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REVIEW

The biological role of actinin-4 (ACTN4) 
in malignant phenotypes of cancer
Kazufumi Honda1,2*

Abstract 

Invasion and metastasis are malignant phenotypes in cancer that lead to patient death. Cell motility is involved in 
these processes. In 1998, we identified overexpression of the actin-bundling protein actinin-4 in several types of can-
cer. Protein expression of actinin-4 is closely associated with the invasive phenotypes of cancers. Actinin-4 is predomi-
nantly expressed in the cellular protrusions that stimulate the invasive phenotype in cancer cells and is essential for 
formation of cellular protrusions such as filopodia and lamellipodia. ACTN4 (gene name encoding actinin-4 protein) is 
located on human chromosome 19q. ACTN4 amplification is frequently observed in patients with carcinomas of the 
pancreas, ovary, lung, and salivary gland, and patients with ACTN4 amplifications have worse outcomes than patients 
without amplification. In addition, nuclear distribution of actinin-4 is frequently observed in small cell lung, breast, 
and ovarian cancer. Actinin-4, when expressed in cancer cell nuclei, functions as a transcriptional co-activator. In this 
review, we summarize recent developments regarding the biological roles of actinin-4 in cancer invasion.
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Background
Despite successful complete resection at the primary 
cancer site, poor outcomes are occasionally observed 
in patients due to failure to control distant metastasis. 
Controlling metastasis is expected to improve the sur-
vival rate of patients with cancer [1, 2]. The mechanisms 
of cancer metastasis, which occurs in a multistep pro-
cess, have been investigated to identify new therapeutic 
strategies for patients with cancer. During formation of 
metastatic lesions, carcinoma cells destroy the basement 
membrane, invade the surrounding extracellular matrix, 
intravasate through the endothelium into the circulation, 
extravasate again though the capillary vessels, and finally 
establish secondary tumors at distant sites [1, 3, 4]. The 
dynamic assembly of the actin cytoskeleton is important 
in this multistep process of forming metastatic lesions. In 
particular, the actin cytoskeleton plays important roles in 
the formation of cellular protrusions known as filopodia, 
lamellipodia, and invadopodia [5–10].

Alpha-actinin is an actin cross-linking protein that 
belongs to the spectrin superfamily. Four isoforms of 
alpha-actinin have been identified: alpha-actinin-1 (gene 
name; ACTN1) [11], actinin-2 (ACTN2) [12], actinin-3 
(ACTN3) [12], and actinin-4 (ACTN4) [13]. These iso-
forms are classified into two groups: muscle (ACTN2 
and ACTN3) and non-muscle isoforms (ACTN1 and 
ACTN4) [14]. Muscle-type isoforms of actinins are only 
expressed in skeletal and smooth muscle, where they 
mediate actin filament bundling and interactions with 
the Z-disk. On the other hand, non-muscle type isoforms 
are only expressed in non-muscle cells, where they also 
mediate actin filament bundling and interact with cell 
membranes. Non-muscle types in particular are associ-
ated with cell adhesion and cell migration. We originally 
identified ACTN4 as a metastasis-related gene in cancer 
in 1998 [13] and have investigated the biological mech-
anisms and clinical implications of actinin-4 in cancer 
metastasis.

In this review, I mainly describe the involvement of 
actinin-4 in cancer metastasis and review recent stud-
ies of the biological function of actinin-4 in cancer and 
human diseases.
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Isolation of ACTN4, a metastasis‑related gene
We generated a mouse monoclonal antibody that 
strongly reacts to the highly invasive phenotype of breast 
carcinoma, and we identified the full-length cDNA for 
the protein that was recognized by this antibody. This 
cDNA encodes a fourth novel isoform of alpha-actinin 
and was named actinin-4. Human actinin-4 is composed 
of 911 amino acids, and the amino acid homology with 
actinin-1 is 86% [13]. Alpha-actinin family members 
form an anti-parallel dimer with an actin-binding domain 
(ABD), which is composed of two calponin homology 
(CH) domains at the N-terminus of each monomer. Adja-
cent to the ABD, four spectrin repeats are followed by a 
C-terminal calmodulin (CaM)-like domain consisting of 
two EF-hand repeats (Fig. 1a) [14]. This molecular archi-
tecture results in the formation of a rod-shaped molecule 

with ABD and CaM domains at both ends, allowing 
cross-linking of bundles of actin filaments (Fig.  1b). 
Moreover, non-muscle alpha-actinins interact with actin 
filaments to connect with the plasma membrane through 
beta 1–3 integrins, vinculin, and alpha-catenin (Fig.  1c) 
[14–16].

Immunohistochemical analysis with the anti-actinin-
4-specific antibody revealed significant overexpression 
of actinin-4 in histological subtypes of breast cancer 
with high invasive ability. Patients with overexpression of 
actinin-4 in invasive ductal adenocarcinoma of the breast 
show worse prognosis for overall survival than patients 
without overexpression. Immunocytochemistry follow-
ing the wound healing assay to evaluate the invasiveness 
of cancer cells revealed that actinin-4 predominantly 
accumulates at artificial invasive fronts [13].
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Fig. 1 Schematic of the domain structure of alpha-actinins (a). Alpha-actinins are composed of an actin-binding domain (ABD), four spectrin 
repeats (SRs), and a calmodulin (CaM)-like domain. ABDs are composed of two calponin homology (CHs) domains (CH1 and CH2). CaM-like domains 
are composed of two EF-hand motifs. Schematic of actin bundling with alpha-actinins (b). Actinins form an anti-parallel dimer, and homodimers 
of actinins bundle actin fibers by interacting with the ABD. Schematic of interactions between actin fibers and cell membranes (c). Actin fibers 
bundled with actinins directly or indirectly interact with the cell membrane through integrins.
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The correlation between protein overexpression 
of actinin‑4 and metastatic ability of cancer cells
Cancer cells, which are at the invasive front of cancer 
tissues, show an increased ability to migrate and metas-
tasize, and show loss of epithelial integrity and speciali-
zation, a phenotype known as epithelial to mesenchymal 
transition (EMT) [10, 17]. Cells at the invasive fronts 
of colorectal cancer show reduced expression of E-cad-
herin, lose their cell–cell adhesions, and aggressively 
invade the stroma [18–21]. In colorectal cancer, overex-
pression of actinin-4 and EMT are observed in cells at 
the invasive front. We generated colorectal cancer cells 
(DLD1-TetOff-ACTN4) that express N-terminal HA-
tagged actinin-4 under control of the tetracycline regula-
tory system and confirmed the distribution of exogenous 
actinin-4 with immunocytochemistry. When exogenous 
actinin-4 was overexpressed in DLD1-TetOff-ACTN4 
cells, filopodia and lamellipodia, which are involved in 
cell migration, were predominantly observed on the cell 
surface compared with before overexpression. DLD1-
TetOff-ACTN4 cells are highly motile in a cell motility 
assay, and animal experiments to confirm the metastatic 
ability revealed a significant increase in lymph node 
metastases compared with control cells [22]. On the 
other hand, an siRNA-mediated decreased in actinin-4 
protein in a colon cancer cell line (SW480) reduces the 
cellular protrusions that are associated with cancer inva-
sion [23].

Similar phenomena are observed in pancreatic cancer. 
Overexpression of actinin-4 is observed in invasive ductal 
adenocarcinoma of the pancreas, and such patients have 
a worse prognosis for overall survival than patients with 
weak actinin-4 expression [24]. In addition, actinin-4 is 
mainly observed at the invadepodia of cells from a pan-
creatic cancer cell line [25]. When actinin-4 is reduced 
in the pancreatic cancer cell line, BxPC3-KD-ACTN4, 
with ACTN4 siRNA, the invasive ability in the invasion 
assay is decreased [23]. Transplantation of pancreatic 
cancer cells with siRNA-mediated reduction of ACTN4 
expression into the pancreas of mice revealed no destruc-
tive invasion into the pancreas compared with control 
cells. Patients with ovarian cancer with overexpression 
of actinin-4 show similar results, including a worse out-
come than patients without overexpression [26].

Interestingly, Angrwal et  al. recently showed that 
actinin-4 interacts with murine double minute 2 homolog 
(MDM2) binding protein (MTBP) [27, 28]. MDM2 is a 
major negative regulator of the tumor suppressor, p53, 
but also has p53-independent roles in tumorigenesis [29]. 
Iwakuma et  al. reported that MTBP suppresses tumor 
metastasis and revealed an endogenous protein–pro-
tein interaction between actinin-4 and MTBP [28]. They 

showed that constitutive overexpression of actinin-4 in 
two different osteosarcoma cell lines, SaO2-LM7 (p53 
null) and U2OS (p53 wild-type), increases the migration 
potential in both cell lines as expected. However, con-
comitant overexpression of MTBP significantly decreases 
the potential for cell migration that is mediated by over-
expression of actinin-4 in both cell lines [27, 28]. Thus, 
MTBP inhibits cell migration that is mediated by overex-
pression of actinin-4 independent of p53.

In addition, actinin-4 is overexpressed in colorectal 
cancer [22, 23], pancreatic cancer [24, 25], ovarian can-
cer [26], osteosarcoma [27, 28], lung cancer [30–33], oral 
squamous cell carcinoma [34], salivary gland carcinoma 
[35], bladder cancer, breast cancer [36, 37], and esopha-
geal cancer [38]. Reports describing overexpression of 
actinin-4 in association with metastasis and malignant 
phenotypes in cancers are summarized in Table  1. The 
biological function and binding partners of actinin-4 that 
are associated with cell invasion are shown in Fig. 2.

Amplification of ACTN4 in cancer and clinical 
utility as a biomarker for decisions regarding the 
therapeutic strategy
Although overexpression of actinin-4 protein has been 
reported in several types of cancers, the cause of over-
expression is not clearly understood. If overexpression is 
due to a genetic alteration in ACTN4, an oncogene may 
be actively associated with cancer invasion and metas-
tasis. ACTN4 is located on chromosome 19q13, and 
amplification of the 19q13.1 locus has been reported 
frequently in several cancers including pancreatic and 
ovarian cancers [39–47]. We used specific fluorescence 
in  situ hybridization (FISH) of ACTN4 to investigate 
ACTN4 amplifications in patients with pancreatic cancer 
[24]. ACTN4 amplifications occurred in 38% of patients 
with invasive ductal adenocarcinoma of the pancreas 
with protein overexpression of actinin-4 [24]. Patients 
with ovarian cancer and ACTN4 amplification have been 
observed, and patients with stage III and IV disease with 
gene amplification show significantly worse overall sur-
vival than patients without gene amplification [48]. The 
status of gene amplification may more accurately predict 
the outcome of patients with stage III and IV ovarian 
cancer than immunohistochemical analysis with the anti-
actinin-4 antibody. In addition, positive statistical signifi-
cance between ACTN4 amplification and the efficacy of 
post-operative chemotherapy was seen in patients with 
stage III and IV ovarian cancer [48, 49].

The clinical benefits of ACTN4 amplification as a 
prognostic factor are also observed in stage I adenocar-
cinoma of the lung and salivary gland carcinoma, and 
ACTN4 amplification is a stricter prognostic biomarker 
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than immunohistochemistry for overall survival in these 
patients.

Although the clinical benefit of adjuvant chemotherapy 
in patients with non-small cell lung cancer (NSCLC) who 
have undergone complete surgical resection has been 
observed in stage II–IIIA in some prospective clinical tri-
als, the benefit has not been seen in stage I NSCLC [50–
52]. If patients with stage I adenocarcinoma of the lung 
with potential metastasis can be identified with ACTN4 
amplification of surgical specimens, adjuvant chemother-
apy for such patients may have a clinical benefit in terms 
of patient selection.

Compared to prognostic biomarkers, predictive bio-
markers to select a specific treatment strategy by evalu-
ating the metastasis ability are urgently needed. For 

example, local treatment such as surgery and radio-
therapy could be effective in patients without distant 
metastases. However, local therapies are not sufficiently 
effective for metastatic lesions. Patients with microme-
tastasis, which cannot be detected with imaging, should 
not undergo local therapy. Treatment options for locally 
advanced pancreatic cancer (LAPC) include chemo-
therapy alone, induction chemotherapy followed by 
chemoradiotherapy (CRT), or definitive CRT. Numer-
ous randomized trials have been performed to compare 
the survival benefit of chemotherapy alone and CRT for 
LAPC [53, 54]. Results have been contradictory, and the 
most effective treatment has not been defined for patients 
with LAPC [55, 56]. Radiotherapy involving the primary 
site does not have sufficiently high impact for patients 

Table 1 Representative reports describing the importance of actinin‑4 in malignant tumors

Type of malignant tumor Observations

Brain tumors 1. Correlation between histological grade and protein expression of actinin-4 in gliomas [81]
2. Association of actinin-4 with cell migration in gliomas [82]
3. Overexpression of actinin-4 in high-grade astrocytomas [83]

Head and neck cancer 4. Positive correlation between ACTN4 amplification and the histological grade of salivary gland carcinomas. The impor-
tance of ACTN4 amplification as a prognostic biomarker in salivary gland carcinomas [35]

5. Positive correlation between invasive classification of oral squamous cell carcinoma and protein expression of actinin-4 
[34]

6. Correlation between histological grade and protein expression in thyroid cancer [84]

Lung cancer 7. Utility of ACTN4 amplification as a prognostic biomarker for stage I adenocarcinoma of the lung [50]
8. Overexpression of actinin-4 mRNA in NSCLC [31]
9. Identification of a splice variant of actinin-4 in SCLC as a cancer testis antigen [30]. Utility of a splice variant of actinin-4 in 

the lung as a prognostic biomarker for high-grade malignant neuroendocrine tumors [33]
10. Expression of actinin-4 in blood samples of patients with NSCLC and utility as a diagnostic biomarker for NSCLC [85]

Breast cancer 11. Identification of actinin-4 as a novel actin-bundling protein, and utility of actinin-4 as a prognostic biomarker for inva-
sive ductal breast cancer [13]

12. Summary of actinin-4 as a translational coactivator in breast cancer [15, 65]
13. Identification of protein–protein interactions between estrogen receptors and actinin-4 [70]

Esophageal cancer 14. Overexpression of actinin-4 according to clinical stage in esophageal cancer [74]

Pancreatic cancer 15. First evidence of ACTN4 amplification in cancer. Identification of actinin-4 overexpression in patients with invasive 
ductal adenocarcinoma of the pancreas with poor prognosis [24]

16. Clinical utility of ACTN4 amplification as a predictive biomarker for chemoradiotherapy in LAPC [57]
17. Association of actinin-4 with invadopodia in pancreatic cancer [25]

Colorectal cancer 18. Identification of overexpression of actinin-4 in areas of EMT in colorectal cancer [22]
19. Involvement of actinin-4 in the formation of cellular protrusions that are associated with invasion and migration [23]

Ovarian cancer 20. Identification of actinin-4 overexpression in ovarian cancer, and correlation between actinin-4 overexpression and 
overall survival in patients with ovarian cancer [26]

21. Utility of ACTN4 amplification as a prognostic biomarker in ovarian cancer [48]
22. Accumulation of ACTN4 amplification in high-grade clear cell carcinoma of ovarian cancer [49]
23. Identification of ACTN4 amplification in fallopian tube carcinomas [86]

Bladder cancer 24. Reduced invasive ability with ACTN4 siRNA in bladder cancer cell lines [36]
25. Correlation between histological grade in bladder cancer and actinin-4 protein expression [37]

Prostate cancer 26. Protein complex that includes actinin-4 and androgen receptor in the nucleus. Actinin-4 protein expression is reduced 
in the nucleus of high-grade prostate cancer [80]

Melanoma 27. Association of actinin-4 with amoeboid-type invasiveness of melanoma cells [87]

Leukemia 28. Identification of the fusion gene MLL-ACTN4 in adult CD10-negative B-cell precursor acute lymphoblastic leukemia [88, 
89]

Osteosarcoma 29. Protein–protein interactions between MTBP and actinin-4 in osteosarcoma [27, 28]
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with occult distant metastasis, because radiotherapy does 
not treat distant metastatic lesions. However, imaging 
technology to accurately detect extremely small micro-
metastatic lesions has not been developed. Therefore, 
identification of biomarkers that can accurately evaluate 
the metastatic potential of biopsy samples from patients 
with LAPC will be very important for deciding the best 
personalized therapeutic strategy.

We used biopsy specimens and FISH analysis to ret-
rospectively investigate the ACTN4 copy number in 
patients with LAPC who underwent chemotherapy or 
CRT [57]. In such patients who underwent CRT, those 
with a normal ACTN4 copy number showed a bet-
ter prognosis for overall survival than patients with an 
increased ACTN4 copy number. However, in patients 
who underwent chemotherapy, no statistically significant 
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difference was observed between increased and normal 
ACTN4 copy numbers. Thus, ACTN4 may be a potential 
biomarker for metastatic ability and for predicting the 
effectiveness of CRT in LAPC [57].

Specific expression of an alternative splice 
variant of ACTN4 in small cell lung cancer (SCLC) 
and mutation in focal segmental glomerular 
sclerosis (FSGS)
A tumor-specific alternative splice variant of ACTN4 
was found in SCLC [30]. Exon 8 of ACTN4 is skipped 
in this variant, and another exon is inserted in its place 
(ACTN4-SpEx8), resulting in the changes N249G, 
A251L, and S264C in exon 8 [30]. Among normal tis-
sues and various cancer cell lines, we observed expres-
sion of ACTN4-SpEx8 only in a SCLC cell line and 
normal testis. Thus, ACTN4-SpEx8 is considered a 
cancer testis antigen. We established a specific anti-
body against ACTN4-SpEx8 and observed protein 
expression in SCLC and large cell neuroendocrine car-
cinoma (LCNEC) with immunohistochemistry among 
pathological samples of adenocarcinoma, squamous 
cell carcinoma, LCNEC, carcinoid, and SCLC. Patients 
with SCLC and LCNEC and ACTN4-SpEx8 protein 
expression have a worse outcome for overall survival 
than patients without such expression [33]. The altered 
amino acids, N249G, A251L, and S264C, are very close 
to the mutations that are observed in familial FSGS 
[58, 59], which occur in exon 8 of ACTN4 and result in 
the changed amino acids K255E and T259I. The three-
dimensional structure of ACTN2 has been studied in 
detail [60], and the mutated sites are located on the 
surface of the separation between the CH1 and CH2 
domains. For actinin to bind to actin, the three-dimen-
sional structure of the CH1 and CH2 domains of actinin 
changes from a closed to an open conformation [61–
63]. The substitution of amino acids in ACTN4-SpEx8 
and the ACTN4 mutation in familial FSGS may affect 
the conformation of these domains.

Moreover, alteration of the affinity of actinin-4 for 
binding to actin filaments may be an important factor in 
the poor prognosis of SCLC and the effacement of foot 
processes in the podocytes of the glomerulus in FSGS. 
Recently, Ehrlicher and Pollak et  al. demonstrated that 
in FSGS, a K255E mutation in ACTN4 changes the cel-
lular biological properties in which increasing the affinity 
for actin increases cellular forces and work and decreases 
cellular movement. This type of mutation in this part 
in ACTN4 affects actinin binding kinetics to modulate 
cellular dynamics and force generation, and suggests 
the mechanisms by which such physical defects lead to 
human diseases [64].

The role of actinin‑4 as a transcriptional 
coactivator in cancer
Aberrant transcripts that fail to regulate the expression of 
mRNA are a cause of cancer development. Transcription 
of mRNA is strictly regulated in normal cells. Nuclear 
localization of actinin-4 is frequently observed in breast 
cancer [13], ovarian cancer [26], and SCLC [30] cells. 
However, the biological role of this nuclear localization 
is not clear, although a novel function other than cancer 
invasion is likely.

Early observation of actinin-4 as a transcriptional coac-
tivator began with a report of protein–protein interac-
tions among actinin-4, class II histone deacetylases, and 
myocyte enhancer factor 2s (MEF2s). A protein complex 
containing these three proteins increases the transcrip-
tional activity of MEF2s. Chakraborty and Kao’s group 
provided the first evidence that actinin-4 plays a role as a 
transcriptional coactivator [65]. Moreover, they reported 
the important roles of actinin-4 in breast cancer cell 
nuclei. Nuclear hormone receptors including the vitamin 
D receptor and steroid hormone receptors such as the 
estrogen receptor (ER) are ligand-activated transcription 
factors that control homeostasis, cell differentiation, pro-
liferation, and development [66–68]. In particular, the ER 
plays a very important role in the development of breast 
cancer, and Tamoxifen, a competitive inhibitor of ERs, is 
used as a molecular targeted drug in ER-positive patients 
[69]. Recently, Kao’s group also reported that estradiol 
(E2) promotes recruitment of actinin-4 to the promoter 
of pS2, an ER target gene in the ER-positive breast cancer 
cell line, MCF7 [70, 71]. The fact that actinin-4 regulates 
ER-alpha-mediated transcriptional activation suggests 
that actinin-4 may play a role in E2-mediated regula-
tion of breast cancer cell proliferation. In fact, decreased 
actinin-4 protein expression due to siRNA in MCF7 cells 
significantly reduces E2-mediated induction of ER-alpha 
target genes and abolishes estrogen-mediated prolifera-
tion of cancer cells [70]. In addition, actinin-4 and ER 
interact [71], suggesting that actinin-4 functions as a 
transcriptional co-activator with ER-alpha in some sub-
types of breast cancer [15].

Nuclear factor-kappa B (NF-κB) is a transcription fac-
tor that regulates cell proliferation, the immune response, 
cell differentiation, and apoptosis by controlling the 
expression of mRNA for genes encoding inflammatory 
cytokines, chemokines, and adhesion molecules [72, 
73]. Babakov et  al. reported that actinin-4 and NF-κB 
change their cellular localization from the cytoplasm to 
the nucleus when actin fibers are disrupted by cytocha-
lasin D. The interaction between actinin-4 and NF-κB 
was demonstrated with immunoprecipitation following 
epidermal growth factor or tumor necrosis factor-alpha 
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(TNF-alpha) stimulation [74]. Zaho et  al. also clearly 
demonstrated that actinin-4 expression is essential for 
the transcriptional activity of NF-κB in the presence 
of TNF-alpha [75]. The NF-κB and TNF-alpha path-
way is important for cancer development, during which 
actinin-4 may play an important role in regulating tran-
scription events through the NF-κB pathway. The biologi-
cal functions of actinin-4 as a transcriptional co-activator 
are summarized in Fig. 2.

Although the nuclear localization of actinin-4 was 
reported in breast cancer, ovarian cancer, prostate can-
cer, and SCLC, a correlation between the localization of 
actinin-4 and clinical findings of patients with cancer is 
not clearly understood. The biological mechanisms of the 
translocation of actinin-4 to the nucleus from the cyto-
plasm should be clarified for innovative drug develop-
ment for actinin-4.

Conclusion and future perspective
Here we described the biological roles of actinin-4, which 
is closely associated with cancer invasion and cell motil-
ity. Overexpression of actinin-4 protein and ACTN4 
amplification are biomarkers for evaluating the potential 
metastatic ability in an individual patient with cancer, 
and actinin-4 expression may be useful for selecting the 
optimal therapy for patients. In particular, predicting late 
metastasis after surgery is an important clinical issue. 
To utilize actinin-4 as a biomarker in the clinical setting, 
prospective clinical trials should be done.

Recent studies of actinin-4 demonstrated not only a 
role in cancer invasion, but also its biological role as a 
transcriptional co-activator. Actinin-4 is aggressively 
involved in the tumorigenesis of breast cancer, and this 
concept is attracting a lot of attention. The localization 
of actinin-4 in the nucleus is very interesting in terms of 
tumorigenesis.

Targeted therapy for actinin-4 has not been developed. 
Recently, the three-dimensional structure of actinin-2 
has been reported [60]. Using this information, we hope 
that a drug for molecular targeted therapy for actinin-4 
will be developed. Although these proteins have dis-
tinct physiological and cellular functions, actinin-2 and 
actinin-4 share 80% similarity in amino acid sequence. 
Basic studies of the biology of actinin-4 have the poten-
tial to overcome human diseases.
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