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Abstract

Key points

The increasing multidrug-resistance in pathogenic microbes and the emergence of new microbial pathogens like
coronaviruses have necessitated the discovery of new antimicrobials to treat these pathogens. The use of antibiot-
ics began after the discovery of penicillin by Alexander Fleming from Penicillium chrysogenum. This has attracted the
scientific community to delve deep into the antimicrobial capabilities of various fungi in general and Phoma spp.

in particular. Phoma spp. such as Phoma arachidicola, P. sorghina, P exigua var. exigua, P herbarum, P multirostrata, P
betae, P fimeti, P tropica, among others are known to produce different bioactive metabolites including polyketides,
macrosporin, terpenes and terpenoids, thiodiketopiperazines, cytochalasin derivatives, phenolic compounds, and
alkaloids. These bioactive metabolites have already demonstrated their antimicrobial potential (antibacterial, antifun-
gal, and antiviral) against various pathogens. In the present review, we have discussed the antimicrobial potential of
secondary metabolites produced by different Phoma species. We have also deliberated the biogenic synthesis of eco-
friendly antimicrobial silver nanoparticles from Phoma and their role as potential antimicrobial agents.

+ Growing multidrug-resistance and emerging pathogens need new antimicrobial drugs
« Different species of Phoma produce antimicrobial metabolites
+ Phoma spp. are potential synthesizers of silver nanoparticles demonstrating antimicrobial activity.
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Introduction

There are terrifying global reports of the multidrug-
resistance in pathogens that are not responding to the
available antibiotics (Wencewicz 2019). The main reasons
for developing resistance by microbes include misuse and
overuse of antibiotics, and environmental factors (Ghosh
et al. 2020; Christaki et al. 2020). This problem of anti-
biotic resistance has garnered the attention of the sci-
entific community, policymakers, and the public at large
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from all over the world, and it is a global health challenge
(Markley and Wencewicz 2018; Hu et al. 2021).

The new and emerging diseases caused by microbes are
major threat to mankind. The recent emergence of the
COVID-19 pandemic caused by SARS-CoV-2 is a burn-
ing example that has devastated human life globally. The
current burden of co-infections and superinfections such
as mucormycosis in COVID-19 patients is also a great
issue that emphasizes the discovery of new antimicrobi-
als (Feldman and Anderson 2021). Moreover, there has
been huge concern about re-emerging microbial diseases
such as malaria, tuberculosis, influenza, cholera, pertus-
sis, etc.
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Unfortunately, for more than three decades, no new
antibiotics have been discovered (Bottcher et al. 2021),
and therefore, these facts warrant the discovery of new
antibiotics and/ or search for new alternatives from
natural products such as plants and microbes to tackle
such a grave problem (WHO Newsletter 2020). Among
the microbes, fungi play a key role in the production of
antimicrobials. The serendipitous discovery of peni-
cillin by Alexander Fleming (1929) from Penicillium
notatum and P. chrysogenum is the best example (Zhu
et al. 2014). Other potential antibiotics produced by fungi
include cephalosporins and griseofulvin. Several species
of Phoma such as P. arachidicola, P. sorghina, P. exigua
var. exigua, P. herbarum, P. multirostrata, P. betae, and P,
fimeti are pigment-producing (Chande et al. 1899) and
some Phoma species have already demonstrated the anti-
microbial potential against various fungi (Aoyagi et al.
2007; Hussain et al. 2014), bacteria (Huang et al. 2017;
Chen et al. 2019) and viruses (Liu et al. 2019; Peng et al.
2020). They produce secondary metabolites with anti-
microbial potential. These bioactive compounds include
polyketides like anthraquinones and diphenyl ether
derivatives; ergocytochalasin A, macrosporin, thiodiketo-
piperazines, cytochalasin derivatives, and alkaloids. The
antimicrobial metabolites producing species of Phoma
can be harnessed to treat various microbial pathogens.

The present review is focused on the antimicrobial
potential of secondary metabolites produced by different
terrestrial, marine or endophytic Phoma species. Moreo-
ver, the biogenic synthesis of eco-friendly antimicrobial
silver nanoparticles produced from Phoma and their role
as potential antimicrobial agents have been discussed.
The review is timely as so far there is no review available
on the antimicrobial nature of metabolites produced by
different Phoma species.

Phoma: the producer of novel bioactive
metabolites

The Phoma spp. are widely distributed as pathogens of
plants, animals, and humans, and also in soil, water and
air (Rai 2002). The Phoma spp. secrete various metabo-
lites that have already demonstrated antimicrobial poten-
tial (Rai et al. 2009a, b, ¢, 2018; Herath et al. 2009). Not
only terrestrial but marine and endophytic species of
Phoma are also responsible for the production of anti-
microbial metabolites (Hoffman et al. 2008; Bhimba
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et al. 2012; Elsebai et al. 2016, 2018). A large number of
metabolites with unique structures, and potential bio-
logical and pharmacological activities have been reported
from the marine Phoma species particularly P. sorghina,
P herbarum, and P. tropica. These metabolites generally
include lactones, quinine, diterpenes, phthalate, enolides,
and anthraquinones (Fig. la—c). which have shown a
broad range of bioactivities including antimicrobial, anti-
cancer, radical scavenging, and cytotoxic (Rai et al. 2018,
2020). There are several reports which provide conclusive
evidence that endophytic Phoma species living in plants
secrete potential antimicrobial compounds (Fig. 2) (Hus-
sain et al. 2015; Huang et al. 2017; da Silva et al. 2017; de
Vries et al. 2018; Nalli et al. 2019; El-Zawawy et al. 2020;
Li et al. 2020; Rai et al. 2020; Hu et al. 2021). For exam-
ple, the compounds like a-tetralone derivative (35)-3,6,7-
trihydroxy-a-tetralone, together with cercosporamide,
[-sitosterol, and trichodermin reported from the ethyl
acetate extract of endophytic Phoma sp. (ZJWCF006)
isolated from Arisaema erubescens (Wang et al., 2012).
These compounds were found to be effective against the
plant pathogenic fungi such as Fusarium oxysporum,
Rhizoctonia solani, Colletotrichum gloeosporioides, Mag-
naporthe oryzae, and plant pathogenic bacteria including
Xanthomonas campestris and X. oryzae.

Many species of Phoma have demonstrated remark-
able antimicrobial activities. For example, Hussain et al.
(2014) isolated phomafuranol (I), phomalacton (II), (3R)-
5-hydroxymellein (III), and emodin (IV) (Fig. 3) from
the ethyl acetate fractions of Phoma spp. recovered from
Fucus serratus. which demonstrated potential inhibi-
tory activities including antibacterial, antifungal, and
antialgal.

Arora et al. (2016) screened endophytes isolated from
Glycyrrhiza glabra and reported the presence of Phoma
spp. which was closely related to P cucurbitacearum.
Further, the authors isolated two thiodiketopiperazine
derivatives (Fig. 4) from the extract of this species of
Phoma which showed remarkable antibacterial activity
against Staphylococcus aureus and S. pyogene Moreover,
these compounds significantly inhibited the biofilm for-
mation ability of both the pathogens singly and in combi-
nation with ciprofloxacin and ampicillin in a synergistic
way. Endophytic Phoma spp. (URM 7221) isolated from
the leaves of Schinus terebinthifolius effectively inhib-
ited S. aureus, MRSA, B. subtilis, and E. faecalis (de Silva

(See figure on next page.)

Fig. 1 a Chemical structures of bioactive compounds recovered from P. herbarum. (1) Herbarumin | and (Il) Herbarumin Il. b Chemical structures of
bioactive metabolites isolated from marine Phoma species. (I) Phomactin A. (Il) Phomactin B (R1 =H; R2=0H) & BT (R1 =0OH; R2 =H). (lll) Phomactin
B2 (R3 & R4 =0; R5=0H). (IV) Phomactin C. (V) Phomactin D. ¢ Chemical structures of bioactive metabolites obtained from marine Phoma sp. (1)
Epoxyphomalin A. (Il) Epoxyphomalin B; and from Phoma sp. OUCMDZ-1847. (Ill) Phomazine A. (IV) Phomazine B. (V) Phomazine C (Rai et al. 2018)

reprinted with permission
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Fig. 1 (See legend on previous page.)
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(I11)
Fig. 2 Phytochemicals identified from an endophytic Phoma
sp. (1) Sclerodin, (Il) 8,9-dihydro-3,5,7-trihydroxy-1,8,8 9-tetramet
hyl-5-(2-oxopropyl)-4H-phenaleno[1,2-b]furan-4,6(5H)-dione, (II)
Atrovenetinone, and (IV) Sclerodione. Reprinted from Hussain et al.
(2015) under Creative Common Rights Licence
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Fig. 3 Structures of compounds isolated from Phoma sp. (1)
phomafuranol, (Il) phomalacton, (lll) (3R)-5-hydroxymellein, and (IV)

emodin (Hussain et al. 2014)—redrawn using free access MedChem
Designer 5.5

et al,, 2017). The potential of Phoma sp. was attributed to
the production of phenolic compounds and steroids.

In another study, Chen et al. (2019) reported that
Phoma species SYSU-SK-7 inhabiting endophytically in
mangrove plant Kandelia candel contains polyketides
that have shown significant activity against Pseudomonas
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aeruginosa, Staphylococcus aureus followed by Can-
dida albicans. Recently, Peng and his colleagues (2020)
reported ergocytochalasin A from P. multirostrata which
was found as an endophyte in Parasenecio albus. The bio-
active compound demonstrated strong activity against
different pathogenic viruses including Human dengue
virus type 3 (DV3), influenza A virus (H1N1), and respir-
atory syncytial virus (RSV).

Secondary metabolites are responsible
for antimicrobial activity
The secondary metabolites such as anthraquinones are
secreted by Phoma spp. including P herbarum, P exi-
gua var. exigua, P. sorghina, P. macrostoma, P. glomerata,
P. macdonaldii, P. tracheiphila, P. multirostrata, P. pro-
boscis, and P. foveata, etc. (Rai et al. 2009a, b, c, 2021a,
b). As shown in Fig. 5, the different bioactive secondary
metabolites reported from Phoma spp include. a-Pyrone
derivatives (Sang et al. 2017), isocoumatins (Hussain et al.
2014; Shi et al. 2017); anthraquinones and xanthones
(Xia et al. 2015; Liu et al. 2019); thiodiketopiperazines,
phomazines (Arora et al. 2016); cytochalasin derivatives
(Peng et al. 2020), and diphenyl ether derivatives (Sumilat
et al. 2017), tetrasubstituted furopyrans, chenopodolans
E (Evidente et al. 2016), xyloketals and chromones (Kim
et al. 2018), meroterpenoids and diterpenoids (Xu et al.
2016), alkaloids such as phomapyrrolidones (Wijeratne
et al. 2013), polyketides, phomaketides (Li et al. 2020)
produced by different Phoma spp. A detailed account of
different Phoma spp., secondary bioactive compounds,
and antimicrobial activities have been given in Table 1.
Several members of the genus Phoma are well-known
to produce a wide range of antimicrobials that are spe-
cific to the target organisms (bacteria, fungi, and viruses).
P exigua var. exigua produces antibiotic E and cytocha-
lasin B (Boerema and Howeler 1967), P pigmentivora
produces LL-D253alpha (Mclntyre et al. 1984), P. lingam
(Tode) Desm. yields phomenoic acid and phomenolac-
tone which are antibacterial and antifungal compounds
(Topgi et al. 1987). In addition, there are other bioac-
tive compounds reported from Phoma spp. For exam-
ple, a well-known anti-infective agent squalestatin was
reported from a Phoma spp. (Dawson et al. 1992); anti-
tumor compound fusidienol A from another Phoma spp.
(Singh et al. 1997), and Yamaguchi et al. (2002) isolated
the bioactive compound FOM-8108 which inhibited neu-
tral sphingomyelinases.

Biosynthesis of silver nanoparticles by Phoma spp.
and its antimicrobial efficacy

As discussed earlier, Phoma species are known to pro-
duce a wide range of metabolites that have already
shown antimicrobial activity (Rai et al. 2009a). Some
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(1)) (I1)

Fig. 4 Thiodiketopiperazine derivatives, Compound | and Il, from Phoma sp. (Arora et al. (2016); Redrawn using free access MedChem Designer 5.5
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Fig. 5 Bioactive compounds recovered from both culture of an endophytic Phoma sp. isolated from the roots of Aconitum vilmorinianum, (1)

Phomanolide, (Il) (-)-6-methoxymellein, (ll) 7-hydroxy-3, 5-dimethyl-isochromen-1-one, (IV) Norlichexanthone, (V) 6-methylsalicylic acid, and (V1)
Gentisyl alcohol (Liu et al. 2019) Redrawn using free access MedChem Designer 5.5

of the metabolites may not directly reveal the antimi- known as a new generation of antimicrobials (Rai et al.,
crobial potential but can be used for the fabrication of  2009b). An elaborative account of multiple modes of
silver nanoparticles (AgNPs) which also demonstrated action of AgNPs is reviewed by Dakal et al. (2016) and a
remarkable antimicrobial potential. AgNPs are well schematic representation of the same is given in Fig. 6.
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Fig. 6 The four most prominent routes of antimicrobial action of AgNPs. 1. AgNPs adhere to microbial cell surface and results in membrane
damage and altered transport activity; 2. AGQNPs penetrate inside the microbial cells and interact with cellular organelles and biomolecules, and
thereby, affect respective cellular machinery; 3. AGNPs cause increase in ROS inside the microbial cells leading to cell damage and; 4. AgNPs
modulate cellular signal system ultimately causing cell death. Reproduced from Dakal et al. (2016) under the Creative Commons Attribution Licence

Phoma species are capable of extracellular synthesis of
spherical AgNPs and silver nanorods. Extracellular syn-
thesis of nanoparticles by Phoma spp. offer an advantage
of obtaining large quantities of AgNPs at a rapid rate and
in a relatively pure state. Furthermore, the extracellular
synthesis of AgNPs by Phoma spp. would make the pro-
cess simple and easier for downstream processing; fun-
gal broths can be easily filtered by filter press of similar
simple equipment, thus making it a cost-effective process
(Gade et al,, 2010). Moreover, the fabrication of AgNPs
by Phoma spp. is a green and eco-friendly approach as no
toxic chemicals, high temperature, or pressure are used
for the synthesis (Gade et al., 2014; Rai et al. 2021a, b).

In a study, the fabrication of AgNPs by P glomerata
(MTCC-2210) was reported by Birla et al. (2009). Authors
also reported the combined activity of commercial anti-
biotics and AgNPs synthesised from Phoma spp. by test-
ing against E. coli JM-103 (ATCC-39403) and S. aureus
(ATCC-25923) on Muller-Hinton agar plates. Com-
mercial antibiotics like ampicillin (10 pg), gentamycin
(10 pg), kanamycin (30 pg), streptomycin (10 pg) and
vancomycin (30 pg) were used in the study. The compre-
hensive fold increases in area were observed for ampicil-
lin, streptomycin, and vancomycin. Thus, the combined

activity observed was better in E. coli than S. aureus.
Whereas the disc diffusion analysis of only AgNPs showed
better activity against S. aureus as compared to E. coli.
In another study, the AgNPs synthesised from P gardi-
nae (ITCC 4554) showed antimicrobial activity against
human pathogenic bacteria and fungi (Rai et al., 2015a).
Authors evaluated the activity of AgNPs against C. albi-
cans, S. choleraesuis, P. aeruginosa, S. aureus, and E. coli.
The AgNPs were found to be most effective against E. coli
followed by S. aureus, C. albicans, S. choleraesuis, and P
aeruginosa as compared with antibiotics. Further extracel-
lular synthesis of AgNPs by P. capsulatum, P. putaminum,
and P, citri was reported by Rai and co-workers (2015b).
The AgNPs syjthesised from these Phoma spp. showed
potential antimicrobial activity against Aspergillus niger,
C. albicans, S. choleraesuis, P. aeruginosa, S. aureus, and
E. coli. The least minimal inhibitory concentration (MIC)
of 0.85 pg/ml was shown by AgNPs synthesized from
P citri against S. choleraesuis. AgNPs fabricated using
Phoma spp. is not only reported for antibacterial and anti-
fungal activity but also demonstrated antiviral potential.
Some Phoma spp. isolated from the infected plants and
identified on the basis of morphological and molecular
characteristics were used for the fabrication of AgNDPs.
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This demonstrated a significant decrease in replication
efficiency for Herpes Simplex Virus (HSV)-1 and human
parainfluenza virus (HPIV) type-3, and a minor effect on
the replication of HSV-2 at a concentration of 10 mg/ml
(Gaikwad et al. 2013). Further, the authors reported that
AgNPs ability to control viral infectivity was most likely
attributed to the size and zeta potential of the fabricated
AgNPs, which interfere with virus and cell interaction,
thereby blocking viral entry into the cell.

Shende et al. (2017) synthesised AgNPs using immo-
bilized biomass of the P exigua var. exigua. This process
was found to be a simple, fast, large-scale, and efficient
route for the synthesis of AgNPs, without disintegration
of calcium alginate beads in the medium for ten batch
cycles. The immobilization of P. exigua biomass leads to
the development of a method for the continuous synthe-
sis of AgNPs. Moreover, this large-scale synthesis process
could be a boon to the commercial fabrication of AgNPs
which will be required due to the application of AgNPs in
a large number of commercial products. The AgNPs thus
produced also demonstrated antibacterial activity against
E. coli and S. aureus. Graphical illustration of P exigua
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var. exigua biomass immobilization process and AgNPs
fabrication is given in Fig. 7.

It is evident from the above reports that the differ-
ent Phoma spp. possess tremendous ability to reduce
the inorganic metal ions to nanoparticles in general and
AgNPs in particular, which is due to the extracellular
secretions of metabolites by Phoma spp. Consequently,
the metabolites secreted by the Phoma spp. can be har-
nessed and explored for the synthesis of nanoparticles of
different sizes and shapes. In near future, the possibility
of utilizing antimicrobial metabolites secreted by Phoma
spp. for the fabrication of AgNPs cannot be overlooked,
since these metabolites can be used with AgNPs syner-
gistically which will provide the solution to the increasing
drug resistance problem worldwide.

Conclusions

Antimicrobial resistance and the entry of new fatal
microbes like Coronavirus have made the researchers to
seriously think about searching for new strategies to com-
bat the global problem. Thus, there is a high demand for
new antibiotics for difficult-to-treat bacteria and other
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Fig. 7 Graphicalillustration of Phoma exigua var. exigua biomass immobilization process and AgNPs fabrication (Shende et al. 2017), reprinted with
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pathogenic microbes. In this context, various fungi includ-
ing Phoma offers antimicrobial metabolites. Various spe-
cies of Phoma particularly pigment-producing species such
as P arachidicola, P. sorghina, P. exigua var. exigua, P. her-
barum, P. multirostrata, P. betae, and P, fimeti have already
demonstrated their potential against pathogenic fungi, bac-
teria, and viruses. Moreover, several species of Phoma have
been studied for the production of bioactive compounds
such as polyketides, ergocytochalasin A, macrosporin,
thiodiketopiperazines, terpenes, terpenoids, and alkaloids
which have shown their antimicrobial potential. These
antimicrobial metabolites of Phoma spp. are not only ter-
restrial but also include marine and endophytic spp. dwell-
ing in medicinal plants. Moreover, some Phoma species
are also known to synthesize silver nanoparticles extracel-
lularly which have already proven to be the new generation
of antimicrobials. Such a process of nanoparticle synthesis
is eco-friendly, economically viable and a greener approach
without the use of harmful chemicals and high pressure
and temperature. These nanoparticles can also be uti-
lized as nanocarriers for the slow and sustained delivery
of antimicrobial drugs. Finally, more thorough research is
required to screen different species of Phoma from extreme
environments to find out potential antibiotic producers.
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