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Abstract 

Background  DNA methylation is a critical molecular mark involved in cellular differentiation and cell-specific pro-
cesses. Single-cell whole genome DNA methylation profiling methods hold great potential to resolve the DNA meth-
ylation profiles of individual cell-types. Here we present a method that couples single-cell combinatorial indexing (sci) 
with enzymatic conversion (sciEM) of unmethylated cytosines.

Results  The sciEM method facilitates DNA methylation profiling of single-cells that is highly correlated with single-
cell bisulfite-based workflows (r2 > 0.99) whilst improving sequencing alignment rates, reducing adapter contamina-
tion and over-estimation of DNA methylation levels (CpG and non-CpG). As proof-of-concept we perform sciEM 
analysis of the temporal lobe, motor cortex, hippocampus and cerebellum of the human brain to resolve single-cell 
DNA methylation of all major cell-types.

Conclusion  To our knowledge sciEM represents the first non-bisulfite single-cell DNA methylation sequencing 
approach with single-base resolution.
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Introduction
The covalent addition of a methyl group to cytosine bases 
in mammalian DNA (DNA methylation) is one of the 
most highly studied epigenetic modifications [1]. Primar-
ily occurring in the CpG context, DNA methylation is 
critical for organism development [2] and plays an essen-
tial role in regulating gene expression during cellular 

differentiation [3]. Cell-types have highly specific DNA 
methylation patterns [4] necessitating the analysis of 
DNA methylation in pure cellular populations, however 
limited cell surface markers or highly interconnected tis-
sue networks prohibit cell isolation from tissues such as 
the human brain.

Single-cell whole genome bisulfite sequencing tech-
niques have recently been described [5–8] that can 
produce single-base resolution DNA methylation infor-
mation from which cell-specific whole genome DNA 
methylation profiles (methylomes) can be reconstructed 
bioinformatically. However, these sequencing library 
preparations are prohibitively expensive for most labs 
because of high reagent costs associated with single-cell 
single-well reactions. Recently a single-cell combinato-
rial indexing (sci-) bisulfite sequencing approach (termed 
sciMET) was described in which nuclei are sorted and 

*Correspondence:
Zac Chatterton
zac.chatterton@sydney.edu.au
1 Brain and Mind Centre, The University of Sydney, Camperdown, Australia
2 School of Medical Science, The University of Sydney, Camperdown, 
Australia
3 Recombinant Products Facility, University of New South Wales, 
Kensington, Australia
4 School of Biotechnology and Biomolecular Science, University of New 
South Wales, Kensington, Australia

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13578-022-00938-9&domain=pdf
http://orcid.org/0000-0002-6683-1400


Page 2 of 11Chatterton et al. Cell & Bioscience            (2023) 13:2 

tagged with sequencing indexes over multiple rounds, 
forming unique combinations of indexes per nuclei [9]. 
The sciMET approach allows multiple-nuclei single-well 
reactions, thus reducing reagent costs.

Single-cell DNA methylation sequencing is still in its 
infancy, however the technique’s importance cannot be 
overstated as it enables the DNA methylation profiling of 
cell-types that lack cell surface markers that can be used 
for their isolation, such as those in the brain [10]. Further, 
defining cell-specific DNA methylation patterns have 
been critical for understanding mechanisms of disease, 
such as cancer [11], and represent important markers for 
cell-of-origin molecular diagnostic assays [12]. Notably, 
targeted single-cell epigenomics is emerging as a prom-
ising approach for high throughput functional screening 
of disease relevant gene regulation [13]. To our knowl-
edge high throughput functional screens using single-cell 
DNA methylation sequencing have yet to arrive, how-
ever, single-cell reduced representation bisulfite sequenc-
ing workflows can lower experimental costs by enriching 
for dense regions of CpG dinucleotides (CpG Islands) 
that are important in gene regulation at the expense of 
whole genome coverage [14].

Bisulfite sequencing is the gold standard method for 
DNA methylation analysis [15, 16] but is not without 
limitations. It has been estimated that 84–96% of DNA 
is degraded during the bisulfite conversion reaction 
[17]. Additionally, methylated DNA is overrepresented 
in WGBS libraries leading to an over-estimate of DNA 
methylation levels [18] particularly in CHG and CHH 
contexts [19]. This is especially relevant in the analysis of 
DNA methylation in embryonic stem cells and neurons 
that have been reported to exhibit high levels of CHG 
and CHH methylation [20–25].

Unmethylated cytosines can also be deaminated by 
APOBEC enzymes, resulting in base changes analogous 
to bisulfite conversion (sequenced as T) [26]. Notably, 
enzymatic conversion is less degradative to DNA and can 
produce high quality single-base resolution DNA meth-
ylation data [26]. Such attributes may be particularly ben-
eficial in  situations where DNA content is limited such 
as the single-cell analysis of DNA methylation. How-
ever, enzymatic conversion in single cells is challenging 
due, in part, to multiple reaction cleanup steps required 
that results in DNA loss. A major advantage of the sci- 
approach over single-cell/single-well methods is the abil-
ity to perform deamination reactions of multiple cells 
per-well, thus increasing per-well DNA content. Here we 
combine sci- with enzymatic conversion (termed sciEM, 
Fig.  1a) and show application by characterizing single-
base DNA methylation profiles of human brain cell-types 
without the need for cell-type markers (e.g. NeuN). The 
sciEM approach accurately captures CpG methylation 

dynamics across annotated regulatory features of the 
human genome. Both CpG and non-CpG (CpH) meth-
ylation estimates are lower than bisulfite conversion and 
we find no evidence of higher global CpH DNA meth-
ylation within neurons from the temporal lobe, motor 
cortex, hippocampus or cerebellum of the human brain. 
The sciEM approach represents an economical method 
for single-cell single-base resolution DNA methylation 
analysis.

Results
Library construction and sequencing read processing
Using frozen post-mortem brain tissue from mouse 
(NextSeq, n = 1) and human (NextSeq, n = 1 and 
NovaSeq, n = 4) we were able to construct both sci-
MET and sciEM single-cell libraries in parallel (Addi-
tional file  1: Fig. S1). Within the sciEM workflow we 
use a G-depleted (mg) random linear primer that we 
observed to improve CpH mapping within preliminary 
experiments (NextSeq, Additional file  1: Fig. S2). Both 
bisulfite and enzymatic conversion efficiencies were 
high, 99.99% and 99.94% respectively, however the sci-
MET method produced ~ 10× the amount of library than 
sciEM (518  nM vs. 53  nM by RT-qPCR). Post-sequenc-
ing (NovaSeq), single-nuclei were identified by unique 
barcode combinations (Tn5, i5 and i7 barcodes). Single-
nuclei with > 100 unique mapped reads were observed 
to have significantly higher mapping efficiency, more 
paired-reads, larger insert sizes and a lower proportion 
of reads mapped using local alignment (Students t-test 
p-value’s < 5 × 10−17, Additional file  1: Fig. S2a–d), rep-
resenting high-quality single-nuclei. Following k-means 
clustering of unique mapped reads, a total of 710 and 
64 high quality single-nuclei from sciEM and sciMET 
workflows were retained for analysis (Additional file  1: 
Fig. S3e, f ), representing 54 and 58% of the nuclei fluo-
rescently sorted for each workflow respectively. The 
mapping efficiency was 58 ± 5% and 64.9 ± 10% for sci-
MET and sciEM libraries respectively (Fig.  1b), but 
we note the sciMET mapping efficiencies were lower 
than previously reported [9], results that are partially 
attributed to the removal of 4% of reads that contained 
substantial linear primer sequences (Fig.  1b). The num-
ber of mapped reads were higher in sciMET (mean 
254,194 ± 191,560) than sciEM (150,515 ± 147,388) 
(Students t-test p-value = 7.25 × 10−5, Fig.  1b) leading 
to higher coverage of mappable cytosine dinucleotides 
(e.g., CpG p = 1.91 × 10−10, Additional file  1: Fig. S4a). 
However, the library loading concentration largely influ-
ences read counts and, proportional to mapped reads, the 
sciEM method covered a greater number of all cytosine 
dinucleotides, particularly CpT and CpC dinucleotides 
(p < 6.1 × 10−10, Fig. 1c).
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DNA methylation
Global DNA methylation levels were observed to be 
lower in sciEM than sciMET libraries for CpG (54% vs. 
71%), CHG (1.0 vs. 1.2%) and CHH (1.2 vs. 2.2%) cyto-
sine contexts (p-value < 7.10 × 10−8). WGBS library prep-
aration methods have previously been reported to have 
an over-representation of methylated fragments [18]. 
In line with these reports, we observed an increase in 
the 5mC levels from 5′ to 3′ of sciMET reads for CpG, 
CHG and CHH contexts (student t-test p-value < 0.003, 
first 50% bases vs. last 50% bases). In contrast, 5mC lev-
els were stable across sciEM reads (Fig. 1d). Of note, the 
5mC levels of chromosome 21 were significantly lower 
than other chromosomes, an effect that was pronounced 
within sciEM libraries. We observed a very high corre-
lation between the CpG methylation of sciEM and sci-
MET across annotated genomic features (e.g., R2 = 0.996, 
± 5 kb Ensemble genes, Pearson’s p-value = 6.9 × 10−120).

CpG hypomethylation is generally associated with 
chromatin accessibility and gene activity and sciEM 

successfully captured global DNA methylation dynam-
ics across regulatory regions e.g. hypomethylation of 
gene promoter regions, CpG Islands and open chro-
matin (DNase-seq) (Fig.  2a–c). We observed CpG 
hypomethylation across annotated regions enriched 
for active histone marks (e.g. H3K4me3, H3K9ac, 
H3K27ac) and H3K4me1 boundaries (Fig.  2d–g). The 
H3K27me3 histone modification is a marker of biva-
lent polycomb regulated promoters in which dynamic 
crosstalk between DNA methylation controls gene 
expression [27] and we observed CpG hypomethyla-
tion across genomic regions enriched for H3K27me3 
(Fig.  2h). Conversely, hypermethylation was observed 
within annotated regions enriched for repressive his-
tone modifications (H3K36me3 and H3K9me3) (Fig. 3i, 
j). Of note, sciEM CpG methylation levels are sig-
nificantly lower than sciMET measurements e.g., 14% 
lower across annotated genes (± 5  kb) (paired t-test 
p-value = 3.46 × 10−65). The difference in CpG DNA 
methylation between sciEM and sciMET was highly 

Fig. 1  a Single-cell combinatorial indexing and enzymatic conversion (sciEM) workflow in which (i) whole tissue (e.g. brain tissue) is homogenized 
to dissociates cells. Nuclei from heterogeneous cell-types are isolated and (ii) sorted by Fluorescent Activated Nuclei-Sorting (FANS). (iii) Nuclei 
membranes are permeabilized, nucleosomes depleted, and molecular tags (tag 1, Tn5 barcode) are attached to genomic DNA via transposome 
tagmentation. (iv) Nuclei are pooled, (vi) re-sorted by FANS and (vi) unmethylated cytosines are converted to thymine following treatment with TET2 
and APOBEC enzymes and Linear amplification. Molecular tags 2, 3 (i5 and i7 barcodes) and sequencing adapters are attached via PCR amplification. 
(adapted from [9]). b Per cell read processing metric’s. c Cytosine dinucleotides covered as percentage of mapped bases. d, e DNA methylation bias 
plots for sciEM and sciMET methods respectively for reads mapping to autosome’s and the X-chromosome, with close-up of CHG and CHH DNA 
methylation (bottom). H = A, C or T
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correlated to the underlying CpG methylation levels 
(Fig. 2k).

Single‑cell clustering
To assess the ability of sciEM to discriminate cell types 
we summarized CpG DNA methylation of regulatory 
regions (Ensembl Regulatory Build) and CpH methyla-
tion across 100 kb genomic bins (used to cluster Neu-
ronal cell-types [7]) across 710 high quality single nuclei 
(methods). The DNA methylation information of each 
single nuclei was combined using NMF and projected 

into 2-dimensional space (tSNE) from which 19 clusters 
were identified (Fig. 3a). We observed distinct patterns 
of DNA methylation within established Differentially 
Methylated Regions (DMRs) distinct to Neurons and 
Non-Neuronal cell-types from the human brain [22] 
which enabled the identification of 11 neuron (n = 430) 
and 8 non-neuronal clusters (n = 280) (Fig.  3b). As 
gene promoter hypomethylation is associated with 
gene activity, the promoter DNA methylation status of 
established Differentially Expressed Genes (DEG’s) of 
non-neuron cell-types [28] enabled the identification of 

Fig. 2  CpG methylation across genomic features. The mean CpG methylation levels of single-cells (black) from sciEM (cyan) and sciMET (grey) 
protocols across a Ensemble genes b CpG Islands and regions of c DNase hypersensitivity as well as histone modifications associated with 
active (d–g) and repressive (h–j) chromatin conformations. k Scatterplot of CpG methylation levels (sciMET mean) and methylation difference 
(sciMET-sciEM) across each bin (3%) of annotated Ensemble genes (± 5 kb)
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Astrocytes (n = 30), Endothelial cells (n = 12), Micro-
glia (n = 45), Oligodendrocyte precursor cells (OPC’s, 
n = 5), Oligodendrocytes (n = 130) and Pericytes (n = 8) 
(Fig.  3c). Using the CpG DNA methylation levels at 

annotated neuronal cell-type CpG DMRs [7] we iden-
tified 6 excitatory (n = 279) and 5 inhibitory (n = 151) 
neuronal cell-type clusters (Fig. 3d). We found no sig-
nificant difference in the per-nuclei CpG, CHG or CHH 

Fig. 3  Cell-type discrimination by sciEM single nuclei DNA methylation. a Single nuclei DNA methylation clustering (NMF-tSNE). Clusters (n = 19) 
are defined by unique colors. b Heatmap of summarized CpG methylation z-score’s of clusters across annotated Neuron and Non-neuronal DMR’s. c 
Heatmap of summarized CpG methylation z-score’s of non-neuronal cell clusters across annotated non-neuronal DEG’s. d Heatmap of summarized 
CpG methylation z-score’s of neuronal clusters across annotated neuronal subtype CpG DMR’s. e Boxplots of CpG, CHG and CHH DNA methylation 
of each cell-type. Ast astrocyte, Exc excitatory neuron, End endothelial cells, Inh inhibitory neuron, Mic microglia, Olig oligodendrocyte, OPC 
oligodendrocyte precursor cells, Per pericyte
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DNA methylation levels between neuron and non-neu-
ronal cell-type clusters (Fig. 3e).

Discussion
To our knowledge we present the first enzyme based 
single-cell DNA methylation method with single-base 
resolution. The original sciEM method extends single-
cell combinatorial indexing approaches developed using 
sodium bisulfite (sciMET). Bisulfite sequencing is prob-
lematic for single-cell sequencing as it degrades the 
limited amount of DNA in each cell [29], however enzy-
matic based conversion of unmethylated cytosines has 
been shown to be less degradative to the DNA, result-
ing in more genomic coverage, even at 100 pg amounts 
[26]. However, the enzymatic conversion of ~ 132pg (22 
nuclei) produced ~ 10× less library than bisulfite conver-
sion, likely due to the increased number of wash steps. 
We further theorized that a greater reduction in the 
library would have occurred if the DNA content of each 
reaction was further reduced via a single-cell single-well 
system. Hence, our adoption of the combination of the 
enzymatic conversion process with a multiple-nuclei 
single-well approach, such as single-cell combinatorial 
indexing, has likely contributed to the success of creating 
the first enzymatic DNA methylation single-cell libraries.

To generate sciEM libraries we replaced the 9-N lin-
ear amplification primer of the sciMET protocol with a 
G-depleted random primer which we discovered to have 
bound more efficiently to genomic fragments devoid of 
cytosines following conversion (enzymatic or bisulfite 
converts ~ 95% of cytosines to uracils). G-depleted ran-
dom primers have been previously shown to improve 
library complexity, coverage uniformity and reduce arte-
factual reads [8]. Generally, the sciEM approach results 
in higher library loss during construction, and a lower 
amount of library input into the second barcoding PCR 
(i5 and i7), preferential amplification of smaller mole-
cules (reduced insert size), and a higher rate of duplicate 
sequences compared to sciMET. However, the data qual-
ity is high. We show high correlation of DNA methyla-
tion between sciEM and sciMET (r2 = 0.99) approaches, 
accurate recapitulation of DNA methylation dynamics 
across gene features and the ability to resolve single base 
resolution of single-cell types.

Since the first whole genome bisulfite sequencing 
(WGBS) study, a multitude of techniques have been 
developed to characterize genome-wide methylation [30]. 
However, as DNA methylation patterns are unique to sin-
gle-cell-types, it is essential to move towards single-cell 
DNA methylation profiling [31]. In disease states, DNA 
methylation patterns are known to be altered, leading to 
aberrant cascades of molecular changes [3]. Hence it is 
important to have accurate base level estimates of DNA 

methylation levels. Whole genome bisulfite sequencing 
approaches have been reported to over-represent methyl-
ated fragments [18]. We observed 5mC bias within sci-
MET sequencing reads, elevating from 5′ to 3′, that were 
not observed within sciEM. Further, 5mC levels were 
lower in sciEM, an effect that was greater within CHH 
loci (typically unmethylated) relative to CpG loci (typi-
cally methylated). Whilst we cannot rule out over con-
version of 5mC within sciEM, our observations of a 5mC 
bias within sciMET sequencing reads (elevating from 5′ 
to 3′), comparatively higher 5mCHH (typically unmeth-
ylated) then 5mCpG (typically methylated) and a slightly 
higher conversion efficiency indicate a potentially over-
representation of methylated fragments in sciMET.

Neurons exhibit distinct DNA methylation patterns, 
particularly in non-CpG (CpH) loci, compared to non-
neuronal brain cells [22, 32] as well as between neuronal 
subtypes [7, 33]. To our knowledge we present the first 
whole genome DNA methylation assessment of brain 
cell-types using enzymatic DNA methylation assess-
ment. We did not observe significantly higher CpH 
methylation within neurons as previously reported [22]. 
Further, our single-cell analysis of brain cell types omits 
the use the NeuN antibody for neuron selection, hence 
we cannot rule out the possibility that NeuN-positivity 
(nuclei surface marker) of Neurons relates to CpH DNA 
methylation.

Conclusion
The brain is a highly heterogeneous environment, com-
prising multiple neuronal and glial cell types with unique 
functions and at various stages of differentiation. Previ-
ously, the understanding of disease mechanisms pro-
gressed by studying cell populations in bulk which 
revealed only the average features of the population’s con-
stituents and can obscure the cell-to-cell variability. Since 
the first whole genome bisulfite sequencing (WGBS) 
study, a multitude of techniques have been developed 
to characterize genome-wide methylation [30] at single-
base resolution. Moreover, as DNA methylation patterns 
are unique to cell-types, it is essential to move towards 
single-cell DNA methylation profiling [31]. Single-cell 
strategies have already yielded novel mechanistic insights 
into brain function [34]. The sciEM approach represents 
an invaluable tool in assessing CpH DNA methylation 
function within cell-types with reportedly increased CpH 
DNA methylation, such as the brain and stem cells [35].

Many DNA methylation signatures have been 
described for distinct cellular phenotypes including cell-
type, pluripotency [36], age [37] and disease state [11]. 
As sci-based approaches offer a lower cost to entry for 
single-cell DNA methylation analysis, we anticipate that 
combining sciEM with high-content screening, such as 
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library of small molecules and CRISPR pooled screens, 
will create powerful new tools to evaluate mediators and 
mechanisms of cellular phenotypes in human health and 
disease and beyond into non-medical fields such as agri-
culture. The sciEM method represents an economical, 
high-throughput approach for single-cell DNA methyla-
tion at single-base resolution.

Methods
Transposome production
Recombinant transposase enzyme (Tn5) was grown 
(pTXB1-Tn5 vector) and purified following the proto-
cols described in Picelli et al. [36]. Cytosine depleted sci-
MET transposase-loaded oligonucleotides (1–96) were 
annealed (10 µL each 100 µM) to 10 µL 5′-[Phos]-CTG​
TCT​CTT​ATA​CAC​ATC​T-3′ oligonucleotide (100 µM) 
within 80 µL EB buffer (Qiagen), incubating 2  min at 
95 °C and cooled to room temperature (0.1 °C/s), follow-
ing protocols [37]. Annealed oligonucleotides were dilute 
2:5 (EB buffer), mixed with glycerol (50% final solution) 
and loaded (equal volume) into the recombinant Tn5 
(15 μm) by incubation for 20 min at room temperature. 
Annealed oligonucleotide loading was confirmed by gel-
shift assay and fragmentation efficiency of each transpo-
some was confirmed (> 50%) by qPCR analysis [38].

Brain sample and nuclei isolation
NextSeq—Post-mortem flash-frozen prefrontal cortex 
tissue was obtained from a 93-year-old female donor with 
no diagnosis of neurological disease. Post-mortem flash-
frozen cortex was obtained from a genetically modified 
(C9orf72) mouse. Following the protocols of Mulqueen 
et al., Brain tissue sections were resuspended in 5 mL of 
ice-cold NIB-HEPES solution (20  mM HEPES, 10  mM 
NaCl, 3  mM MgCl2). The tissues were equilibrated 
(5 min) and then dounce homogenized (10 loose strokes 
and 5 tight strokes) and filtered through 35–40  μm cell 
strainers (BD Biosciences, 352235). Nuclei were pelleted 
(600 g) and were transferred to a fresh tube containing 5 
mL ice cold NIB-HEPES solution.

NovaSeq—Post-mortem flash-frozen tissue from the 
Primary Motor Cortex (BA4), Banks of the superior tem-
poral sulcus (BA 22,41/42 [BA22]), Cerebellum (CRB) 
and Hippocampus (HIP) were obtained from a 47-year-
old female donor with no diagnosis of neurological dis-
ease. Brain tissue was acquired from the NeuroBioBank 
(NIH) and approved by the Research Integrity and Eth-
ics Administration of the University of Sydney. A high 
amount of cellular debris was observed by nuclei isola-
tion protocols described in Mulqueen et  al. [9], there-
fore nuclei were isolated instead following protocols 
described in Matevossian et al. [39] and resuspended in 5 
mL ice cold NIB-HEPES solution.

Nucleosome depletion
Following the protocols of Mulqueen et  al., nuclei 
were cross-linked using 135 µL of 37% formaldehyde, 
quenched with 400 µL of 2.5  M glycine and resus-
pended in 5 mL of ice-cold NIB (10 mM Tris HCl pH 
7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% Igepal (v/v), 
1× protease inhibitors) solution, pelleted (500  g for 
5  min), and washed using 900 µL of 1× NEBuffer 2.1 
(NEB, B7202). To denature proteins, nuclei were mixed 
with 800 µL of 1× NEBuffer 2.1 and 12  µL SDS solu-
tion (20%) and incubated at 42 °C for 30 min with vig-
orous shaking. Nuclei were then mixed with 20 µL of 
10% Triton-X (Sigma, 9002-93-1) and incubated at 
42  °C for 30  min solubilize proteins/ increase nuclei 
permeabilization.

Fluorescent activated nuclei‑sorting (FANS) 
and tagmentation
The nuclei were stained using 8 µL of 5  mg/mL DAPI 
dye (Thermo-Fisher, Cat. D1306) and filtered through 
a 35–40  μm cell strainer. FANS was performed on BD 
InFlux-7  L (sort 1), separating 1000 single nuclei per 
well in a 96-well plate containing 5 µL of 2×TB buffer 
[20 mM Tris(hydroxymethyl)aminomethane, 10 mM 
MgCl2 and 20% (v/v) dimethylformamide (DMF)] and 5 
µL of NIB solution. To each well, 4 µL of 4.56 µM unique 
transposome (1–96) was added and incubated at 55  °C 
for 15  min with gentle shaking, adding the “Tn5 index”. 
All wells were then pooled, re-stained with 8 µL of 5 mg/
mL DAPI and filtered. FANS was performed again (sort 
2), separating 22 or 10 (control wells) single nuclei per 
well in a 96-well plate containing 2.5 µL of M-digestion 
buffer (Zymo, Cat. D5020-9), 0.25 µL of Proteinase K 
(Zymo, D3001-2-5), and 2.5 µL of H2O. Nuclei were then 
digested at 50 °C for 20 min with gentle shaking and the 
plate was then spun at 600 g for 5 min at 4 °C.

Bisulfite conversion
Prior to bisulfite conversion, 35 pg of pre-tagmented 
unmethylated lambda DNA was spiked into wells receiv-
ing 10 nuclei (sort 2). NextSeq; Each well was made up to 
50 µL with H2O and bisulfite conversion was performed 
following manufacturer protocols using the EZ-96 DNA 
Methylation Kit (Zymo, Cat. D5004) and eluted twice 
(12.5 µL each using elution buffer) for a final volume of 
25  µL. NovaSeq; Each well was made up to 20 µL with 
H2O and bisulfite conversion was performed following 
manufacturer protocols using the MethylCode BC con-
version kit (Applied Biosystems, Cat. MECOV50) and 
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eluted twice (12.5 µL each using elution buffer) for a final 
volume of 25 µL.

Enzymatic DNA methylation (EM) conversion
Prior to the EM conversion, 35 pg of pre-tagmented 
unmethylated lambda DNA and 14 pg of the tagmented 
CpG methylated pUC19 DNA were spiked into wells 
receiving 10 nuclei (sort 2). Sample volumes were made 
up to 20 µL with H2O and cleanup was performed using 
1.8× using AMPure XP cleanup beads (Beckman Coul-
ter, Cat. A63881) following manufacturer protocol with 
the exception that samples were incubated for 10 min at 
room temperature followed by a single wash step using 
60 µL 80% EtOH and eluted 29 µL of elution buffer. Enzy-
matic conversion was then performed using the NEBNext 
Enzymatic Methyl-seq Conversion Module (New Eng-
land Biolabs, Cat. E7125L) following manufacturers pro-
tocol (steps 1.5 to 1.9.11) for inserts 370–420 bp. Briefly, 
5-Methylcytosines and 5-Hydroxymethylcytosines were 
oxidized using TET2 enzyme. DNA was cleaned using 
AMPure XP cleanup beads in place of NEBNext Sample 
Purification Beads. DNA was denatured in 0.1 N NaOH 
and cytosines were deaminated by APOBEC3A, cleaned 
and eluted using 25 µL of Elution Buffer.

Linear amplification
Full elution’s from both the bisulfite converted and EM 
converted libraries were transferred to a plate prepared 
with the following: 16 µL of PCR-clean H2O, 5  µL of 
10×NEBuffer 2.1, 2 µL of 10 mM dNTP mix (New Eng-
land Biolabs, Cat. N0447), and 2 µL of 10 µM of either the 
9-nucleotide random primer (n9) previously described 
in the sciMET protocols [9] or the G-depleted (mg) ran-
dom primer [8], containing a partial Illumina Standard 
Read 2 sequencing primer 5′-GGA​GTT​CAG​ACG​TGT​
GCT​CTT​CCG​ATCT(H1:33340033)(H1)(H1)(H1)(H1)
(H1)(H1)(H1)(H1)-3′. Four rounds of linear amplifica-
tion were performed using 10  U of Klenow (3′–5′ exo) 
polymerase (Enzymatics, Cat. P7010-LC-L) followed 
by AMPure XP cleanup (1.1×) and elution in 21  µL of 
10 mM Tris-HCl (pH 8.5) as previously described [9].

Library indexing and quantification
Indexing PCRs were performed in a 96-well plate to 
incorporate i5 and i7 indexes. The full elution’s from the 
linear amplification reaction were mixed with 2 µL each 
of the 10 µM forward and reverse indexing primers [9], 
25 µL of 2xKAPA NEBNext Q5 Hot Start HiFi PCR Mas-
ter Mix (New England Biolabs, Cat. M0543L), and 0.5 µL 
of 100× SYBR Green I dye (FMC BioProducts, Cat. 
50513). Real-time PCR was performed on a QuantStudio 
6 Flex real-time thermocycler (Applied Biosystems) with 

the following thermocycling conditions: 95 °C for 2 min, 
20 cycles of 94 °C for 80 s, 65 °C for 30 s and 72 °C for 30 s 
[image]. The libraries were then pooled, cleaned using 
AMPure XP beads (0.8×) and eluted in 20 µL of 10 mM 
Tris-HCl (pH 8.5) as previously described [9]. Quanti-
fication of each sciMET(n9), sciMET(mg) and sciEM 
(combined n9 and mg) were performed using the KAPA 
qPCR Illumina library quantification kit (Kapa Biosys-
tems Cat. KR0405) and the mean of each sciMET result 
(n9 = 397 nM, and mg = 638 nM) was calculated.

Library sequencing
NextSeq—sciMET (n9), sciMET (mg) and sciEM (com-
bined n9 and mg libraries) were quantified separately by 
High Sensitivity D1000 ScreenTape (Agilent, Cat. 5067-
5584). Libraries were pooled and sequenced on the Illu-
mina NextSeq 500 (v2 2 × 75  bp cycle Mid-Output Kit) 
using a 0.9 pM loading concentration, 30% PhiX and cus-
tom Read 1 and Index 2 (i5) oligonucleotides matching 
chemistry temperatures [9]. Sequencing was performed 
using custom chemistry (Read1: 100 imaged cycles; 
Read2: 10 imaged cycles; Index1: 10 imaged cycles; 
Index2: 11 imaged cycles, 9 dark cycles, and 9 imaged 
cycles).

NovaSeq—sciMET(n9) and sciEM(mg) libraries were 
pooled and then quantified (as above). Libraries were 
sequenced on the NovaSeq 6000 (v1.5 2 × 300 bp SP Kit) 
using 116 pM loading concentration, 10% PhiX and cus-
tom Read 1 (as above). Sequencing was performed using 
custom chemistry (Read1: 142 imaged cycles; Index1: 10 
imaged cycles; Index2: 7 dark cycles, 10 imaged cycles, 
16 dark cycles, and 11 imaged cycles; Read2: 142 imaged 
cycles).

Bioinformatics
All scripts used for the processing and analysis of sci-
MET/sciEM data have been deposited and documented 
within https://​github.​com/​zchatt/​sciem_​scrip​ts.

Sequence read demultiplexing
NextSeq—BCL files were converted to fastq format using 
bcl2fastq “--create-fastq-for-index-reads --with-failed-
reads --use-bases-mask Y*,I10,I20,Y*” generating 2 Read 
files (R1[100 bp] & R2[25 bp]) and 2 Index files (I1[10 bp, 
i7 index] & I2[20 bp; Tn5 & i5 indexes]) for each sequenc-
ing lane. Each R1, R2, I1 and I2 from multiple sequencing 
lanes were combined by linux cat command and I2 was 
split into individual Tn5[11  bp] and i5[9  bp] index files 
using linux awk command. Fastq files were demultiplexed 
if all 3 indexes (i5, i7 and Tn5) had a Hamming dis-
tance < 3 from the reference, as previously described [9].

NovaSeq—BCL files were converted to fastq for-
mat using bcl2fastq “--create-fastq-for-index-reads 

https://github.com/zchatt/sciem_scripts
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--use-bases-mask Y*,I10,I21,Y*” generating 2 Read files 
(R1[142 bp] & R2[142 bp]) and 2 Index files (I1[10 bp, i7] 
& I2[21  bp; Tn5 & i5]) for each sequencing lane. Reads 
were processed as described above with the exception I2 
was split into individual Tn5[11 bp] and i5[10 bp] index 
files.

Sequence read trimming, alignment and DNA methylation 
extraction
Reads were firstly trimmed (trim 1) using TrimGalore! 
Software (v0.38.0) with options “--illumina --stringency 
3”. A high number of sequences corresponding to the 
Linear Primer and read-through of the P7 flow-cell were 
observed, therefore reads were trimmed again (trim 2) 
using cutadapt software (v1.8.3) with options “--any-
where = AGA​TCG​GAA​GAG​CAC​ACG​TCT​GAA​CTC​
CAG​TCA --anywhere=GAA​GAG​CAC​ACG​TCT​GAA​
CTC --anywhere=ATC​TCG​TAT​GCC​GTC​TTC​TGC​
TTG​AAA​AAA​AAA​AGG​GGG​GGG​GGG​GGG​GGG​
GGG​GGG​GGG​GG --minimum-length=20 --times=2” 
[40]. Read 2 sequences from the NovaSeq 6000 instru-
ment displayed increasing “G” content > 60 bp that were 
largely poly-G sequences (1.2% reads) indicative of low 
signal intensity. Read 2 sequences were truncated using 
fastp software (v0.19.6) with options “--max_len1 60”. 
The human (GRCh38) or mouse (GRCm39) reference 
genomes were each combined with the lambda phage 
reference genome that is used for bisulfite/ enzymatic 
conversion control. Alignment of reads were performed 
using scBS-map software using the options “-l 9 -p 12 -n 
10” [41]. Aligned reads were deduplicated using samtools 
software with options “rmdup” [42]. DNA methylation 
information was extracted from aligned deduplicated 
BAM files using cgmaptools with options “convert bam-
2cgmap” [43].

Single‑cell discrimination and quality control
Single nuclei with < 100 unique mapped reads were 
removed. The unique read counts of single nuclei have 
previously been used to discriminate high quality sin-
gle cells [9]. Briefly, k-means clustering (k = 3) of unique 
aligned reads per barcode (k-means, k = 3) was per-
formed and normal distributions were fitted to each clus-
ter (Additional file 1: Fig. S3). Barcodes with unique read 
counts passing 95% confidence interval threshold (cluster 
1) were retained (64 sciMET and 710 sciEM). Bisulfite 
and enzymatic conversion efficiencies were, calculated 
as the 5mC % of reads aligned to unmethylated lambda 
phage genome. Mapping efficiencies were assessed (reads 
aligned/reads assigned per barcode). We determined the 
number of uniquely mappable cytosine dinucleotides by 
intersecting the within the hg38 reference genome with 
umap files (k = 100) downloaded https://​bismap.​hoffm​

anlab.​org/ [44] using bedtools software with options 
“getfasta” and umap files (k = 100). NextSeq reads were 
processed as above with the exception that no unique 
mapped read thresholds were applied, and single nuclei 
were assigned as mouse or human based on the great-
est read mapping efficiency to gr39 and hg38 genomes 
independently.

DNA methylation across genomic annotations
CpG and CpH methylation were summarized (3% win-
dow) for each single-cell across (± 5  kb) Ensembl gene 
annotations, CpG Islands (CGI) as well as ChIP-seq and 
DNase-seq annotations from the middle frontal cor-
tex (ENCFF146VKE, ENCFF225RTW, ENCFF600AYY, 
ENCFF724XKK, ENCFF727KZF, ENCFF729EZH, 
ENCFF835ZYG, ENCFF860MVH from https://​www.​
encod​eproj​ect.​org) using cgmaptools with options “mfg” 
[43]. Frontal gyrus NeuN+/− CpG Differentially Methyl-
ated Regions (DMRs) generated by Lister et al. [22] were 
downloaded from http://​brain​ome.​ucsd.​edu/​Brain​Methy​
lomeD​ata/​CG_​DMR_​lists.​tar.​gz and converted to hg38 
using rtracklayer and hg18ToHg38.over.chain. Neuron 
CpG DMRs for each of the 21 Neuron cluster described 
by Luo et al. [7] were converted to hg38 using rtracklayer 
and hg19ToHg38.over.chain. The hg38 locations of Dif-
ferentially Expressed Genes (DEG’s) across non-neuron 
cell-types identified by Lake et  al. [28] were extracted 
using R software biomart package (v 2.46.3) and were 
separated into gene body and promoter (1.5 kb upstream 
TSS). CpG and CpH methylation were summarized for 
each DMR and DEG across each single-cell using cgmap-
tools with options “mtr” [43].

Cell‑type clustering analysis
We performed non-negative matrix factorization 
(NMF) on summarized CpH methylation across 
100  kb genomic bins and CpG methylation across the 
Ensembl Regulatory Build [45] setting k = 12, as previ-
ously described [9]. CpH and CpG NMF matrices were 
weighted, merged by cell, and plotted into two-dimen-
sional space using students t-distributed stochastic 
neighbor embedding (t-SNE). Cell clustering was per-
formed using DBSCAN, as previously described [9] 
using an epsilon value of 1.3. Clustering analysis was 
performed using all sciEM single-cells (n = 710) iden-
tifying 16 clusters (Fig.  3A). In addition, we evaluated 
clustering using both sciMET and sciEM single-cells 
using summarized CpH and CpG (Additional file  1: 
Fig. S5), summarized CpG alone (Additional file 1: Fig. 
S6), as well as summarized CpG for sciEM single-cells 
alone (Additional file  1: Fig. S7). To identify the cell-
type of each cluster, sequencing reads of all cell-types 
within a cluster were collapsed and CpG methylation 

https://bismap.hoffmanlab.org/
https://bismap.hoffmanlab.org/
https://www.encodeproject.org
https://www.encodeproject.org
http://brainome.ucsd.edu/BrainMethylomeData/CG_DMR_lists.tar.gz
http://brainome.ucsd.edu/BrainMethylomeData/CG_DMR_lists.tar.gz
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was summarized for NeuN+/− DMR’s, as described 
above. Broad subtypes of non-neuronal cells were fur-
ther classified by CpG methylation summarization of 
non-neuron DEG promoters, as described above. Non-
neuron cell subtypes were defined by lowest (hypo-
methylated promoters) z-score (annotation × cluster 
matrix). Broad excitatory and inhibitory neuron sub-
types were classified by CpG methylation summariza-
tion of promoter CpG DMRs of 21 neuron subtypes, as 
described above, and defined by hierarchical clustering 
of z-scores. We performed a linear regression analysis 
between neuron (n = 430) and non-neuronal (n = 280) 
cell-types using per-nuclei CpG, CHG and CHH DNA 
methylation levels controlling for read depth using R 
statistic software.

Supplementary Information
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