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REVIEW

Germline mutations of KIT 
in gastrointestinal stromal tumor (GIST) 
and mastocytosis
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Abstract 

Somatic mutations of KIT are frequently found in mastocytosis and gastrointestinal stromal tumor (GIST), while 
germline mutations of KIT are rare, and only found in few cases of familial GIST and mastocytosis. Although ligand-
independent activation is the common feature of KIT mutations, the phenotypes mediated by various germline KIT 
mutations are different. Germline KIT mutations affect different tissues such as interstitial cells of Cajal (ICC), mast cells 
or melanocytes, and thereby lead to GIST, mastocytosis, or abnormal pigmentation. In this review, we summarize ger-
mline KIT mutations in familial mastocytosis and GIST and discuss the possible cellular context dependent transform-
ing activity of KIT mutations.
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Background
Great progress has been made in the targeted therapy 
of cancer in recent years. Numerous targeted therapies 
have been approved for the treatment of various cancers. 
The number of new drugs targeting specific proteins or 
pathways is increasing rapidly. In many cancers, protein 
kinases are deregulated, and therefore, are the most often 
used therapeutic targets in the treatment of cancer. Gain-
of-function mutations, overexpression, genomic rear-
rangements and autocrine activation of kinases are the 
frequent causes of cell transformation in most malignan-
cies [1–3].

KIT is a receptor tyrosine kinase that is implicated in 
gastrointestinal stromal tumor (GIST), mastocytosis and 
core binding factor (CBF) acute myeloid leukemia (AML) 
[4]. Imatinib is a small molecule inhibitor that was origi-
nally developed to inhibit BCR-ABL fusion protein 
which later found to inhibit the activity of KIT [5]. Thus, 
imatinib was approved for the treatment of GIST [6], 
where it improved the treatment outcome dramatically. 

Due to the resistance of some primary or secondary KIT 
mutations to Imatinib, new inhibitors of KIT were devel-
oped. Recently, Sunitinib and Regorafenib were approved 
as second and third line treatment of GIST respectively 
[7, 8].

Mutations of KIT are the dominant genetic lesion 
in GIST and mastocytosis. Both somatic and germline 
mutations of KIT have been described in GIST, masto-
cytosis and other cancers [9–12]. Mutations of KIT were 
found in almost each domain of KIT while the distri-
bution of the mutations is not random. There are some 
hotspots of somatic mutations of KIT and the hotspots 
in GIST and mastocytosis are different with the reason 
unknown.

KIT is important for the development of intersti-
tial cells of Cajal (ICC), mast cells and melanocytes [13, 
14]. However, germline mutations of KIT do not neces-
sarily induce the transformation or overgrowth of all 
three types of cells and show different phenotypes in the 
patients, which might reflect the tissue-specific trans-
forming ability of KIT mutations and explain the dif-
ference in the hotspots of somatic KIT mutations in 
different malignancies. These mutations could be good 
models to study tissue-specific transforming mecha-
nism of KIT mutations and contribute to design effective 
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targeted therapy of malignancies carrying KIT muta-
tions. In this review, we summarize germline KIT muta-
tions in familial mastocytosis and GIST and discuss how 
different KIT mutations induce cell transformation in dif-
ferent tissues.

Signal transduction of wild‑type KIT
KIT was cloned in 1987 as the human homolog of its 
viral counterpart, v-kit. The KIT gene is localized to the 
human chromosome 4 and on mouse chromosome 5 
[15]. KIT is a member of type III receptor tyrosine kinase 
together with FLT3, PDGFR and CSF-1R. This family 
of kinases is characterized by an extracellular ligand-
binding domain consisting of five immunoglobulin-like 
regions, a transmembrane domain, a juxtamembrane 
domain and an intracellular kinase domain which is sepa-
rated by a short kinase insert. KIT plays important roles 
in melanogenesis, gametogenesis, and hematopoiesis [4]. 
The ligand for KIT, stem cell factor (SCF), is encoded by 
sl locus of the mouse and it was cloned in 1990 [16, 17].

Stimulation of KIT with its ligand, SCF, leads to the 
dimerization of receptors and activation of the intrin-
sic tyrosine kinase activity followed by phosphorylation 
of specific tyrosine residues in the intracellular domain. 
In KIT, several tyrosine residues including Tyr 568, Tyr 
570, Tyr 703, Tyr 721, Tyr 730, Tyr 823, Tyr 900, Tyr 936 
can be phosphorylated upon SCF stimulation [18–23]. 
Phosphorylated tyrosines, together with adjacent amino 
acid residues, form specific binding sites for downstream 
signaling molecules and activate specific downstream 
signaling pathways.

Phosphorylation of Tyr 568 plays a critical role in 
the activation of KIT and downstream signaling path-
ways. Phosphorylated Tyr 568 can activate Src family 
kinases [18, 24] and the Src family kinases in turn further 
enhance the activation of KIT [25]. Inhibition of Src fam-
ily kinases leads to attenuation of KIT activation, indicat-
ing that the activity of Src family kinases is necessary for 
the complete activation of KIT. In addition, Src family 
kinases can activate SHC and Ras-Raf-Mek-Erk signaling 
cascade that is important for KIT-mediated cell prolifera-
tion [18].

Another important KIT phosphorylation site is Tyr 
721, which acts as the docking site for the regulatory 
subunit p85 of the PI3 kinase [20]. Activation of PI3 
kinase and its downstream signaling pathways regulates 
the KIT-mediated cell survival and proliferation [26]. The 
Tyr 721 is not the only site involved in PI3 kinase acti-
vation by KIT. It has been demonstrated that Tyr 703 
and Tyr 936 are the binding sites for the adaptor protein 
Grb2, which in turn recruit PI3 kinase through Gab2 and 
activates downstream signaling cascades. Gab2 is also 

involved in activation of Ras-Raf-Mek-Erk signaling cas-
cade [27].

Activation of KIT is tightly controlled to avoid exces-
sive activation of downstream signaling pathways. One 
mechanism of negative regulation of KIT activity is Cbl-
mediated ubiquitination. Cbl is an E3 ubiquitin ligase 
which associates with the phospho-Tyr 568 and Tyr 936 
residues in KIT [28] and induces the receptor degrada-
tion and thereby attenuates the signal transduction of 
the receptor. In addition, Grb2 is also involved in the 
recruitment of Cbl to the receptor [29]. Loss of Cbl func-
tion might prolong activation of KIT and its downstream 
signaling pathways.

Phosphorylation of other KIT tyrosine residues acti-
vates specific downstream signaling pathways and con-
tributes to KIT-mediated cell response as well. Tyr 
570 enhances the binding of Src family kinases to KIT 
although Tyr 570 does not bind to Src family kinases 
directly. Tyr 730 and Tyr 900 are docking sites for PLC-
gamma and Crk respectively [22, 23] that can further 
activate their downstream signaling pathways. The tyros-
ine phosphorylation of wild-type KIT and activation of 
downstream signaling pathways are summarized in Fig. 1.

Signal transduction of KIT mutants
Somatic and germline mutations of KIT have been found 
in various malignancies which are mainly characterized 
by ligand-independent activation. Ligand-independ-
ent constitutive activation is considered as a cause of 
cell transformation induced by KIT mutants. However, 
recent studies suggest that KIT mutants gain extra activ-
ity in addition to the constitutive activation [30], and the 
activation mechanism, as well as downstream signaling 
pathways, are different compared to that of wild-type 
KIT [31–34].

The D816V mutation is the most often occurred and 
widely studied oncogenic KIT mutation. In addition to 
the ligand-independent activation, this mutation gains 
extra activity and it has different signaling pathways from 
that of wild-type KIT. For example, while the wild-type 
KIT activation and downstream signaling are partially 
dependent on Src family kinases, KIT/D816V gains Src-
like kinase activity and it circumvents a requirement of 
Src family kinases in its signaling [30]. Similar to KIT/
D816V, the exon 11 mutation V560D of KIT can be fully 
activated without Src family kinases although it does not 
have Src-like kinase activity [34]. These studies strongly 
suggest that oncogenic KIT mutations gain extra activity 
that wild-type receptor does not hold. These mutations 
can not only induce ligand-independent activation of the 
receptor but also might have different downstream sign-
aling pathways compared with wild-type KIT. Elucidation 
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of the activation mechanism and downstream signaling 
pathways of KIT mutants will contribute to drug design 
and targeted therapy of malignancies carrying KIT 
mutants.

PI3 kinase is an important downstream signaling mol-
ecule of KIT. It plays an important role in wild-type KIT-
mediated cell proliferation [26], migration [35], and KIT/
D816V mediated cell transformation [36]. Further study 
of PI3 kinase in the signal transduction of KIT mutants 
indicates that PI3 kinase not only activates Akt and 
related downstream signaling pathways, but also it plays 
a central role in the ligand-independent activation of KIT 
mutants. Blockage of the direct binding of PI3 kinase to 
KIT dramatically inhibits the ligand-independent activa-
tion of KIT/D816V and abolishes the transforming abil-
ity of KIT/D816V [32]. More strikingly, blockage of the 

direct binding of PI3 kinase to KIT completely blocks the 
ligand-independent activation of KIT/V560D [34], which 
further strengthens the key role of PI3 kinase in the 
ligand-independent activation of KIT mutants. Further-
more, the activity of PI3 kinase in the ligand-independ-
ent activation of KIT mutants does not rely on the lipid 
kinase activity of PI3 kinase [32, 34]. These data indicate 
that PI3 kinase can be an alternative drug target in malig-
nancies induced by KIT mutants.

In addition to the different roles of Src family kinases 
and PI3 kinases in the activation of wild-type KIT and 
KIT mutants, the unique downstream signaling path-
ways of KIT mutants were studied. It has been shown 
that KIT/D816V, but not wild-type KIT, can induce 
tyrosine phosphorylation of p110delta and SLAP, and 
the phosphorylation of the two molecules contribute to 
KIT/D816V mediated cell transformation [32, 33]. The 
knowledge about the activation and signal transduction 
of KIT mutants is still very limited so far; more studies 
are needed to further understand the difference in the 
activation and downstream signaling pathways between 
wild-type KIT and KIT mutants.

Somatic mutations of KIT
Mastocytosis is characterized by abnormal proliferation 
and accumulation of mast cells in tissues. It is divided 
into systemic mastocytosis and cutaneous mastocyto-
sis according to the infiltrated tissues. Mutations of KIT 
account for around 80  % of mastocytosis [37–39], and 
can be found in almost each region of KIT but are not 
randomly distributed. Exon 17 mutation, D816V of KIT 
is the most often occurred KIT mutation in mastocyto-
sis [37]. In addition to D816V mutation, less common 
oncogenic mutations including D816F, D816H, D816Y, 
D820G in exon 17 [40–43], exon 10 and exon 11 muta-
tions, F522C and V559I respectively are also identified 
in mastocytosis [44, 45]. In CBF AML, within many KIT 
mutations, D816V is the dominant mutation [46].

GIST is considered originate from ICC in the diges-
tive tract. The average diagnostic age is the mid 60s [47]. 
KIT mutations are also the most common mutations in 
GIST similar as that in mastocytosis. Unlike mastocyto-
sis in which exon 17 mutation D816V is the dominant 
KIT mutation, exon 11 mutation in KIT is most com-
mon in GIST, and exon 9 and 13 mutations are also often 
seen in GIST but to a less extent [48, 49]. Exon 17 muta-
tion of KIT is mainly found as a secondary mutation in 
drug-resistant GIST after the failure of targeted therapy 
[50–52].

The reason for the difference in hotspots of KIT muta-
tions between mastocytosis and GIST remains unknown, 
the study of KIT mutations in different host cells might 
give some clues. In a previous study, it was shown that 
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Fig. 1 Schematic diagram of the tyrosine phosphorylation sites in 
wild-type c-Kit and their interaction molecules. KIT is a transmem-
brane receptor tyrosine kinase with an extracellular ligand-binding 
domain consisting of five immunoglobulin-like regions, a transmem-
brane domain, a juxtamembrane domain and an intracellular kinase 
domain which is separated by a short kinase insert. Upon binding of 
its ligand stem cell factor, some tyrosine sites as indicated in the intra-
cellular domain of KIT are phosphorylated, leading to the activation of 
downstream signaling pathways
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the V560D mutation of KIT cannot support the survival 
of hematopoietic cells in the absence of the ligand, while 
expression of KIT/D816V in the same cell line is enough 
to support the cell survival in the absence of the ligand 
[34]. It is worth to mention that the V560D mutation is 
common in GIST and the D816V mutation happens fre-
quently in mastocytosis, a hematological malignancy [32, 
34]. It is possible that hematopoietic cells are not the right 
host cells for the transforming activity of KIT/V560D. In 
contrast to its high transforming activity in hematopoi-
etic cells, expression of KIT/D816V in fibroblast cells dis-
play weak oncogenic potential [53] and so far no D816V 
mutation has been reported in GIST. Therefore, it is most 
likely that oncogenic potential of different KIT mutants 
profoundly dependent on host cell type or cancer type.

Germline mutations of KIT
In contrast to somatic mutations, germline mutations of 
KIT were only found in few cases of familial mastocyto-
sis and GIST, suggesting the transforming activity of ger-
mline mutations of KIT is limited to mast cells and ICC. 
So far, only 37 reports described 21 well-sequenced ger-
mline mutations in KIT (Table 1; Fig. 2).

Germline mutations of KIT in mastocytosis
Seven different germline KIT mutations in familial 
mastocytosis have been reported so far. In contrast to 
somatic KIT mutations in mastocytosis that were mainly 
found in exon 17, germline KIT mutations are located in 
exon 8, 9, 10, 13 and 17.

KIT is expressed in hematopoietic stem cells and pro-
genitor cells and it plays important roles in the regula-
tion of hematopoiesis. Differentiated hematopoietic cells 
lose expression of KIT with the exception of mast cells 
[89]. Interestingly, mast cells are the only hematopoietic 
cells that can be transformed by germline mutations of 
KIT. There are no any reports about deficiency in other 
hematopoietic cells in patients that carry germline muta-
tions of KIT (Table  1), indicating that the transforming 
ability of germline mutations of KIT in hematopoietic 
system is limited to mast cells but not all KIT-expressing 
hematopoietic stem cells and progenitor cells. Sporadic 
mastocytosis associated leukemia has been reported [90], 
which indicate that somatic D816V mutation of KIT can 
transform other hematopoietic cells in addition to mast 
cells. Compared with D816V mutation, the germline 
mutations of KIT in familial mastocytosis are weak muta-
tions in the hematopoietic system.

Gene mutations in sporadic mastocytosis are well 
studied, and KIT mutations are the major mutations of 
mastocytosis [91], however, the downstream signaling 
pathways of KIT mutants mediating transformation of 
mast cells remains unknown. Identification of the key 

signaling pathway in the transformation of mast cells will 
provide us novel drug targets and will contribute in devel-
oping of targeted therapy of mastocytosis. As we can see 
in Table 1, some germline KIT mutations, such as S451C, 
A533D, M541L, R634W and N822I, can induce only 
mastocytosis but not any other symptom that is related 
with a KIT mutation such as GIST, suggesting that these 
mutations can activate the necessary signaling pathways 
for mast-cell transformation. Study of these germline KIT 
mutation might elucidate the necessary signaling path-
way that KIT mutations transform mast cells.

Germline mutations of KIT in GIST
The gastrointestinal tract is the most affected tissue in 
patients carrying germline KIT mutation, as indicated in 
Table 1, totally 15 different germline KIT mutations have 
been reported in GIST. Similar to somatic mutations of 
KIT in GIST, germline KIT mutations in exon 11 are the 
most common [49]. Germline KIT mutations of Val 559 
and Lys 642 are hotspots in familial GIST (Fig. 2). Both 
mutations were also found as somatic mutations in spo-
radic GIST [92, 93].

Compared with mastocytosis, targeted therapy was well 
developed against KIT mutations in GIST. Imatinib, Suni-
tinib and Regorafenib are used as first, second and third 
line treatment of GIST, they have dramatically improved 
the treatment outcome [94]. However, some primary 
mutations and secondary mutations of KIT are resistant 
to the three approved KIT inhibitors; it is necessary to 
further study the activation mechanism and downstream 
signaling pathways of KIT mutants in GIST in order to 
improve the treatment. Some germline mutations of KIT, 
such as Y553C, W557R, D579del and K642E, only induce 
GIST but not mastocytosis (Table  1), the study of these 
KIT mutants might elucidate the specific transformation 
mechanism of KIT mutations in ICC.

Germline mutations of KIT in melanocyte
Melanocytes are another type of cells that are depend-
ent on KIT for their lineage commitment, migration, and 
survival [95, 96]. Mutations in KIT or its ligand SCF lead 
to a defect in pigmentation [97]. Although BRAF muta-
tion is the dominant mutation in melanoma, mutations 
in KIT gene have also been reported [98].

Only one germline mutation of KIT, V559A, has been 
described in melanoma so far [66], other patients in the 
same family carrying the same germline mutation of KIT 
did not develop melanoma. It is difficult to conclude that 
germline KIT mutation can induce melanoma based on 
the only observation. However, hyperpigmentation was 
reported in 10 cases of familial mastocytosis or GIST, 
suggesting that germline mutations of KIT can at least 
enhance the pigmentation (Table 1).
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The same germline mutation of KIT induces 
different diseases
Germline mutations of KIT induce either GIST or mas-
tocytosis except that D419del can induce both [54], 
suggesting that these mutations might have different acti-
vation mechanism and downstream signaling pathways 

and that their transforming ability might be cell type 
dependent or cellular context dependent.

Asn 822 in exon 17 can only induce GIST but not 
mastocytosis when it is mutated to Tyr [87] as germline 
mutation, while it can only induce mastocytosis (urti-
caria pigmentosa) but not GIST when it is mutated into 

Table 1 List of germline KIT mutations in familial GIST and mastocytosis

Exon Mutation GIST Mastocytosis Pigmentation References

8 D419del Yes Yes Normal Hartmann et al. [54]

9 S451C No Yes Hyperpigmentation Wang et al. [55]

9 K509I No Yes Normal Zhang et al. [56]

9 K509I Yes Yes Normal Speight et al. [57]

9 K509I No Yes Normal de Melo Campos et al. [58]

9 K509I No Yes Normal Chan et al. [59]

10 A533D No Yes Normal Tang et al. [12]

10 M541L No Yes Normal Foster et al. [60]

11 Y553C Yes No Normal Nakai et al. [61]

11 W557R Yes No Some patients have hyperpigmentation Robson et al. [62]

11 W557R Yes No Normal Hirota et al. [63]

11 V559A Yes No Hyperpigmentation Maeyama et al. [11]

11 V559A Yes One patient has urticaria pigmen-
tosa

Hyperpigmented spots Beghini et al. [64]

11 V559A Yes No Hyperpigmentation Kuroda et al. [65]

11 V559A Yes One patient has urticaria pigmen-
tosa

Lentigines, malignant melanoma Li et al. [66]

11 V559A Yes No Normal Kim et al. [67]

11 V559-560del Yes No Hyperpigmentation Nishida et al. [68]

11 V560del Yes No Normal Bamba et al. [69]

11 V560G Yes No Normal Kang et al. [70]

11 Q575_P577delinsH Yes No Normal Wozniak et al. [71]

11 L576P Yes No Hyperpigmentation Neuhann et al. [72]

11 L576_P577insGln-
Leu

Yes No Hyperpigmentation Carballo et al. [73]

11 D579del Yes No Normal Jones et al. [74]

11 D579del Yes No Normal Tarn et al. [75]

11 D579del Yes No Normal Lasota et al. [76]

11 D579del Yes No One patient has Hyperpigmentation Kleinbaum et al. [77]

13 R634 W No Yes Normal Pollard et al. [78]

13 K642T Yes No Normal Yamanoi et al. [79]

13 K642E Yes No One patient has nevi, lentigine Bachet et al. [80]

13 K642E Yes No Normal Isozaki et al. [81]

13 K642E Yes No Normal Graham et al. [82]

13 K642E Yes No Some patients have hyperpigmentation; 
some patients have paradoxical cutaneous 
depigmentation

Vilain et al. [83]

17 D820Y Yes No Normal Hirota et al. [84]

17 D820Y Yes No Normal Veiga et al. [85]

17 D820Y Yes No Normal O’Riain et al. [86]

17 N822Y Yes No Normal Thalheimer et al. [87]

17 N822I No Yes Normal Wasag et al. [88]
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Ile [88]. It is interesting that one amino acid residue 
mutated into different amino acids leads to different phe-
notypes in the patients, which indicates possible different 
activation and/or downstream signaling pathways of the 
two different mutations in one site.

It is worth to note that some patients carrying the 
same germline KIT mutation, such as V559A, have dif-
ferent phenotypes. All family members carrying germline 
V559A mutation developed GIST and hyperpigmenta-
tion, meaning that V559A mutation of KIT is an onco-
genic mutation in GIST and it can enhance pigmentation. 
Besides GIST, some patients also developed other symp-
toms such as urticaria pigmentosa [64, 66], and one 
patient even developed malignant melanoma and angi-
oleiomyoma [66]. But these symptoms are not common 
among all the patients, meaning that V559A mutation of 
KIT cannot induce these symptoms by itself. It is possi-
ble that the mutation makes the patients sensitive to KIT 
mutation related other symptoms and additional factors 
are needed to cooperate with V559A mutation of KIT in 
the onset of other symptoms.

Same as V559A mutation, all patients carrying ger-
mline K642E mutation of KIT developed GIST, but they 
have opposite phenotypes concerning pigmentation. 
Some patients have nevi and lentigine [80], some patients 
have no abnormal pigmentation [81, 82] and other 
patients have paradoxical cutaneous depigmentation 
[83]. These different phenotypes in pigmentation sug-
gest that K642E mutation of KIT might enhance, inhibit 
or have no effect on melanocyte depends on the situa-
tion. Maybe the same as V559A mutation, the phenotype 
might depend on other factors as well. It is interesting 
to identify the factor that can decide the outcome of the 
mutation in pigmentation. Identification of these factors 
will give clues about the oncogenesis of melanoma, and 
contribute to the treatment of melanoma.

Both V559A and K642E mutations of KIT were also 
identified as somatic mutations in melanoma [99, 100]. 
Since the patients that carry germline V559A and K642E 
mutations of KIT do not necessarily develop melanoma 
although some of them have hyperpigmentation, it can 
be concluded that these two mutations are not driver 
mutations in melanoma.

Germline K509I mutation of KIT was reported in few 
cases of familial mastocytosis. The patients carrying ger-
mline KIT/K509I have normal pigmentation, suggesting 
that the mutation probably behave similarly as wild-type 
KIT in melanocytes and it has on transforming activity 
in melanocytes. GIST is only reported in one patient but 
not all patients are carrying germline K509I mutation of 
KIT, meaning that K509I mutation of KIT is not an onco-
genic mutation in GIST.

Knockin mice carrying germline mutations of KIT
Mice are widely used animal models in life sciences. 
Mutations of KIT were introduced into the murine 
genome to study their transforming potentials. Germline 
D818Y mutation of murine KIT (identical to D820Y 
of human KIT) was made in mice. Mice carrying both 
homozygous and heterozygous D818Y mutation of KIT 
developed GIST [101], they recapitulated the phenotype 
showed by patients carrying germline D820Y mutation 
of KIT. No disorder in mast cells and pigmentation was 
reported in the knockin mice; that is in line with the phe-
notype of the patients carrying germline D820Y mutation 
of human KIT.

Deletion of V558 in KIT was also generated in murine 
genome. Mice carrying heterozygous V558del muta-
tion of KIT developed GIST [102]. In addition, these 
mice also had increased the amount of mast cells in tis-
sues although they did not develop mastocytosis. Which 
means that this mutation can enhance the proliferation 
of mast cells although it cannot transform mast cells, the 
transforming activity of V558del mutation of KIT is lim-
ited in ICC.

Similar as above two mutations, knockin mice har-
boring a K641E mutation of KIT (identical to K642E 
mutation of human KIT) also developed GIST [103], 
indicating that K642E mutation of KIT is a driver muta-
tion in GIST. Interestingly, mice carrying a homozygous 
K642E mutation of KIT showed loss-of-function pheno-
types in pigmentation, hematopoiesis and gametogen-
esis. These mice had white fur, very few mast cells and 
they were infertile. The loss-of-function phenotypes 
strongly suggest that K624E mutation of KIT is a loss-of-
function mutation in melanocytes, hematopoietic cells 
and germ cells. It is interesting that one mutation can act 
as both gain-of-function mutation and loss-of-function 
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mutation. The mechanism behind that might reflect the 
tissue-specific activation mechanism of KIT mutations 
and further explain the difference in hotspots of KIT 
mutations between GIST and mastocytosis. The germline 
mutations of KIT carried by the patients is usually het-
erozygous, maybe one copy of wild-type KIT is enough 
to support normal pigmentation, hematopoiesis and 
gametogenesis as showed by mice carrying a heterozy-
gous K641E mutation of KIT. From the different pheno-
types showed by knockin mice carrying heterozygous 
and homozygous K641E mutation of KIT, we can know 
that patients carrying germline mutations of KIT cannot 
always precisely reflect the function of KIT mutations 
since the mutations carried by these patients are usually 
heterozygous. Homozygous knockin mice are sometimes 
necessary to confirm the role of KIT mutations.

Conclusions
The different phenotypes mediated by various ger-
mline mutations of KIT might reflect the cellular con-
text dependent transforming ability of kit mutations 
and explain the difference in hotspots of KIT mutations 
between GIST and mastocytosis. Germline mutations of 
KIT can give the information about the necessary sign-
aling pathways in the transformation of a certain type of 
cells. Study on the activation and downstream signaling 
pathways of germline KIT mutations will elucidate the 
tissue-specific transformation mechanism of KIT muta-
tions, and which will further contribute to the develop-
ing of targeted therapy of malignancies that carry KIT 
mutations.
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