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Abstract 

Alternative splicing (AS) regulates gene expression patterns at the post-transcriptional level and generates a striking 
expansion of coding capacities of genomes and cellular protein diversity. RNA splicing could undergo modulation 
and close interaction with genetic and epigenetic machinery. Notably, during the adipogenesis processes of white, 
brown and beige adipocytes, AS tightly interplays with the differentiation gene program networks. Here, we integrate 
the available findings on specific splicing events and distinct functions of different splicing regulators as examples to 
highlight the directive biological contribution of AS mechanism in adipogenesis and adipocyte biology. Furthermore, 
accumulating evidence has suggested that mutations and/or altered expression in splicing regulators and aberrant 
splicing alterations in the obesity-associated genes are often linked to humans’ diet-induced obesity and metabolic 
dysregulation phenotypes. Therefore, significant attempts have been finally made to overview novel detailed dis-
cussion on the prospects of splicing machinery with obesity and metabolic disorders to supply featured potential 
management mechanisms in clinical applicability for obesity treatment strategies.
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Introduction
Alternative splicing (AS) is a crucial post-transcrip-
tional mechanism to reprogram gene expression profiles 
and expand transcriptomic and proteomic diversity in 
eukaryotic organisms [1, 2]. This highly dynamic pro-
cess alternatively removes introns from a transcribed 
precursor messenger RNA (pre-mRNA) and combines 
various exons to facilitate one single protein-coding gene 
to finally form variable forms of mature mRNA species 
[2]. About 95% of human multi-exon genes can undergo 
splicing process [3]; nevertheless, a large majority of 
alternatively spliced variants may not be translated into 

proteins, so very few annotated alternative isoforms can 
be detected in large-scale proteomics studies [4].

Numerous alternatively spliced transcripts are elic-
ited in a cell-type-specific manner. Indeed, extensive AS 
programs are frequent during early embryonic develop-
ment and function pivotal regulatory roles in cell fate 
determination and differentiation, organogenesis, and 
tissue development [5, 6]. The meticulous expression of 
AS profiles maintains tissue identity and function, while 
the temporal expression switch between splicing variants 
usually promotes cell differentiation and tissue develop-
ment [7]. Importantly, dysregulated AS pathways often 
employ aberrant biological actions causing various dis-
ease conditions in the human body [8].

In this review, we accumulate comprehensive insights 
into the AS regulatory role in adipogenesis based on 
the available studies from 2002 to 2020. We put a large 
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emphasis on the reported adipose developmental-stage-
specific alternative splicing events (ASEs) and the inte-
grated regulatory role of different splicing regulators 
during adipogenic differentiation processes in white, 
brown, and beige adipocytes, respectively. We also 
explore recent advances in the association of the splic-
ing program with the pathophysiological obese condi-
tion and metabolic disorders. In summary, our review 
is an exclusive rendition of three main aspects: how AS 
exerts a profound influence on adipocyte development, 
and how the pathologic roles of alternative RNA splicing 
variations operate in obesity and related metabolic disor-
ders, and great emphasis on discussing the application of 
AS in the form of viable therapeutic option for combating 
obesity and obesity-associated harmful chronic diseases.

Alternative RNA splicing and adipogenesis
Regulatory mechanism of cellular alternative splicing process
Different RNA splicing modes give rise to differ-
ent mRNA transcripts with varying coding potential, 
untranslated regions (UTRs), or RNA stability. Substan-
tially, the premRNA splicing outcomes can be deter-
mined under complex mechanisms involving splicing 
factors, transcriptional machinery, epigenetic modifica-
tions, and genomic mutations/single-nucleotide poly-
morphisms (SNPs) (Fig. 1).

Splicing‑site selection regulatory mechanism
AS decisions are influenced by global interactions 
between cisacting RNA sequences and the surrounding 
sequence contexts (including exonic/intronic splicing 
enhancers (E/ISEs) or silencers (E/ISSs), 5′ and 3′ splice 
sites) and their binding transregulatory factors (e.g., 
splicing factors, etc.) [9, 10]. Indeed, RNA-binding pro-
teins (RBPs), accounting for most splicing factors, can 
exert different regulatory functions in splice-site choices 
under a cooperative or antagonistic manner through 
their expression levels, nuclear localization, mRNA sta-
bility, and their own splicing regulated by other RBPs. 
This process usually exhibits a mechanistic interplay 
between RBPs with other multiple splicing regulators, 
such as epigenetic and transcriptional machinery, at the 
post- and co-transcriptional levels. Moreover, the out-
come prediction and identification of genome-wide splic-
ing pattern in specific cell conditions have been proposed 
to be determined by a “splicing code” (large combinations 
of RNA features in AS regulation), combing cis-regu-
latory features and splicing factor binding [11], whose 
depth and complexity remain to be deciphered.

Epigenetic splicing regulation mechanisms
Histone modifications, epigenetic modifiers, and DNA 
methylation can function broadly in RNA splice site 

recognition, spatially and temporally [12–16]. A set of 
underlying mechanistic modes of particular histone 
post-translational modifications (hPTMs) in modulat-
ing alternative exon splicing (exon inclusion/exclusion) 
are: (1) through direct recruitment or sequestration of 
splicing factors [14]; (2) and adaptor proteins [17]; (3) or 
through indirect transcriptional elongation regulation of 
the RNA polymerase II (Pol  II) [18, 19]. Besides, RNA 
modifications, such as N6-methyladenosine (m6A), also 
have functional relevance with the AS regulation process 
[20, 21]. It was first reported that m6A peaks exhibited 
more considerable enrichment in multi-isoform genes 
than in single-isoform ones and in alternatively spliced 
exons than in constitutive ones [22]. Subsequent results 
further revealed the main m6A modification-related reg-
ulatory mechanisms, involving the binding modulation of 
splicing factors throughout RNA conformation [23], the 
binding of m6A readers near the splice sites that affects 
the recruitment of splicing factors [24], and the splicing-
factors-mediated recognition of m6A motifs [25].

Other AS regulation mechanisms
Transcription initiation and Pol II elongation rates greatly 
influence the RBPs’ recognition to nascent pre-mRNA 
splice sites of various strengths in a time-dependent man-
ner [26–29]. Works have underscored the determinative 
role of kinetic coupling in co-transcriptional splicing 
reactions that the upstream site events have a competi-
tive advantage over the downstream, especially when 
elongation rates are reduced [29, 30]. Under the slow Pol 
II control, weak splice site recognition is favored, and the 
alternative up-and down-regulation of exon inclusion can 
be allowed [28]; by contrast, fast Pol II attenuates weak 
splice site recognition and promotes alternative exon-
skipping events [31].

Additionally, AS patterns could also be tightly affected 
by genetic mutations [32]. According to the Human Gene 
Mutation Database, SNPs that fall within critical regions 
of cis-acting splicing elements and splicing factors may 
display mis-splicing phenotypes [33]. Of note, 22% of dis-
ease-causing SNPs, initially identified as missense muta-
tions, appear to be more likely to disrupt the pre-mRNA 
splicing process than canonical variations; together with 
the known splicing mutations category, they suggest that 
about one-third of disease-causing mutations could affect 
pre-mRNA splicing patterns [33].

Regulatory mechanisms of adipogenesis process
Adipose tissues, including white adipose tissue (WAT), 
brown adipose tissue (BAT), and beige adipose tissue, 
lie in the regulatory center of metabolic functions and 
systemic energy homeostasis, linking closely with mul-
tiple physiological processes, such as lipid metabolism, 



Page 3 of 16Chao et al. Cell Biosci           (2021) 11:66 	

insulin sensitivity, satiety, thermoregulation, and inflam-
mation [34, 35]. Adipose tissues exhibit high plasticity to 
undergo a two-phase adipogenesis process (early com-
mitment and terminal differentiation) that multipotent 
mesenchymal precursors restrict their fate to the com-
mitted adipocyte lineage (Fig. 2), surging newly insulin-
responsive and profoundly influencing metabolic health 
and energy homeostasis [36–38].

Distinguished from the WAT adipogenesis that mainly 
occurs in the postnatal period, BAT mainly develops 
early during embryonic development before birth [39]. 

Nevertheless, the nature and origin of active beige adipo-
cytes with improved thermogenesis ability is an intensely 
ongoing debate. Upon environmental cold or high-fat-
diet exposure or sympathetic stimulation, white adipo-
cytes can undergo trans-differentiation into brown-like 
adipocytes dependent on PPARγ [40, 41], or that dormant 
beige adipocytes in WAT are recruited and activated 
[42], or that mesenchyme-derived resident precursors 
are differentiated de novo [43]. Notably, the process of 
beige adipogenesis to increase the number of metaboli-
cally active adipocytes ameliorating metabolism-related 

Fig. 1  The paradigmatic splicing regulation mechanisms in precursor messenger RNA (pre-mRNA). Generally, AS has complex correlations with 
splicing factors, transcriptional machinery (RNA polymerase II elongation rates), and epigenetic modifications (histone marks, epigenetic modifiers, 
and DNA methylation) at the post- and co-transcriptional levels. During AS process, spliceosome, a highly dynamic ribonucleoprotein complex 
mainly composed of five different small nuclear ribonucleoprotein (snRNP) complexes (U1, U2, and the tri-snRNP U4/U6. U5 structure), can function 
in splice sites recognition and reaction on pre-mRNA molecules. The spliceosome assembly process starts with the recognition of the initial 5′ splice 
site by E complex containing U1 snRNP at the GU motif and the identification of 3′ splice site by three interacting proteins-U2 small nuclear RNA 
auxiliary factor 1 (U2AF1), U2 small nuclear RNA auxiliary factor 2 (U2AF2), and splicing factor 1 (SF1); then the A complex of U2 snRNP binds to the 
branch site whose key protein component is splicing factor 3 subunit B1 (SF3B1); finally, the U4/U6. U5 tri-snRNP, forming B complex, triggers the 
core catalytic reaction of spliceosome. During this process, splicing factors target and interplay with spliceosome components to regulate 5′ and 3′ 
splice-site recognition flanking the alternative exon, such as serine/arginine-rich (SR) proteins and heterogeneous ribonucleoproteins (hnRNPs). The 
SR proteins are general splicing activators via binding to exonic/intronic splicing enhancers (E/ISEs) to facilitate exon formation, whereas hnRNPs are 
general splicing inhibitors via binding to exonic/intronic splicing silencers (E/ISSs) to interfere with the splice site recognition
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profiles is highlighted as a promising therapeutic strategy 
for obesity and metabolic disorders.

Alternative splicing events implicated in adipogenesis 
of different adipose tissues
Within the past decades, high-throughput RNA sequenc-
ing techniques, such as next-generation sequencing 
(NGS) of RNA, have become popular tools for studying 
pre-mRNA ASEs through unbiased assessments. These 
technologies, generating abundant transcriptomic data, 
help to identify widespread ASEs and also a new class of 
adipogenesis-specific splicing profiles. Indeed, annota-
tion of different splicing choices and splicing transitions 
occurred during the time course of adipocyte develop-
ment is a common theme in deciphering the AS regula-
tory mechanism in adipogenesis.

Alternative splicing events in WAT adipogenesis
Mechanistic investigations clearly indicate that dis-
tinct AS-originated transcripts of critical adipogenic 

regulators contribute to the regulation of divergent 
cell fate determination pathways. A typical example 
is tension-induced/inhibited proteins (TIPs), known 
stretch-responsive factors with three alternative spliced 
isoforms-tension-induced/inhibited protein 1 (TIP-1), 
2 (TIP-2), and 3 (TIP-3), which function differently in 
the cell fate selection of adipogenesis or myogenesis 
[44]. The TIP-3 isoform recruited by PPARγ2 promoter 
can stimulate the selection into the adipogenic pro-
gram, while TIP-1 promotes myogenic differentiation 
[44]. Moreover, the past decades have also profusely 
addressed AS to extend the action modes of adipo-
genic regulators that exert different effects on adipo-
cyte terminal differentiation mediated by switches or 
alterations in splicing patterns, as mainly summarized 
in Fig. 3a. Among them, some of the splicing switches 
can appear with slower kinetics in a developmentally 
regulated manner during adipogenesis, such as protein 
kinase C βII (PKCβII) [45] and melanocortin 2 receptor 
(MC2-R) [46]. Further transcriptomic characterization 

Fig. 2  Molecular mechanisms of the two-phase adipogenesis process. A common two-phase adipogenesis process is described: early 
determination and terminal differentiation phases, involving an intricate integration of cytoarchitecture, transcription factors and co-regulators, 
and signaling pathways. In the first commitment step, mesenchymal progenitors commit their fate to certain preadipocytes exclusively under 
the restriction control of bone morphogenetic protein (BMP) signaling. Subsequently, during the second adipogenic differentiation step in 
both white and brown adipocytes, the master regulator of adipogenesis-peroxisome proliferator-activated receptor-γ (PPARγ) is stimulated and 
synergizes with CCAAT/enhancer-binding protein α (C/EBPα) to fully activate a transcriptional cascade contributing to and maintaining stable 
maturation of functional adipocytes and to further engage in adipose biology modulation. Significantly, the zinc-finger transcriptional co-regulator 
PR domain-containing 16 (PRDM16), cooperating with PPARγ and C/EBPs, and PPARG coactivator 1α (PGC-1α) are of fundamental importance 
to induce mitochondrial biogenesis and BAT-specific genes expression in the brown adipocyte terminal differentiation and white adipocytes 
browning process. MYF5 myogenic factor 5, BMP2,4,7 bone morphogenetic protein 2,4,7, EBF2 early B-cell factor 2, ZFP423 zinc finger protein 423, 
TCF7L1 T cell-specific transcription factor 7-like 1, CREB cAMP-response element-binding protein, KLFs Krüppel-like factors
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of differentiating human mesenchymal stem cells 
(hMSCs) has led to the finding of time-specific AS pro-
files of this process, which reveals multiple AS types in 
genes of adipogenic regulators, including cassette exon, 
alternative to 3′ splice site, and alternative to 5′ splice 

site, and topological distribution patterns on potential 
key ASEs [47].

Actually, some of the previously unidentified alterna-
tively spliced variants in specific tissues or cells can be 
found in extensive analyses of related gene locus through 

Fig. 3  Examples of modulated alternative splicing events implicated in white, brown, and beige adipogenesis
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combined approaches of oligonucleotides, cloning for 
various isoforms, Sanger sequencing, as well as re-analy-
sis on published RNA-sequencing datasets or Genotype-
Tissue Expression supported information. Based on these 
methods, numerous findings exist of the inhibitory effects 
that splicing alterations in adipogenic genes have on the 
adipocyte differentiation process. A series of spliced 
variants in genes of peroxisome proliferator-activated 
receptor gamma (PPARG) [48–51], preadipocyte fac-
tor-1 (Pref-1) [52], and nuclear factor erythroid 2-related 
factor 1 (NRF1) [53] in adipogenic differentiation offer 
excellent examples for this case. Above all, for PPARγ, the 
necessary “master regulator” of adipogenesis, alternative 
RNA splicing often serves as a dominant-negative mech-
anism antagonizing PPARγ biological activity and func-
tion. Apart from four main canonical splice transcripts 
of PPARG (PPARG1, PPARG2, PPARG3, and PPARG4), 
the PPARG gene regions which encode for DNA-binding 
domain (DBD) and ligand-binding domain (LBD) con-
taining multiple cis-regulatory elements can generate 
several inhibitory truncated isoforms-PPARγ1(tr) [48], 
γORF4 [49, 50], and PPARγ∆5 [51]-by alternative pro-
moter usage and splicing processes (Fig. 4). Substantially, 
in adipose tissues, these alternative PPARG splice vari-
ants show differential ligand specificity and functional 
relevance during adipogenesis: γORF4, in lack of LBD, 
suppresses adipogenesis in a stage-specific expression 
manner [49, 50]; PPARγ∆5, another naturally occurring 
negative isoform, undergoes exon skipping event modu-
lated by serine and arginine rich splicing factor 1 (SRSF1) 
leading to a lack of the entire LBD and impairs the PPARγ 
transcriptional network in a negative feedback mecha-
nism during adipogenesis [51] (Fig.  3a). In addition, AS 
determines Pref-1 function by regulating the production 
of the biologically negative soluble isoform during adi-
pogenesis. The alternatively spliced transcripts of Pref-1 
could suppress adipogenesis in differentiating 3T3-L1 
cells either in a juxtacrine/paracrine or in an endocrine 
manner that Pref-1A and Pref-1B, producing two large 
soluble forms, can biologically activate anti-adipogenic 
signaling, whereas Pref-1C and Pref-1D, generating only 
smaller fragments lacking in-frame juxtamembrane, have 
no biological effectiveness in adipogenesis [52].

It is worth noting that the programmed AS altera-
tions in transcriptional corepressors can contribute to 
the conversion in the affinity of target gene panels, tran-
scriptional environment, and biological program during 
adipogenesis. Such mechanism has been implicated in 
the nuclear receptor co-repressor 1 (NCoR1)/silenc-
ing mediator of retinoid and thyroid hormone recep-
tor (SMRT) [54–56]. Beyond the influence of NCoR1/ 
SMRT on the adipogenic differentiation phenomenon 
detected in 3T3-L1 cells of NCoR1/SMRT pan-specific 

knockdown or site-specific mutagenesis in mice models 
[57, 58], AS pathway generates a set of correlated splice 
variants with disparate tissue distribution characteris-
tics and numbers and sequences of receptor interaction 
domains (RIDs) (associated with different PPARγ affinity 
in adipocytes) that serve to diversify their transcriptional 
and biological effects on adipogenic differentiation pro-
cess [55, 56]. One study overexpressed different NCoR 
splice variants in 3T3-L1 cells to introduce adipogenesis 
ex  vivo and revealed that NCoRω suppressed, whereas 
NCoRδ with fewer RIDs accelerated adipogenesis, and 
the decrease in their relative abundance could promote 
the adipogenic terminal differentiation [54] (Fig. 3a).

Additionally, the programmed splicing process of 
apoptotic-resistant factors is a determinate switch in adi-
pogenesis, allowing preadipocytes to differentiate into 
mature adipocytes of highly pro-survival characteristics 
[59]. Through the utilization of differentiating preadipo-
cytes in  vitro, it was identified that protein kinase C δ 
(PKCδ), Bclx, and caspase9 could be alternatively spliced 
to convert to their pro-survival variants, producing dra-
matic biological effects on adipogenic development [59]; 
the naturally occurring splice variants-protein kinase C 
δII (PKCδII) of pro-survival activity and protein kinase 
C δI (PKCδI) of pro-apoptosis effect-were expressed 
increasingly and decreasingly, respectively, to facilitate an 
anti-apoptosis phenotype in mature adipocytes through 
the Bcl2 pathway [60, 61].

Alternative splicing events associated with BAT adipogenesis 
and beige adipocyte development
During the adipocyte differentiation of brown and 
beige adipocytes, programmed splicing shifts also 
exert broad influences on these processes and energy 
expenditure signatures. Through performing transcrip-
tome analyses in embryonic BATs and postnatal BATs 
[62], discriminative splicing profiles have been identi-
fied, including several adipogenic regulators, such as 
PRDM16 [63] and muscleblind-like 1 (MBNL1) [64] 
(Fig.  3b). Regarding the specific splicing transition of 
PRDM16, the determinant transcriptional regulator 
in both brown and beige adipocyte development [65], 
a gradual alternatively spliced isoforms shift from an 
exon inclusion isoform (PRDM16+ex16-PRDM16L) to an 
exon exclusion one (PRDM16−ex16-PRDM16S) has been 
proved to contribute to a more prominent effect on the 
differentiation gene program and energy expenditure 
in the development of brown adipocytes [63]. Results 
from co-immunoprecipitation tests identified that the 
splicing factor RNA-binding motif protein 4a (RBM4a) 
enabled the regulated splicing switch determining the 
relative expression of the two PRDM16 transcripts, 
which could constitute a feed-forward circuit with the 
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RBM4a abundance [63]. Besides, RBM4a also partici-
pates in the regulated generation of a splicing mode 
change of MBNL1 (from MBNL1+ex5 isoform 7 to 
MBNL1−ex5 isoform 1) through an autoregulatory 
mechanism, bringing about a more robust simulation in 
beige cell-selective splicing program throughout BAT 
development and during the in vitro beige adipogenesis 
[64] (Fig. 3b).

However, the AS regulatory mechanism in brown and 
beige adipocyte development has not been comprehen-
sively investigated. Significant to our understanding is 
whether AS networks modulate brown and beige adipo-
genesis through undefined mechanisms and what bio-
logical roles they act during this process. Additionally, 
global transcriptome surveys identifying the spectrum 
of genes with differentially expressed ASEs at the exonic 

Fig. 4  Schematic illustration of canonical and alternative spliced transcripts of peroxisome proliferator activated receptor gamma (PPARG) gene. 
In the central part, the PPARG gene structure is depicted. Four main PPARG canonical splice transcripts-PPARG1, PPARG2, PPARG3, PPARG3, and 
PPARG4-and alternative splice variants-PPARγ1(tr), γ1ORF4, γ2ORF4, γ3ORF4, and PPARγ∆5-are shown in the upper and below part, respectively. The 
corresponding encoded protein isoforms with functional domains are sketched in the right panel with divergent distribution patterns. The orange 
columns represent exons; the grey lines represent introns; the blue columns represent untranslated regions (UTRs); the grey column in PPARγ2 
represents the 30 additional amino acids at N-terminus; the dark column in γORF4 represents the 21 amino acids at C terminus; the red rectangles 
represent stop codons; the purple rectangles represent premature termination codons (PTCs)
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resolution have been conducted in white adipogenesis, 
whereas much remains to be completed to character-
ize precise and extensive genome-wide analysis during 
brown and beige adipogenesis.

Splicing regulators involved in adipogenesis
Emerging evidence combined functional mechanistic 
studies in specific adipocytes, transgenic mice models, 
and high-throughput methods has extensively identified 
the physiological roles of distinct RNA splicing regulators 
in splicing networks for white-, brown-, and beige-adi-
pocyte differentiation and maturation process. Among 
them, are splicing factors-Src-associated substrate dur-
ing mitosis of 68 kDa (Sam68), serine and arginine rich 
splicing factor 10 (SRSF10), and RNA binding motif 4 
(RBM4), splicing actions of which function significantly 
during adipogenesis (Table 1). Moreover, multiple other 
types of molecules with various biological functions, 
such as fat mass and obesity-associated (FTO), have 
been studied and demonstrated to bring about functional 
consequences of AS in adipogenic regulators. Hence, 
changes in their target splicing networks often exert a 
vital influence on adipogenesis process.

Splicing regulators functioning in WAT adipogenesis
The functional AS outcomes of different splicing regu-
lators have been convincingly documented in WAT 

adipogenesis. Sam68, highly involved in cellular RNA 
processing events and signal transduction pathways [70, 
89], has been demonstrated in adipocyte development 
to increase the number of early adipocyte progenitors by 
controlling AS of the mechanistic target of mTOR signal-
ing [66, 68]. The Sam68 binding sites often localize near 
AS junctions within pre-mRNAs, so they often engage in 
regulating neighboring alternative exon usage and splice 
site selection as either splicing enhancers or silencers 
[69]. In adipocytes, Sam68 can recognize the 5′ splice 
site of mTOR intron5 through recruitment and interac-
tion with U1 snRNP and bind to intronic splice elements 
where an in-frame premature termination codon (PTC) 
exists, which helps to promote an efficient intron exclu-
sion [66, 70]; however, in Sam68 deficiency adipocytes, 
mTOR intron5 retention occurs, generating a short and 
unstable transcript degraded by nonsense-mediated 
decay (NMD), thus causing impaired insulin-stimulated 
S6 and Akt phosphorylation pathway [66] (Fig.  3a). 
Additionally, another independent study conducted 
cross-linking and immunoprecipitation and showed that 
Sam68 could also counteract the splicing effects of SRSF1 
in splicing regulation of ribosomal S6 kinase (Rps6kb1) 
gene during adipogenesis, resulting in a decrease in the 
abnormal inhibitory short isoform-Rps6kb-002 [71].

Moreover, another axis linking one splicing factor 
with specific ASEs and clear functional outcomes in 

Table 1  Major splicing regulators involved in adipogenesis processes of white, brown, and beige adipose tissues

Splicing regulators Phenotypes in transgenic animals Splicing targets Splicing effects References

Sam68 The Sam68-KO(knockout) mice: a 
lean phenotype with reduced 
body weight and adiposity; WAT 
browner; increased thermo-
genesis; reduced lipid stores in 
BAT; improved insulin sensitivity; 
abnormal neuronal processes; 
defective spermatogenesis and 
osteogenesis

mTOR;
Rps6kb1

Enhance WAT adipogenesis;
impair browning trans-differenti-

ation

[66–74]

FTO 1. The FTO-KO mice: increased post-
natal lethality; a lean phenotype; 
postnatal growth retardation; 
decreased adiposity; increased 
energy expenditure

2. The FTO-overexpression mice: 
obesity with an increase in fat 
mass; hyperphagia; marked glu-
cose intolerance

RUNX1T1 Enhance WAT adipogenesis [75–79]

SRSF10 The SRSF10-KO mice: multiple 
cardiac defects; severely impaired 
WAT development in embryos

LPIN1;
PGC-1α

Enhance WAT adipogenesis [80–82]

RBM4 The RBM4a-KO mice: impaired 
development of BAT, muscles, and 
pancreatic β-islets; hyperlipidemia

PRDM16; MBNL1
BAT splicing cascades: RBM4a-

SRSF3-MAP4K4; RBM4-MEF2C; 
RBM4-Nova1-SR-SF6; RBM4-SRPK1; 
RBM4-Acin1-SRSF3

Enhance BAT adipogenesis [62, 63, 83–88]
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adipocyte development has also been demonstrated. 
The RBP SRSF10 is an atypical SR protein with distin-
guished functions whose activity is positively or nega-
tively determined by cycles of phosphorylation and 
dephosphorylation-SRSF10 acts as a general splicing 
repressor by dephosphorylation [90], while functions 
as a sequence-specific splicing activator under phos-
phorylation conditions [91]. Besides, in controlling 
exon splicing, SRSF10 functions positively or negatively 
depending on the binding locations that the binding on 
cassette exon leads to exon inclusion, while the binding 
to downstream exon promotes exon skipping [92, 93]. 
For adipocyte biology, SRSF10 can directly repress exon 
inclusion in LPIN1, forming an adipogenic exon-skip-
ping isoform LPIN1α to promote initial adipocyte dif-
ferentiation [80] (Fig. 3a), and in PPARG coactivator 1α 
(PGC-1α), causing an NMD in the PGC-1α pre-mRNA 
to affect gluconeogenesis and glucose metabolism [81].

As mentioned above, the evidence lines that splicing 
machinery and epigenetic modification factors have 
close interactions can be identified in the adipogenic 
differentiation modulation process. FTO is the first 
identified gene providing the strongest genetic asso-
ciation with human non-syndromic obesity [75, 76]. 
In one study combining transcriptome analyses with 
m6A-seq, it has been revealed that FTO can mediate 
m6A demethylation mechanism extended in AS process 
of one adipogenic factor-runt-related transcription fac-
tor 1 (RUNX1T1) during adipogenesis [77, 78]. FTO 
antagonizes the RNA binding ability of another splicing 
factor-serine and arginine rich splicing factor 2 (SRSF2) 
and inhibits target exon inclusion through demethylat-
ing of m6A-RRACHs (R = G or A; H = A, C or U) near 
exonic splice sites which are spatially overlapped the 
ESE binding regions of SRSF2 [77] to produce more 
exon-skipped isoform RUNX1T1-S with pro-adipo-
genic activity and decrease negative constitutive iso-
form RUNX1T1-L, thus leading to an active effect on 
adipocyte differentiation [77] (Fig. 3a).

Of note, accumulating evidence has reported that 
other types of the molecule and signaling pathway can 
play roles in splicing decisions through interacting with 
or controlling the splicing activity of splicing machinery 
present in adipocytes, which are sufficient to modulate 
adipogenesis via the relative abundance regulation of adi-
pogenesis-specific isoforms, such as molecular scaffold 
protein 14-3-3 proteins [94, 95] and zinc finger protein 
638 (ZNF638) [96] in the recruitment and sequestra-
tion of different trans-acting splicing factors, Clk/STY 
(cdc2-Like Kinase 1) in proper phosphorylation of serine/
arginine-rich protein 40 (SRp40) [45, 97], and long non-
coding RNA NEAT1 associated with SRp40 phosphoryla-
tion [98].

Splicing factors involved in BAT adipogenesis and beige 
adipocyte development
The spectrum of splicing factors identified in brown adi-
pocyte differentiation process and intricate physiological 
functions of BAT mainly includes RBM4, serine and argi-
nine rich splicing factor 6 (SRSF6), serine and arginine 
rich splicing factor 3 (SRSF3), and serine and arginine 
rich splicing factor protein kinase 1 (SRPK1). Given that 
the physiological roles of splicing factors functioning in 
brown- and beige-adipocyte formation processes are rec-
ognized still at an early stage, further identification for 
the underlying mechanism is needed.

The splicing factor RBM4, firstly identified in tis-
sue-specific splicing network of muscles and pan-
creatic β-islets, can multifunctionally participate in 
post-transcriptional regulation and lies in the center 
hub of AS decisions in brown and beige fat development 
and functions (Table 1). The ablation of RBM4a in mice 
(RBM4a−/−) has been found to cause impaired develop-
ment of interscapular BAT and abnormal triglyceride 
clearance in serum [84]. Moreover, in RBM4-deficiency 
or-overexpression adipocytes where gene-splicing pro-
files are reprogrammed, the expression level of BAT 
development inhibitors (neuro-oncological ventral anti-
gen 1 (Nova1), polypyrimidine tract-binding protein 1 
(PTBP1), and 2 (PTBP2)) or adipogenic factors (insulin 
receptor (IR), PPARγ, Pref-1, fibroblast growth factor 
receptor 2 (FGFR2), PRDM16, and bone morphogenetic 
protein 7 (BMP7)) can be affected differently [84, 85], 
modulating brown and beige adipogenesis, mitochondrial 
activity, and energy expenditure process. In particular, 
RBM4 mostly interacts with intronic splicing regulatory 
elements and inhibits exon inclusion, functioning either 
as a splicing activator or an inhibitor in different genes 
[99]. Further, a set of RBM4-governed splicing cascades 
are indicated through deep RNA-sequencing during the 
differentiation of brown adipocytes, including RBM4-
PRDM16 network [63], RBM4-Nova1-SRSF6 pathway 
[62], RBM4a-SRSF3-mitogen-activated protein kinase 
kinase kinase kinase 4 (MAP4K4) pathway [83], RBM4-
myocyte enhancer factor 2c (MEF2C) [86], RBM4-SRPK1 
[87], and RBM4-apoptotic chromatin condensation 
inducer 1 (Acin1)-SRSF3 [88], generating different splice 
isoforms to function distinct roles in transcriptional reg-
ulation and form feedback circuits associated with RBM4 
abundance.

Alternative splicing machinery has correlations 
with obesity and metabolic disorders
Obesity and overweight, a severe growing health con-
cern worldwide, dramatically elevates human mortal-
ity risk factors along with different comorbidities, such 
as metabolic syndrome, type 2 diabetes, cardiovascular 
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disorders, dementia, and cancers [100]. As reviewed in 
detail below, emerging evidence constitutes a mecha-
nistic understanding that both alternative mRNA mis-
splicing patterns and aberrant expression or splicing 
efficiency of splicing factors, contributing to transcrip-
tome changes, have profound associations with human 
obesity and metabolic disorders, as illustrated in Fig. 5.

Aberrant splicing landscapes associated with obesity 
and metabolic diseases
First and foremost, accumulating evidence has revealed 
that a set of adipogenesis regulators exhibit abnormal 
splicing patterns in adipose tissues from obese patients 
compared with control subjects, suggesting a vital 
link of AS with adiposity and metabolic phenotypes-
usually the susceptibility to extreme body weight gain 
and serious metabolic illness [50, 51, 101]. One classi-
cal example is PPARγ, the master modulator in whole-
body crosstalk of metabolic organs, whose canonical 

transcripts and alternatively spliced negative isoforms 
exhibit remarkably different enrichment patterns in 
overweight or obese patients with diabetes: in sub-
cutaneous adipose tissue, the specific expression of 
PPARγΔ5, a naturally occurring negative PPARG iso-
form, can display a positive correlation with body mass 
index (BMI) in the patient’s population of these dis-
eases [51]; γORF4 with dominant-negative activity has 
also been found to be physiologically expressed in tis-
sues related to complications of metabolic syndrome 
in humans [50]. Another example involves apoptosis-
pathway genes, which can undergo crucial splicing 
switches to generate prosurvival splice variants (PKCδ, 
Bclx, and caspase9), promoting the shift to apoptosis-
resistant mature adipocytes; while a series of alterna-
tively spliced transcripts are abnormally overexpressed 
in obese patient-derived adipose tissues [59]. Moreover, 
other cohort studies revealed quantitative AS changes 
in the transcriptome in WAT where gene splicing 

Fig. 5  Schematic diagram of alternative splicing mechanism in adipogenesis and metabolic health
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profiles displayed abnormal features in the contexts of 
nutritional changes, obesity, and dysmetabolism [102], 
including the genes of Lamin A/C (LMNA) [103], can-
nabinoid type I receptor (CB1R) [104], and T cell-
specific transcription factor 7-like 2 (TCF7L2) [105]. 
Importantly, their splicing alterations in WAT suggest 
strong associations with the adipose tissue biology and 
related metabolic parameters of obesity and type 2 dia-
betes, such as insulin action, fatty acid metabolism, and 
systemic and local chronic inflammation. Besides, not 
limited to adipose tissues, the splicing patterns have 
also been found to be influenced by hormonal and 
nutritive events (dietary carbohydrates changes) as well 
as obese and metabolic states [106], for example, the IR 
gene in insulin target tissues [107]. Nevertheless, the 
underlying physiology relevance between these molec-
ular profiles and obesity remains unexplained, thus it 
will be of particular importance to further investigate 
and decipher the detailed mechanisms.

Significantly, several groups also identified that imbal-
ances of different splice isoforms could directly lead to 
the dysfunction of white- and brown-adipose tissues as 
well as the initial development of diabesity and meta-
bolic disturbances [107–109]. Studies used the mouse 
mutant engineered to express one particular splice vari-
ant of genes, for example, the PGC-1α gene and the syn-
aptosomal-associated protein of 25 kDa (SNAP-25) gene 
[108, 109], through knockout/knockin replacement, and 
revealed how these different splice variants functioned 
in adipose biology of WAT and BAT as well as energy 
and metabolism homeostasis under the HFD condition, 
and what effect they exerted on the susceptibility and 
predisposition to obesity and metabolic diseases. Fur-
ther, given the heterogeneity and complexity of these 
related disorders in humans, particularly noteworthy is 
that evaluating whether and how splicing profile changes 
have correlations with different obese and dysmetabolic 
features among patient’s population should be based on 
seriously comprehensive analysis with different factors, 
mainly involving the matched age, target tissues, other 
complications, and medical therapies.

Finally, it may also need to concern that obesity and 
related chronic metabolic inflammation link intimately 
to unfolded protein response (UPR) and interfere with 
endoplasmic reticulum (ER) homeostasis, where the 
non-conventional splicing process of the X-box–bind-
ing protein 1 (XBP1) mRNA mediated by the ER sensor-
inositol requiring enzyme 1α (IRE1α) is disrupted [110]. 
This defective IRE1α-mediated XBP1 splicing process has 
been proved in the liver in conditions of both genetic and 
diet-induced obesity; and these ER-remodeling-associ-
ated interactions are worth further examination in adipo-
cytes in the obesity setting.

Connection of splicing regulators in obesity and metabolic 
dysregulation
Representative works have demonstrated that splicing 
machinery components can be associated with the adi-
pogenesis process and further energy expenditure regula-
tion and body metabolic state. In fact, the conditions of 
dysregulated metabolic state or high-fat diet can bring 
about altered expression of genes encoding trans-acting 
splicing factors [102], or alterations in splicing activ-
ity [111], both contributing to widespread mis-spliced 
pre-mRNAs; and abnormal splicing factors-mediated 
AS program can also contribute to the development of 
metabolic disorders and diet-induced obesity. For exam-
ple, the obese and metabolic impact on the reduced 
expression of transformer 2β homolog (TRA2B/SFRS10) 
which belongs to the SR-like protein family of splicing 
factors was observed in liver and muscle tissues from 
obese patients; the SFRS10 down-regulation can alter the 
splicing pattern of LPIN1 to induce lipid accumulation, 
which therefore causes aberrant metabolic phenotypes 
and obesity [112]. In another example, the vital role of 
neuro-oncological ventral antigen (NOVA) splicing fac-
tors in the pathogenesis of obesity has been confirmed in 
the NOVA-deficient mice that NOVA-regulated splicing 
program participates in glycemia increase and thermo-
genesis suppression in adipocytes [102].

Apart from these expression changes associated with 
metabolic phenotypes, polymorphisms in the splic-
ing regulator genes detected by amounts of genome-
wide association studies in humans, such as FTO, could 
consistently exert a strong influence on body fat mass 
and the risk of developing diabesity and type 2 diabetes 
[113–115].

Splicing‑related SNPs contribute to obesity and metabolic 
disorders
Genetic association studies that detect the link of SNPs 
affecting splicing-related process with obesity and meta-
bolic disorders have made it possible to provide candi-
date diagnostic tools and potential targets for clinical 
intervention. Evidence from the sequencing-based 
approach and large-scale analysis in obese populations 
has highlighted that the SNPs connected with the aber-
rant splicing patterns in obesity-associated genes could 
represent possible biomarkers for extreme BMI suscepti-
bility [116]. Substantially, broad obesity-related mutation 
spectrums of synonymous and nonsynonymous SNPs 
are located near splice junctions and are prone to affect 
the cis-regulatory elements of exons with weak splice 
sites allowing the shift from constitutive exon patterns to 
alternative ones and thus give rise to multiple RNA iso-
forms [116]. Moreover, collective evidence has displayed 
the tight link between splicing related SNPs and human 
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body metabolic state, involving the genes of uncoupling 
protein-3 (UCP3) [117], glucose-6-phosphatase catalytic 
unit 2 (G6PC2) [118], insulin-like growth factor 2 (IGF2) 
[119], adenylate cyclase 3 (ADCY3) [120], and an intra-
genic variant of insulin gene (IVS1-6A/T (-23HphI ±)) 
[121]. For example, a novel genetic variation with a dis-
ruption in canonical splice-site acceptor of the IGF2 gene 
among the Mexican population has been identified to 
function as a protective factor to reduce the type 2 dia-
betes risk at ∼ 20% through repressing splicing between 
the exons 1 and 2 and reducing the expression of IGF2 
isoforms [119]. Additionally, one loss-of-function genetic 
variant of ADCY3 with a disruption of a splice acceptor 
site causing exon skip or intron retention was detected 
among the Greenlandic population and positively corre-
lated with increased adiposity and predisposition of type 
2 diabetes [120]. Besides, one genome-wide association 
study among European women has evaluated the physi-
ological relevance of the polymorphisms in the leptin 
receptor (LEPR) in human diabetes-related traits, which 
appear to modulate the expression level of plasma soluble 
leptin receptor-one alternative isoform of LEPR gene cor-
related inversely with BMI and diabetes risk factors [122].

Conclusions and future perspectives
Findings provide the mechanistic role of AS in multi-
ple facets of adipocyte development and function and 
the broad influences on metabolic health. A variety of 
research efforts have compiled the comprehensive cross-
talk between AS and the adipocyte differentiation pro-
cesses of different adipose tissues and whole-body energy 
and metabolic homeostasis. Substantially, profiling alter-
native splicing alterations in obesity and metabolic disor-
ders might provide possible biomarkers and designs for 
novel diagnostic strategies. Noteworthy, high-throughput 
RNA sequencing techniques and transcriptome bioin-
formatics analysis fully support the identification of the 
massive ASEs amounts and the regulatory role of splicing 
factors during adipogenesis and facilitate sufficient clar-
ity into how adipogenesis is modulated at different stages 
on a genome-wide scale.

Nevertheless, our understanding of the AS mechanism 
involved in brown and beige adipogenesis is still evolving. 
Further work on deciphering “splicing code” in brown 
and beige adipogenic differentiation to offer broader and 
more meticulous insights into the complex interplay of 
trans-splicing regulators with cis-acting elements is vital 
for an in-depth understanding of adipocytes physiology. 
Additionally, more investigations are required on the 
functional mechanism of specific splice variants from dif-
ferent sorts of adipose tissue in the pathogenesis of obe-
sity. Accordingly, fixing splicing dysregulation emerges as 
a promising therapeutic option and provides more viable 

strategies for future management for obesity and meta-
bolic disorders.
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