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Cough hypersensitivity as a neuro-immune
interaction

Woo-Jung Song1,2* and Yoon-Seok Chang1,2,3
Abstract

Cough is an intrinsic protective reflex. However, chronic cough affects a considerable proportion of general population
and has a major impact on quality of life. A recent paradigm shift to ‘cough hypersensitivity syndrome’ suggests that
chronic cough arises from hypersensitivity of the airway sensory nerves. As cough reflex is determined by interaction of
the nervous system with immune system, persistent dysregulation of one or both of these systems may lead to
chronic cough hypersensitivity. Here we review the current evidence for the neuro-immune interactions that underlie
cough hypersensitivity and discuss future therapeutic strategies.
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Introduction
Cough has bi-directional health effects; it is both an
essential defence mechanism that protects the airways
from harmful inhalation or aspiration [1], and is also
one of the most troublesome symptoms for which
patients seek medical attention [2]. The epidemiological
burden of chronic cough is substantial, affecting
approximately 10 % of the general adult population [3].
Furthermore, chronic cough is a significant clinical
problem, as it poses significant impairment to quality
of life [4, 5] and challenges to clinicians [6]. However,
cough treatments remain less than satisfactory [7];
recent internet surveys of 1120 respondents from 29
European countries found that most patients report very
limited effectiveness of current cough medication [8].
Cough is also associated with severity in various

chronic airway diseases [9]. In subjects with asthma,
poor control was associated with concomitant chronic
cough [10, 11]. In ECRHS phase I-II follow-up studies,
chronic cough/phlegm were strong markers for individ-
uals suffering from moderate/severe asthma [12]. These
findings warrant further understanding of cough patho-
physiology and its roles in other airway diseases.
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Based on current anatomical diagnostic protocols,
clinical practice for chronic cough has been successful
[13, 14]. However, it has also been realized that a sub-
stantial proportion of chronic cough patients (12-42 %)
have cough without identifiable cause, termed idiopathic
or refractory cough [15]. This gap indicates the necessity
for paradigm change. We may need to further elucidate
the mechanism of ‘cough’, as refractoriness may originate
from dysregulation in the cough reflex itself. In this re-
gard, a new term, ‘cough hypersensitivity syndrome’, has
been proposed to suggest that chronic cough arises from
hypersensitivity of airway sensory nerves [16–19].
Intrinsic nature of chronic cough
As cough is an intrinsically protective reflex, chronic
cough could be a protective response against persistent
harmful tussigen exposure; however, in the absence of
harmful exposure, chronic cough is rather a mal-adaptive
response.
In clinical observation, chronic cough patients fre-

quently report that cough is provoked by trivial stimuli
such as ‘cold air’, ‘singing/talking’ or ‘fatigue/stress’ [20, 21],
which is a hypersensitive cough response to non-tussive
stimuli (allotussia) [17]. Another type of hypersensitivity is
hypertussia, an increase in cough sensitivity in response to
a tussigen [17], which is observed in tussigen inhalation
challenge tests [22]. The term ‘hypersensitivity’ in cough
is not a synonym for hypersensitivity in allergy, which is
the alteration in immunologic response to innocuous
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environmental antigens [23]. However, considering both
cough reflex and immune response have intrinsically
protective roles, it is not surprising that chronic cough
and allergies frequently overlap, such as in eosinophilic
bronchitis, asthma or rhinitis.
Cough reflex is primarily a neuronal response but reg-

ulated by interaction with immune system, as both the
neuronal and immune systems coordinate to protect the
host from exogenous dangers [24]. We suppose that
chronic cough hypersensitivity results from persistent
dysregulation of either or both systems (Fig. 1). Here we
briefly review current evidence for and possible neuro-
immune interactions underlying cough hypersensitivity,
as well as future therapeutic strategies.

Review
Pathologic evidence for cough hypersensitivity in chronic
cough
The study by Boulet and colleagues (1994) was the first
to investigate the airway pathology of patients suffering
from chronic cough [25]. They aimed to compare the
degree of airway inflammation in bronchial biopsy tis-
sues and bronchoalveolar lavage fluid (BALF) between
non-asthmatic chronic cough patients and healthy con-
trols. Relative to controls, samples from patients with
Fig. 1 Cough hypersensitivity as a neuro-immune interaction. Schematic p
reflex pathway, particularly in relation to neuro-immune interaction (marke
may stimulate each of peripheral nervous and immune systems. Activated
(neurogenic inflammation). Also activated immune systems lead to the up-
interactions are mediated by communicating mediators and shared dange
modulatory roles in cough hypersensitivity. Modified with permission from
cough had greater numbers of inflammatory cells (par-
ticularly mononuclear cells), and displayed epithelial
desquamation, submucosal fibrosis, swelling of mito-
chondria, dilatation of smooth endoplasmic reticulum,
and increased nuclear metabolic activity. However, there
was no significant difference according to cause of
chronic cough (postnasal drip [PND] syndrome or gas-
troesophageal reflux [GER]). In their BALF, mast cells
were more frequent in non-asthmatic cough patients
than in controls [25]. Later studies by Niimi and his
colleagues also found that mast cell hyperplasia was a
distinctive feature in non-asthmatic chronic cough pa-
tients [26].
The first study on airway neuronal pathology was re-

ported by O’Connell and colleagues in 1995 [27]. They
examined 16 patients with idiopathic persistent cough
and eight healthy controls, and found significantly
higher calcitonin-gene-related peptide (CGRP)-contain-
ing nerve density in idiopathic cough patients. In a fur-
ther study of 29 chronic cough patients and 16 controls,
the expression of transient receptor potential vanilloid-1
(TRPV1), a well-known cough receptor, was increased in
the bronchial epithelial nerves of chronic cough patients
compared to controls [28]; interestingly, there was no
clear difference in pathologic profiles among various
resentation of interrelationships between major components in cough
d as bold fonts, closed circles, box, and blue lines). Inhalational triggers
vagal sensory neurons may induce subsequent immune activation
regulation of cough responses (peripheral sensitization). Further
r recognition systems between two systems. Nasal afferents may play
Asia Pac Allergy 2014;4:3–13 [19]
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etiologic subgroups and/or idiopathic cough. Total nerve
density, defined by PGP 9.5 immunostaining, did not
significantly differ between cough patients and controls,
in both studies [27, 28].
Induced sputum and BALF analyses were also per-

formed by several groups. Notably, there was consider-
able similarity in the cellular and biochemical profiles
among various etiologic subgroups of chronic cough.
Jatakanon et al. found increased TNF-α and IL-8 levels
in induced sputum in both idiopathic cough and non-
asthmatic cough patients [29]. In BALF, McGarvey and
colleagues observed an increase in eosinophils, mast
cells and histamine levels among non-asthmatic chronic
cough patients compared to healthy controls [30]. In
ex vivo studies using BALF cells, mast cells obtained
from chronic cough patients were more responsive to
CGRP stimulation, irrespective of their aetiology (asth-
matic or non-asthmatic cough) [31]. In studies by Chaud-
huri et al., PGE2, LTB4, and cys-LT were expressed at
greater levels in patients with cough of any cause [32].
Birring et al. also found high PGE2 and PGD2 levels in all
categories of chronic cough [33].
From this review we are unable to conclude that dif-

ferent aetiologies of chronic cough have identical patho-
logic profiles, due to relatively small sample sizes and
different methodologies among studies. However, a con-
siderable similarity in cellular and biochemical profiles
suggests a common pathophysiologic process. The evi-
dence indicates that neuronal activation occurs frequently
within the airways of chronic cough patients, demon-
strated by common findings of mast cell infiltration and
increased CGRP, TRPV1, and prostaglandins. Mast cells
are innate immune cells that form a functional unit with
sensory nerves for tissue surveillance including airways
[34, 35]. CGRP is a neuropeptide generated from neuro-
genic inflammation of sensory nerves, and BALF CGRP
levels significantly correlate with capsaicin cough sensitiv-
ity [36]. PGE2 and PGD2 are cough reflex sensitizers and
can also act as tussigens [37, 38].

Immune systems in cough hypersensitivity
Dysregulation of the immune system may lead to cough
hypersensitivity, as in the well-known example of eo-
sinophilic airway inflammation.
Eosinophilic bronchitis has been identified as a fre-

quent cause of chronic cough, even in the absence of
asthma [39]. A causal relationship is supported by a long
clinical experience with corticosteroid therapy in these
patients. In clinical studies, changes in sputum eosino-
philia following inhaled corticoid therapy significantly
correlate with changes in capsaicin cough sensitivity
[40]. The contribution of eosinophils is also supported
by experimental findings, as these cells produce eosino-
phil granule proteins and inflammatory mediators like
PGE2, cys-LT or substance P, which lead to cough reflex
sensitization. Eosinophil-derived granule proteins dir-
ectly stimulate vagal pulmonary C-fibres [41], and major
basic proteins (MBP) elicit the release of substance P
from cultured dorsal root ganglion neurons [42]. In
addition, MBP can activate human lung mast cells via a
non-IgE-dependent pathway, leading to the release of
histamine and PGD2 [43]. In turn, the release of neuro-
peptides such as substance P and CGRP leads to the
chemotaxis of eosinophils [44]. In guinea pig models, eo-
sinophils are co-localized with airway nerves after aller-
gen challenge [45].
Meanwhile, evidence indicates that eosinophils are not

a pre-requisite for cough hypersensitivity, at least in
asthma. In anti-IL-5 antibody trials for refractory eosino-
philic asthma, mepolizumab treatment suppressed sputum
eosinophilia and reduced severe asthma exacerbations,
but failed to improve cough severity compared to placebo
[46]. This finding directly contrasts the effects of systemic
corticosteroid therapy (prednisolone 30 mg daily for
two weeks), which significantly improved inflammatory
markers and cough scores in refractory eosinophilic
asthma patients. These results lead to the speculation
that immune cells other than eosinophils, particularly
mast cells, contribute to cough in asthma patients [47];
this idea is supported by previous reports of increased
mast cell numbers in chronic cough [25, 26, 30]. These
findings also warrant further investigation of whether
anti-IL-5 (eosinophil-specific reduction therapy) is ef-
fective in non-asthmatic eosinophilic bronchitis.
Few studies have examined the pathogenesis of non-

asthmatic eosinophilic bronchitis. This condition is less
frequently accompanied by IgE sensitization to inhalant
allergens (atopy) than eosinophilic asthma [47]. It is also
unlikely to originate from nasal eosinophilic inflamma-
tion, as sputum eosinophilia did not frequently accom-
pany nasal eosinophilia and responded well to inhaled
corticosteroid therapy [40]. Potential relationships be-
tween airway eosinophilia and reflux diseases have been
reported [30, 48], but warrant further clarification. In
pathologic studies, degrees of submucosal eosinophil
and mast cell infiltration were similar between non-
asthmatic eosinophilic bronchitis and asthma, but eosino-
philic bronchitis involved much less mast cell infiltration
in airway smooth muscle [49]. This difference from
asthma highlights need to elucidate the pathogenesis of
non-asthmatic eosinophilic bronchitis. In addition, the po-
tential role of mast cells [25, 26, 30, 31] also warrants fur-
ther investigation in this condition.
Inflammatory mediators such as IL-1β, TNF-α and

nerve growth factor (NGF) released from immune
cells can directly sensitize sensory neurons [50–52],
and thus could lead to hypersensitivity in the cough
reflex. However, whether and how non-eosinophilic
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inflammation contributes to neuronal sensitization re-
mains unclear.

Peripheral nervous system in cough hypersensitivity
The cough reflex is mediated by peripheral sensory
nerves, mostly within the extrapulmonary airways (lar-
ynx, trachea and large bronchus). Thus, repeated stimu-
lation or dysregulation of sensory neurons could lead to
cough hypersensitivity. Here we briefly review the mech-
anisms of peripheral cough reflex pathway.
The various sensory nerves involved in the cough re-

flex originate from the vagal nodose and jugular ganglia.
The sensory fibres terminate within the airway epithelial
layers, and recognize incoming harmful signals. Activa-
tion triggers an action potential, which is relayed along
afferent pathways to the nucleus tractus solitarius (nTS)
in the convergence centre. Afferent signals are summed,
and efferent signals for the act of coughing are then de-
cided [53].
There are two subtypes of vagal afferents, depending

on how they respond to different stimuli [54]. The sen-
sation of mechanical stimuli is mainly mediated by a
low-threshold mechanoreceptor, also responsive to low
pH through acid-sensing ion channels, but usually not
to chemical irritants like capsaicin [55, 56]. This mech-
anoreceptor is fast-conducting and does not produce
neuropeptides under normal conditions. Stimulation of
mechanoreceptors induces the cough reflex regardless of
general anaesthesia [57], and thus they are thought to
mediate intrinsic protective roles for the lower airways
against acid or foreign body aspiration.
The sensation of chemical irritants and endogenous

inflammatory mediators is mostly mediated by bronchial
C-fibres [54]. C-fibres play a chemosensitive function by
expressing various receptors or channels, such as TRPV1
or TRP ankyrin-1 (TRPA1). TRPV1 is the most well-
known receptor for cough, which responds to high
temperature, low pH and capsaicin [58]. TRPA1 re-
sponds to cold temperature and a variety of irritants
including cigarette smoke or acrolein [59]. C-fibre tus-
sigenic function is up-regulated (sensitized) by inflam-
matory mediators, and appears to be maintained only
during consciousness [55]. Thus, C-fibres are under-
stood to mediate adaptive cough responses in patho-
logic conditions, making them the likely neuronal basis
of cough hypersensitivity and thus appropriate thera-
peutic targets at peripheral levels. Pathologic changes
at higher levels of nervous system, such as brainstem
or brain cortex, are also supposed to augment cough
hypersensitivity significantly [17]; however, this topic
will not be discussed here.
Acute stimulation of sensory neurons leads to local acti-

vation of immune cells and also up-regulation of cough
receptors at the peripheral level (peripheral sensitization).
However, it is unclear whether repeated stimulation of
sensory neurons is sufficient to cause persistent neuro-
pathic changes in human cough afferent pathways
(chronic cough hypersensitivity). In a primate model of
allergic asthma, sensitization and repeated exposure to
house dust mites induced intrinsic increases in neuronal
excitability in nTS [60]. In young guinea pigs, repeated
second-hand tobacco smoke exposure increased excit-
ability of the second order neurons in the nTS via the
production of substance P [61].
Respiratory infection is another candidate for develop-

ing cough hypersensitivity. Acute infection with human
rhinovirus in d-IMR-32 neuronal cell lines up-regulated
expression of cough receptors including TRPV1 and
TRPA1 [62]. During H1N1 infection, plasma NGF levels
correlated with the duration of cough [63]. In an autopsy
study of mycoplasmal panencephalitis accompanied by
fever and cough, Mycoplasma pneumoniae was found to
have infected microglia, oligodendrocytes and neurons
[64]. However, whether respiratory infection leads to
neuropathic changes and chronic cough hypersensitivity
remains undetermined.
Nutritional factors could also be involved in cough

hypersensitivity, by mediating sensory neuropathy. Un-
explained chronic cough patients with vitamin B-12 defi-
ciency had more hyperresponsiveness to histamine and
higher NGF immune-reactive score in oropharyngeal bi-
opsy, compared to those without vitamin B-12 deficiency
[65]. Also cough visual analogue scale and histamine
hyperresponsiveness were significantly improved by 2-
month supplementation with vitamin B-12, particularly
among those with the deficiency [65]. Potential roles of
iron deficiency were also suggested in female patients
with unexplained chronic cough [66].
Despite the fundamental roles of neuronal circuits in

cough reflex regulation, evidence from human studies is
lacking. While their function is clear from cough challenge
studies [22], the pathology of airway sensory nerves in
chronic cough is under-studied. As discussed earlier,
CGRP and TRPV1 expression in airway nerves correlate
with cough severity and duration [27, 28], but these biopsy
samples were mostly taken from carina and large bronchi,
not laryngeal mucosa, which are closer to the intrinsic
function of the cough reflex and have a high density of
sensory nerve fibres [67]. Moreover, to our knowledge,
there are no reports of changes in the nervous tissues at
the ganglionic or brainstem levels in relation to cough
sensitivity. Given the recent identification of novel cough
receptors [68], further studies are encouraged in humans.

Neuro-immune interactions in cough hypersensitivity
The immune and nervous systems have distinct roles,
but closely interact with each other to protect the
host, including through the cough reflex. As discussed
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previously, dysregulation in either or both systems
may lead to cough hypersensitivity. Eosinophilic or
Th2 inflammation may directly sensitize nerves, by
releasing eosinophil granule proteins, PGE2, cys-LT or
neuropeptides. Infiltration of mast cells could be a
cause or sign of sensory hypersensitivity in the airways.
Thus, ongoing immunologic hypersensitivity would lead
to persistent sensitization of sensory neurons.
Conversely, neurogenic inflammation initiated by pri-

mary stimulation of afferent nerve endings may also in
turn locally activate the immune system by releasing
neuropeptides like CGRP and substance P, which can in-
duce vasodilation and promote oedema [69, 70]. They can
also attract and activate immune cells including eosino-
phils, mast cells, dendritic cells or T cells [44, 71–73]. In-
creased CGRP could bias Langerhans cell functions
toward Th2-type immunity in skin inflammation [74], al-
though this effect remains to be examined in the airways.
Another important interaction between the two sys-

tems is a shared danger recognition system. Toll-like re-
ceptors (TLRs), well-known as detectors of microbial
components in innate immune cells, are also expressed
in nociceptive neurons. In particular, TLRs 3, 4, 7 and 9
expression and function in neuronal cells have recently
been demonstrated [75–78]. Stimulation of these TLRs
in sensory neurons mediates pain, itch, or sensitization
to other kinds of stimuli. At the same time, TLR stimu-
lation in innate immune cells leads to inflammatory cas-
cades, resulting in synergistic protection.
TRP channels, which mediate neurogenic inflamma-

tion in sensory neurons, have recently been identified as
being expressed and functional in non-neuronal cells
such as airway epithelium, smooth muscle cells, or lung
fibroblasts [79, 80]. TRPA1, which mediates the cough
response in humans [59], is also expressed in non-
neuronal cells and mediates non-neurogenic inflammation
in the airways [79]. Increased TRPV1 expression in bron-
chial epithelium correlates with the severity of asthma,
and TRPV1 agonist stimulation in bronchial epithelium
induces IL-8 release in a dose-dependent manner [80].
ATP and corresponding purinergic receptors are an-

other shared danger and recognition mechanism. ATP is
a danger signal generated during cell injury, and can be
recognized by both immune and neuronal cells via pur-
inergic receptors like P2X. In the immune system,
extracellular ATP stimulation of P2X7 receptors in-
duces mast cell activation [81], IL-1β release in macro-
phages [82], and the proliferation of B and T cells [83,
84]. Sensory neurons can also recognize extracellular
ATP via P2X3 receptors, and mediate cough responses
to tussigens in guinea pigs [85, 86]. Importantly, the
P2X3 receptor antagonist AF-219 significantly reduced
the frequency of cough in a very recent phase II trial in
refractory chronic cough patients [87].
However, how these interactions are involved in cough
hypersensitivity remains unclear. Moreover, whether
blockade of communicating mediators (TNF-α, IL-1β, or
NGF) or shared danger recognition receptors (TLRs,
TRPs, or P2Xs) as an effective strategy for resolving cough
hypersensitivity also deserves further investigation.

Nasal determinants of the cough reflex
We here discuss upper airway cough syndrome as a sep-
arate part, as this entity is supposed to have a distinct
type of interaction. Upper airway cough syndrome is
regarded as a frequent cause of chronic cough, but the
pathophysiology remains to be fully elucidated [88]. In
the past, cough and comorbid rhinitis was attributed to
PND to the pharyngolaryngeal region, directly stimulat-
ing the cough response. However, PND is a common
physiologic phenomenon, and only a minority of pa-
tients with purulent rhinosinusitis complain of cough
[89]. Thus, PND syndrome was later renamed upper air-
way cough syndrome, reflecting its complex mechanisms
and highlighting the role of nasal determinants in cough
regulation.
Nasal mucosa express various TLRs and cough recep-

tors such as TRPV1, TRPA1 and melastatin-8 (TRPM8),
and thus sense various kinds of stimuli. However, direct
stimulation of the nasal afferent does not induce cough,
but only the sneeze reflex [88]. Rather, nasal afferent
stimulation modulates cough reflex indirectly; in inhala-
tional tussigen challenges, the cough reflex becomes sen-
sitized by prior intranasal histamine or capsaicin
stimulation [90]. Similarly, in allergic rhinitis patients,
the cough reflex is sensitized during the pollen season
[91]. In this regard, we speculate that up-regulation of
the cough reflex during nasal afferent stimulation mini-
mizes the spread of harmful stimuli from the nasal cavity
to the lower airways. Repeated nasal trigeminal stimula-
tion by capsaicin also induces c-fos expression in the
nTS, indicating the potential contribution of upper air-
way neurogenic inflammation in central sensitization of
cough [92]. More interestingly, the nasal challenge with
menthol, a TRPM8 agonist, ‘desensitizes’ the cough re-
flex [93]. Collectively, these findings provide evidence
that the nasal trigeminal afferent is involved in cough
regulatory mechanisms, which were previously thought
to be mediated exclusively by vagal afferent nerves. In
turn, these findings suggest nasal modulation of the
cough reflex has a distinct role in cough hypersensitivity.

Clinical appraisal: current and future therapeutic
strategies
Based on the concept of cough hypersensitivity and
neuro-immune interaction, here we review current and
future therapeutic strategies for cough. Considering its
bi-directional health effects, the goal of therapy would
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be normalization of hypersensitivity (pathologic cough)
rather than overall suppression of cough pathways.
To date, most anti-tussive agents are centrally acting

and non-selective; some of the most effective anti-
tussive medications are opiates [94]. In a four-week ran-
domized double-blind placebo-controlled trial, slow-
release morphine sulphate (5 mg twice daily) rapidly and
significantly reduced daily cough scores [95]. However,
the mechanism of action is not clear, but unlikely due to
sedation [96]. They often have undesirable side effects,
and their effectiveness varies among individuals.
Gabapentin has recently been highlighted as having a

therapeutic benefit in chronic refractory cough [97]. In a
ten-week randomized double-blind placebo-controlled
trial, gabapentin (maximum tolerable daily dose of
1800 mg) significantly improved cough-specific quality
of life. However, gabapentin had a high rate of side ef-
fects (31 %). Another limitation of opiates or gabapentin
is that they do not suppress peripheral cough sensitivity
to citric acid or capsaicin [95, 97], indicating that they
may not suppress cough in cases of unresolved periph-
eral triggers or inflammation.
Dextromethorphan is another centrally-acting medi-

cation used for a long time, which exerts anti-tussive
effects by the structural component of codeine and
also the N-methyl D aspartate receptor antagonist
function. It showed some efficacy in clinical trials [94],
attenuated capsaicin cough response [98], but has safety
concerns [99].
Thus, selective blockade of peripheral cough receptors

and pathways is expected to be the next breakthrough.
Fig. 2 Clinical approach from the concept of cough hypersensitivity. Abbre
potential ankyrin-1; TRPV1, transient receptor potential vanilloid-1; TRPM8, t
However, a TRPV1 receptor antagonist (SB-705498) did
not reduce objective cough frequency, despite reducing
capsaicin cough reflex sensitivity [100]. These findings
raise the question of whether specific cough receptor
blockade is an appropriate strategy. However, P2X3 re-
ceptor antagonist (AF-219) yielded very promising re-
sults [87], although its efficacy in blocking the peripheral
cough circuit has not yet been examined. Recent in-
crease in the number of clinical trials for novel therapeu-
tics is encouraging.
Considering diverse implication of cys-LTs in airway

inflammation [101], therapeutic effects of leukotriene re-
ceptor antagonist (LTRA) may be considered. LTRAs
such as montelukast or zafirlukast have shown signifi-
cant clinical efficacy in improving cough and/or capsa-
icin cough sensitivity among patients with cough variant
asthma or non-asthmatic eosinophilic bronchitis [102–
105]. However, roles of LTRA as non-specific anti-
tussive agents have been inconclusive, or is unlikely at
present [104, 106, 107]. In a recent large-scale random-
ized trial on 276 patients with post-infectious cough,
montelukast did not show any significant difference in
improving cough outcomes, compared to placebo [108].
Non-pharmacological intervention is suggested as a

safe and effective option in normalizing cough hypersen-
sitivity, although further validation is required [109]. In
a randomized placebo-controlled trial on 87 refractory
cough patients, speech pathology intervention for
2 months significantly improved cough scores, compared
to placebo intervention (general health lifestyle advice)
[110]; the positive effects were also shown in later
viations: CNS, central nervous system; TRPA1, transient receptor
ransient receptor potential melastatin-8
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studies, including further benefits in improving cough
sensitivity [109, 111]. Nutritional intervention and
weight reduction may also have beneficial roles in sus-
ceptible patients [65, 66, 112].
At present, the best strategy would be the combination

of 1) identification and treatment of peripheral triggers
(eosinophilic inflammation, acid reflux, or nasal inflam-
mation), 2) appropriate anti-tussive medication, and 3)
non-pharmacological intervention (Fig. 2). However,
current anti-tussives may not down-regulate the ‘hyper-
sensitivity’ of the pathologic cough reflex, but suppress
overall cough pathways at central levels. We expect on-
going research and trials to finally bring a new strategy
for chronic cough patients.

Conclusions
Anatomic diagnostic protocol was the first break-
through in practice of chronic cough. A recent para-
digm shift into ‘cough hypersensitivity’ as an intrinsic
mechanism for chronic cough provides new opportun-
ities to discover the next breakthrough. As reviewed
here, the nervous system is fundamental in regulating
the cough reflex, and activation of sensory neurons can
lead to acute immune activation, and if repeated, may
lead to a chronic neuronal hypersensitive state. In turn,
activation of the immune system can strongly sensitize
the nervous system leading to cough hypersensitivity;
roles of eosinophils and mast cells have been sug-
gested. Further potential interactions between the two
systems may reside in shared danger recognition sys-
tems. We expect further elucidation of neuro-immune
interactions to lead to new therapeutic strategies for
chronic cough.
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