungal infections and allergen challenges can trigger 
the release of IL-33. Recent research suggests that IL-33 

plays an important role in allergy and inflammation. In 
this review, we will focus on the recent advancements in 
the field of IL-33 and its association with mast cells in the 
context of allergy and inflammation.

Source of IL‑33: expression, release and processing
Expression of IL‑33 in physiological and pathological 
conditions
Interleukin-33 transcript and protein is widely expressed 
in different cell types including in cells of both hemat-
opoietic as well as non-hematopoietic origin such as 
macrophages, dendritic cells, fibroblasts, adipocytes, 
smooth muscle cells, endothelial cells, bronchial, osteo-
blast and intestinal epithelial cells [4, 5]. Schmitz et al. [5] 
demonstrated that IL-33 mRNA is expressed in purified 
dendritic cells, epithelial cells, activated macrophages 
and it was also confirmed that its expression was much 
higher in stomach, lung, brain and skin tissues. A more 
detailed summary of IL-33 distribution is shown in 
Table 1.

Like IL-1α/β and IL-18, IL-33 functions as a transcrip-
tional regulator [6] in high endothelial venules (HEVs), 
and has been reported to be also expressed within the 
nuclei of epithelial cells [7]. Wood et  al. [8] studied the 
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expression of IL-33, IL-1RL1 and IL-1RAcP gene in 
human pre-adipocytes and in adipocytes (SGBS cells). 
Expression of IL-33 has also been detected in epithe-
lial cells, skin, lungs, and gastrointestinal tract [7, 9]. 
Andronicos et  al. [10] established that damage caused 
by motile gastrointestinal nematode larvae in parasitic 
infection significantly induced IL-33 mRNA expression 
in epithelial cells. Later, it was reported that IL-33 also 
plays an important role in innate immune responses, for 
example during influenza virus infections in the lungs 
[11] and in helminth infections in the intestine [12, 13].

Interleukin-33 expression was found to be increased 
in several pathological conditions such as airway smooth 
muscle cell [14] and lung epithelial cells of asthmatic 
patients [9] as well as in airway epithelial cells in COPD 
patients [15]. Expression of IL-33 was also reported in 
liver cells (hepatocytes) and in inflamed colon in a mouse 
model of acute hepatitis [16] and colitis [4], respectively. 
IL-33 also plays a crucial roles in the initiation as well 
as amplification of a type 2 response in group 2 innate 
lymphoid cells (ILC2s) [17]. These results were fur-
ther confirmed in IL-33-deficient mice. Moreover, Th2 
cell differentiation and eosinophilic lung inflammation 
were found to be impaired in intranasally challenged IL-
33-deficient mice [18, 19]. IL-33 is the essential factor for 
severe allergic lung inflammation [20]. IL-33 signaling is 
required for causing airway eosinophilia and production 
of IL-5 as well as IL-13 from lung ILC2s following fungal 
allergen challenge Alternaria alternate [21]. IL-33 also 

seems to be essential for development of allergic rhini-
tis induced by ragweed pollen challenge as IL-33 knock-
out mice failed to induce ragweed pollen induce allergic 
rhinitis [22]. IL-33 is also an effective stimulator for skin 
ILC2s, and it is directly associated with skin inflamma-
tion and mouse model of atopic dermatitis [23].

The type 2 (ILC2) innate lymphoid cells localized in 
mucosal tissues (lung and intestine), adipose tissue and 
lymphoid organs (spleen, lymph node) are the major 
target cells of IL-33 [12, 24, 25]. These cells express high 
expression levels of ST2 and secretion of significant 
quantities of the type 2 cytokines IL-5 and IL-13, and 
pro-inflammatory IL-6 from ILC2. Further studies have 
shown that IL-33 not only activates mast cells, but also 
other immune cells, such as granulocytes, macrophages, 
NK and Th2 cells [26].

Release of IL‑33
Interleukin-33 is stored in the nucleus and secreted 
upon necrosis or damage and released in response to cell 
injury, infection or mechanical damage [27, 28]. The high 
levels of constitutive IL-33 may act as a novel alarmin 
(intracellular alarm signal released after cell injury) to 
alert the immune system after endothelial or epithelial 
cell damage during trauma or infection (Fig. 1) [7].

The IL-1 family members do not possess signal peptide 
to release the proteins via endoplasmic reticulum and 
Golgi pathway [29]. Indeed, these interleukins are already 
translated and stored in the nucleus of the cells and 

Table 1  Expression of IL-33 in different cells/tissues

Species Expression Specific cell/tissue References

Human Transcript Human epithelial cells (A549) [32]

Human Transcript Macrophage [5]

Human Transcript and protein Human adult cardiac fibroblasts (HACF) and human adult cardiac myocytes (HACM) [68]

Human Transcript and protein Airway smooth muscle (ASM), bronchial epithelium [62]

Human Transcript and protein Pancreas [69]

Human Protein Mast cell [62]

Human Protein Endothelial cells and epithelial cells, Lymphoid tissues, keratinocytes and stomach (epithelial cells) [7]

Human Protein Fibroblast [70]

Human Protein Skin [71]

Mice Transcript Macrophage [5]

Mice Transcript Glial cells, astrocytes [1]

Mice Transcript Murine lung epithelial cells (MLE-15) [32]

Mice Transcript Central nervous system [4]

Mice Transcript Lungs [32]

Mice Transcript and protein Eye and cervical lymph nodes (CLNs) [72]

Mice Transcript and protein Pancreas [69]

Mice Protein Dendritic cells [73]

Mice Protein Alveolar epithelial and endothelial cells [32]

Mice Protein Bronchoalveolar lavages [32]
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released immediately during emergency conditions such 
as infection, injury or inflammation due to other stressors 
[30]. Extracellular IL-33 has also been detected in human 
blood and synovial fluids in pathological conditions 
[31], where cells have been damaged (during rheuma-
toid arthritis or infection with influenza virus, respec-
tively) and in mouse peritoneal and bronchoalveolar 
lavage fluid [32]. However, in recent studies, it has been 
proposed that IL-33 may be released without cell dam-
age and necrosis. Kouzaki et al. [33] found that exposing 
the human airway epithelial cells to A. alternata induces 

an acute extracellular danger signal, ATP, which releases 
IL-33 through activation of P2 purinergic receptors.

Processing of IL‑33
Interleukin-33 has been proposed to be a cytokine with 
dual function; it acts as a traditional cytokine through 
activation of the ST2L receptor complex as well as an 
intracellular nuclear factor with transcriptional regula-
tory properties. IL-33 shows the closest homology to 
IL-18 among the members of the IL-1 family of cytokines 
which are synthesized as full length pro-peptides. It was 
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Fig. 1  The IL-33/ST2 signaling pathway in mast cells. IL-33 is primarily expressed by different types of structural cells. Damage to these cells by 
external stimuli results in cell injury followed by release of IL-33. IL-33 can be neutralized by binding to soluble ST2 (sST2) or recognized by mem-
brane bound ST2 receptor, which subsequently leads to activation of MyD88 dependent signaling pathways and the release of mast cell mediators 
that play important roles in the progression of allergic diseases
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reported that IL-33 is synthesized as a 30  kDa peptide. 
It consists of N-terminal helix-turn-helix (HTH) motif 
responsible for nuclear translocation and chromatin 
binding [6] and an IL-1-like C-terminal domain, which 
is cleaved by caspase 1 to form an active 18 kDa mature 
peptide [28, 34, 35]. Later, it was confirmed that IL-33 
protein contains the cleavage sites for caspase-3 and cas-
pase-7 and it can be expressed and released by activated 
macrophages [36]. The processing of IL-33 by caspases 
results in its inactivation [28, 35]. IL-33 inactivation 
by caspases during apoptosis could be to prevent IL-33 
release during programmed cell death, which does not 
require an inflammatory response.

Lingel et al. [37] studied the structure and interaction of 
IL-33 with its receptor ST2 and IL-1RAcP by X-ray crys-
tallography as well as by NMR spectroscopy. Lefrancais 
et al. [38] demonstrated that mature form of IL-33 (after 
cleavage by mast cell proteases) are more potent than full 
length IL-33. During Inflammation, neutrophil-released 
proteases may regulate IL-33 activity. Mast cell serine pro-
teases cleave the full-length IL-33 (IL-331–270) and liber-
ate active forms: IL-3395–270, IL-3399–270, and IL-33109–270. 
These cleaved IL-33 forms have 10 times greater potency 
than the full-length protein [38]. Roy et al. [39] reported 
that mast cell chymase but not tryptase cleaves IL-33 and 
results in increased bioactivity. This finding suggests that 
IL-33 activity could be exacerbated by the inflammatory 
environment. It has also been shown that serine proteases 
released by inflammatory cells play a critical role in the 
generation of super active forms of IL-33 and enhance 
immune response in asthma, rheumatoid arthritis, intesti-
nal inflammation and other diseases [40, 41].

Interleukin‑33 signaling: involvement of the 
MyD88 and activation of MAP Kinases
The IL-33 mediated downstream signaling pathway 
is governed through ST2 and IL-1RAcP receptors. In 
an in  vivo model, mice deficient either in IL-1RAcP 
or ST2 did not show an inflammatory reaction in 
response to IL-33 administration [42]. IL-33 binding 
by the ST2 receptor leads to the activation and recruit-
ment of MyD88 adapter protein along with IL-1R-asso-
ciated kinase1 (IRAK1), IRAK4 and TNFR-associated 
factor 6 (TRAF6) [5, 43]. This signaling cascade fur-
ther leads to the activation of transcription factors 
such as NF-ĸB and MAP kinases and the production of 
inflammatory mediators (Fig. 1) [3]. MyD88 is crucial 
for several functional responses to IL-33 such as sur-
vival cytokine production and MCs proliferation [44, 
45]. IL-33 treatment further leads to the activation of 
different kinases such as ERK1/2, p38MAPK, and JNK 
(Fig. 1) [5].

Interleukin-33 mediated signaling pathways further 
modulate MC functions. It has also been reported that 
IL-33 can activate MCs [46], and act directly on Th2 cells 
to increase secretion of Th2 cytokines such as IL-5 and 
IL-13 [5, 47]. Furthermore, IL-33 functions as a chemo-
attractant for Th2 cells [48]. Research from several stud-
ies has indicated that IL-33 also acts as a potent activator 
of mast cells and basophils and reported to induce migra-
tion, maturation, adhesion, promote survival and the 
production of several pro-inflammatory cytokines in 
these cells [44, 49–51]. The IL-33 mediated downstream 
signaling pathway including functional aspects is shown 
in Table 2.

Table 2  IL-33 mediated downstream signaling cascade

Cytokine Downstream signaling cascade Cell type Functional effect References

IL-33 MyD88 BMMCs Survival of BMMCs [74]

IL-33 MyD88 BMMCs Production of cytokine e.g. IL-6 and IL-13 [75]

IL-33 MyD88 BMMCs Proliferation of mast cell [45]

IL-33 MyD88 BMMCs Release of IL-6 and IL-13 [74]

IL-33 MyD88 Intestine (mice) Production of type 2 cytokine e.g. IL-4, 
IL-5 and IL-13

[76]

IL-33 MyD88 Lungs (mice) Goblet cell hyperplasia [77]

IL-33 p38 MAPK BMMCs Proliferation of mast cell [45]

IL-33 p38 MAPK BMMCs IL-6 release [46]

IL-33 p38 MAPK BMMCs IL-6 and IL-13 release [74]

IL-33 JNK, ERK, p38 MAPK, NFκB BMMCs IL-6 and IL-13 release [78]

IL-33 NF-κB and JNK1/2, ERK1/2, and p38 
MAPK

BMMCs Production of IL-4, IL-5, IL-13, CCL2, 
CCL17, and CCL24

[5]

IL-33 p38 MAPK Human mast cell LAD2 IL-13 release [79]

IL-33 p38MAPK Human umbilical cord blood-derived 
mast cells (HUCBMCs)

IL-8 release [49]
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Role of IL‑33 in allergic disease
Interleukin-33 is considered to be linked to the devel-
opment of several allergic diseases such as asthma and 
atopic dermatitis. IL-33 is also thought to accelerate 
Th17 cell-mediated airway inflammation via MCs [52]. 
Thus, it is evident from studies that IL-33 acts not only 
as a Th2-inducing cytokine, but also as a proinflamma-
tory cytokine in various immune responses as do IL-1 
and IL-18.

Asthma is characterized by chronic inflammation of 
the airways which is associated with variable airflow 
obstruction arising from various genetic and environ-
mental factors. It involves the activation of MCs, Th2 
cells, IgE producing B cells, basophils, eosinophils and 
lungs epithelial, smooth muscle cells and macrophages. 
Oshikawa et al. [53] and Hayakawa et al. [54] observed 
elevated levels of soluble ST2 as well as IL-33 mRNA 
in the serum and lung tissues, respectively in an oval-
bumin (OVA)-induced murine asthma model of airway 
inflammation. Different advanced approaches, such as 
the use of anti-ST2 antibody (clone E310) [55, 56], anti-
IL-33 antibody [57], or soluble ST2-Fc fusion protein 
[53] have been used to investigate the role of the ST2/
IL-33 pathway in asthma models. Pre-treatment with 
these antibodies significantly inhibits airway inflamma-
tion and the Th2-associated responses. These antibod-
ies also reduced IgE level in serum and the numbers 
of eosinophils in bronchoalveolar lavage in a murine 
model of allergic asthma. Kurowska et al. [47] detected 
IL-33 protein in the lungs of mice with OVA/alum-
induced airway inflammation. IL-33 has been reported 
to also induce allergic bronchoconstriction through 
mast cell activation in mice [58]. IL-33 increases the 
expression of tryptophan hydroxylase 1, serotonin syn-
thesis, and storage and thus results in airway obstruc-
tion in asthma [58].

Stolarski et al. [59] reported that IL-33 induces eosino-
phil mediated massive airway inflammation of the lung 
tissue and markedly elevated local concentrations of 
IL-5 and IL-13 and induced goblet cell hyperplasia in 
ova induced asthma model in mice. Lee et al. [60] inves-
tigated the role of anti-IL-33 antibodies and sST2 in the 
blockade of airway inflammation in a murine model of 
asthma and confirmed that both treatments were suc-
cessful in reducing the total cell count and may serve as 
therapeutic agents for allergic asthma. Several studies 
have shown that IL-33 is expressed more abundantly in 
asthma patients than healthy individuals [47, 61]. Addi-
tionally, these results were also confirmed by elevated 
IL-33 expression in bronchial epithelial cells of asthma 
patients compared to healthy individuals by immuno-
histochemical studies [59]. Role of IL-33 in mast cell acti-
vation and airway smooth muscle wound repair has also 

been reported [62] which suggests that IL-33 presents 
important target to modulate mast cell-airway smooth 
muscle (ASM) crosstalk in asthma.

Atopic dermatitis (AD) is a chronic inflammatory 
skin disease. Shimizu et al. [63] explored the association 
of AD with a polymorphism of the ST2 gene and sug-
gested that the IL-33-ST2 axis plays a pivotal role in AD. 
Recently, Savinko et al. [64] and Meephansan et al. [65] 
reported the up-regulation of IL-33 in the epidermis and 
the infiltration of ST2-positive cells in the dermis of the 
skin lesion of AD patients. Imai et al. [66] reported that 
IL-33 from epidermal keratinocytes activates ILC2s in 
the skin and lymph nodes and stimulates the production 
of IL-5 from those cells to induce AD-like dermatitis with 
eosinophil infiltrates. On the basis of these observations 
IL-33 is considered as a unique danger alarmin and path-
ogenic driver in AD [67].

Conclusions
Interleukin-33 is a unique cytokine that plays an essen-
tial role in regulating MC associated immune responses 
in allergic diseases. In the present scenario, the IL-33/
ST2 pathway is being used as a novel therapeutic target 
for understanding the role of IL-33 in diseases associ-
ated with MCs. However, the elementary mechanisms 
of the release, expression, processing and regulation of 
IL‑33 in allergic diseases are not yet defined properly 
and may be crucial for the development of future thera-
peutic targets. Future studies are essential to recognize 
the biological and clinical significance of IL-33 in allergic 
diseases.
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