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Abstract 

Sable (Martes zibellina), a member of family Mustelidae, order Carnivora, is primarily distributed in the cold northern 
zone of Eurasia. The purpose of this study was to explore the intestinal flora of the sable by metagenomic library-
based techniques. Libraries were sequenced on an Illumina HiSeq 4000 instrument. The effective sequencing data 
of each sample was above 6000 M, and the ratio of clean reads to raw reads was over 98%. The total ORF length was 
approximately 603,031, equivalent to 347.36 Mbp. We investigated gene functions with the KEGG database and iden-
tified 7140 KEGG ortholog (KO) groups comprising 129,788 genes across all of the samples. We selected a subset of 
genes with the highest abundances to construct cluster heat maps. From the results of the KEGG metabolic pathway 
annotations, we acquired information on gene functions, as represented by the categories of metabolism, environ-
mental information processing, genetic information processing, cellular processes and organismal systems. We then 
investigated gene function with the CAZy database and identified functional carbohydrate hydrolases corresponding 
to genes in the intestinal microorganisms of sable. This finding is consistent with the fact that the sable is adapted 
to cold environments and requires a large amount of energy to maintain its metabolic activity. We also investigated 
gene functions with the eggNOG database; the main functions of genes included gene duplication, recombina-
tion and repair, transport and metabolism of amino acids, and transport and metabolism of carbohydrates. In this 
study, we attempted to identify the complex structure of the microbial population of sable based on metagenomic 
sequencing methods, which use whole metagenomic data, and to map the obtained sequences to known genes or 
pathways in existing databases, such as CAZy, KEGG, and eggNOG. We then explored the genetic composition and 
functional diversity of the microbial community based on the mapped functional categories.
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Introduction
The communities of microorganisms residing in the gas-
trointestinal (GI) tract of animals are vast and diverse, 
with cell numbers exceeding the number of host cells 
(Krone et  al. 2014; Li et  al. 2018a, b; Zhu et  al. 2018). 
The intestinal microbial population can be considered 

a separate organ that encodes 150-fold more genes than 
the host genome (Guan et al. 2016; Hasan et al. 2019; Jain 
et al. 2018). In general, the gut microflora is considered a 
diverse and dynamic ecosystem that maintains the home-
ostasis of the intestinal tract (Ma et  al. 2019; Oliphant 
and Allen-Vercoe 2019; Taha-Abdelaziz et al. 2018). The 
status of the intestinal microbiota is closely related to 
intrinsic and extrinsic host factors, including birth, diet, 
nutrition, stress, drugs, habitat and social contact (Hale 
et al. 2019; Jang et al. 2018; Li et al. 2017; Robertson et al. 
2018). Gut microorganisms are indispensable for nutrient 
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absorption by the host and host metabolism (De Mandal 
et al. 2018; Deng et al. 2019; Dong et al. 2018; Pan et al. 
2019; Si et al. 2020). For instance, Firmicutes, Bifidobac-
terium, and Lactobacillus have multiple beneficial effects 
on host metabolism, producing energy and short-chain 
fatty acids (SCFAs) (Antunes et al. 2019; Bang et al. 2018; 
Blakeley-Ruiz et  al. 2019). Furthermore, the intestinal 
microbiota regulates carbohydrate and lipid metabolism 
(Li et al. 2018a, b; Pekkala et al. 2017), providing the host 
with sources of energy or activating receptors (Federici 
2019). Intestinal microorganisms are also involved in 
the synthesis of key vitamins that cannot be produced by 
their host organisms (Grieneisen et al. 2019; Martin et al. 
2018; Srugo et  al. 2019). Accumulating evidence shows 
that antigenic stimuli from gut microbiota play signifi-
cant roles in shaping the intestinal immune responses 
that can affect host health (Doulberis et al. 2015; Liu et al. 
2019; Wu et al. 2017a, b; Xue et al. 2019). The intestinal 
bacteria also influence the development of the intestinal 
epithelium to strengthen intestinal barrier function (Hill 
et al. 2016; Li et al. 2019; Xu et al. 2020).

The sable (Martes zibellina), a carnivorous mam-
mal distributed across the cold northern zone of Eura-
sia (Li et  al. 2013), is famous for its valuable, warm fur 
(Guan et al. 2016; Monakhov et al. 2018; Svishcheva and 
Kashtanov 2011). The sable has a slender body and a high 
surface-to-volume ratio, and it maintains a low body fat 
percentage of approximately 8%, even during particu-
larly cold winters (Mustonen and Nieminen 2006). Thus, 
a high metabolic rate should be required for its survival 
(Mustonen et al. 2006). We sought to investigate the cor-
relations of metabolic functions with the intestinal flora 
of sable. Traditionally, the type of intestinal microflora 
has been determined through bacterial culture (Wu et al. 
2017a, b). However, the growth environments of many 
bacteria cannot be adequately replicated in vitro, which 
hinders the study of microbial diversity and function 
(Tully et al. 2018). In recent years, the progress of high-
throughput sequencing technologies has allowed fun-
damental advancements in DNA sequencing (Shui et al. 
2020). With the declining expense of DNA sequencing, 
metagenomics has been rapidly developing (Johnson 
2019). Metagenomics techniques are commonly used to 
sequence and analyse the whole genomes of microbes 
from a sample without the need for cell culture. Metagen-
omics is widely applied to probe environmental micro-
bial diversity at multiple levels and enables the study of 
microbial community structure and ecosystem function 
(Martin et al. 2018).

In this study, we sought to identify the complex struc-
ture of the intestinal microbial population of sable based 
on metagenomic sequencing methods, which use whole 
metagenomic data, and to map the obtained sequences 

to known genes or pathways in existing databases, such 
as CAZy, KEGG, and eggNOG. We then explored the 
genetic composition and functional diversity of the 
microbial community based on the mapped functional 
categories. In ancient China, the sable was considered 
a valuable fur animal; however, at present, there is no 
mature rearing strategy. The present work was devoted 
to acquiring a detailed view of the functional structure of 
the intestinal flora, and it provides valuable information 
that can guide sable breeding.

Materials and methods
All faecal samples analysed in this study were collected at 
Dalian Mingwei Marten Industry Company Limited and 
derived from wild sables imported from Mohe County of 
Heilongjiang Province and Greater Khingan Range. As 
carnivores, the sables were fed fish and chicken. When 
collecting stool samples, we recorded information on 
host gender, sampling date and cage number. Fresh fae-
cal samples from sables were collected aseptically in ster-
ile stool containers and immediately frozen in a freezer. 
The samples were categorized into three groups, with the 
five faecal samples from female sables labelled MZF.1–
MZF.5, the four faecal samples from male sables labelled 
MZM.1–MZM.4, and the samples of intestinal contents 
labelled MZS.1, MZB.1 and MZB.2 (Table  1). Before 
DNA extraction from the faecal samples, we ensured the 
samples were used immediately upon removal from the 
freezer and avoided sample contamination.

DNA extraction, library preparation and metagenomics 
sequencing
The QIAamp Fast DNA Stool Mini Kit (Qiagen, Hilden, 
Germany) was used to extract microbial DNA from the 
sable stool samples. Before library construction, the DNA 

Table 1  Table of the information in samples

Species Sample Sex Time

Sable MZF.1 Female 2017.11

Sable MZF.2 Female 2017.11

Sable MZF.3 Female 2017.11

Sable MZF.4 Female 2017.11

Sable MZF.5 Female 2017.11

Sable MZM.1 Male 2017.11

Sable MZM.2 Male 2017.11

Sable MZM.3 Male 2017.11

Sable MZM.4 Male 2017.11

Sable MZS.1 Male 2017.11

Sable MZB.1 Male 2017.11

Sable MZB.2 Male 2017.11
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was evaluated for quality control and quantified. Agarose 
gel electrophoresis (AGE) was used to analyse the purity 
and integrity of the DNA, and Qubit 2.0 (Invitrogen, 
USA) was used to precisely quantify DNA concentration. 
During library construction, qualified DNA samples were 
randomly broken into fragments approximately 350  bp 
in length with an ultrasonic crusher (Covaris, UK). Then, 
the fragments were end-repaired, A-tailed, and ligated 
to adapters. After library preparation, Qubit 2.0 (Invit-
rogen, USA) was used for initial quantification, and the 
library was diluted to 2  ng/µl. Subsequently, an Agilent 
2100 Bioanalyzer (Agilent, USA) was used to determine 
whether the insert sizes of the library corresponded to 
expectations. To ensure library quality, real-time q-PCR 
was used to accurately quantify the effective concentra-
tion (> 3 nM) of the library. After the library passed the 
inspection, sequencing was implemented on an Illumina 
HiSeq X Ten platform (Illumina, USA). The raw reads are 
available at the NCBI Sequence Read Archive (BioProject 
ID PRJNA630144, SRA SRP265006).

Quality control and genome assembly
In metagenomics research, the raw genome data 
obtained after sequencing include adapter information 
and low-quality bases, which interfere with subsequent 
analysis. Therefore, the raw data require quality con-
trol to remove interfering data and obtain clean data. 
Because of the possibility of host genome contamina-
tion, we searched the data against a database of host 
genes to filter out reads from host genes (SOAP aligner 
parameter settings: identity ≥ 90%, -l 30, -v 7, -M 4, -m 
200, -×400). Reads with a quality value less than 38 
(different from the default setting of ≤ 40) and num-
ber of Ns (undetected bases) at or exceeding the set 
number (default set to 10) were removed. In addition, 
reads with an overlap between the adapter and the 
sequence exceeding a certain threshold (≥ 15 bp) were 
removed. Clean data were obtained after these filter-
ing steps, and SOAP denovo assembly software was 
used for assembly analysis (Luo et  al. 2012). For each 
sample, k-mer = 55 was selected to obtain the assem-
bly results (assembly parameters: -d 1, -M 3, -R, -u, 
-F) (Brum et al. 2015; Feng et al. 2015; Qin et al. 2014; 
Scher et al. 2013). The scaffolds were interrupted from 
the N-junctions to obtain N-free sequence fragments 
called scaftigs (i.e., continuous sequences within scaf-
folds) (Mende et  al. 2012). The clean data for each 
sample were compared to the scaftigs of each sample 
by SOAP aligner software to obtain PE reads (align-
ment parameters: -u, -2, -m 200). After pooling the 
clean reads from each sample, k-mer = 55 was selected 
for mixed assembly (Karlsson et al. 2013), the remain-
ing assembly parameters were the same as those used 

for single sample assembly. The scaffolds were broken 
from the N-junctions to obtain scaftig sequences with-
out Ns. For the scaftigs generated by both single sam-
ple assembly and mixed assembly, fragments less than 
500  bp were filtered out (Zeller et  al. 2014), and sta-
tistical analysis and subsequent gene prediction were 
performed.

Gene prediction and abundance analysis
Employing the scaftigs for each sample assembly and 
mixed assembly ( > = 500  bp), MetaGeneMark was 
used for open reading frame (ORF) prediction (Li et  al. 
2014). Fragments less than 100 nt in length were filtered 
out from the prediction results. For the ORF prediction 
results of each sample, CD-HIT software was used to 
remove redundancies, yielding an initial non-redundant 
gene catalogue. Clustering was conducted with identity 
95% and coverage 90%, and the longest sequence was 
selected as the representative sequence (parameters: 
-c 0.95, -G 0, -aS 0.9, -g 1, -d 0). The clean data for each 
sample were compared with the initial gene catalogue by 
SOAPaligner, and the number of reads of genes in each 
sample was calculated (alignment parameters: -m 200, 
-×400, identity ≥ 95%). The number of genes supporting 
reads in each sample ≤ 2 were filtered out to obtain the 
final gene catalogue for subsequent analysis (Qin et  al. 
2012). The abundance information of each gene in each 
sample was calculated from the number of reads and 
gene length (Villar et al. 2015). Based on the abundance 
information of each gene in each sample, descriptive sta-
tistics were calculated, and core-pan gene analysis, sam-
ple correlation analysis, and Venn diagram analysis of 
gene number were conducted (blastp, evalue ≤ 1e−5).

Species annotation
DIAMOND software was used to compare the uni-
genes with the sequences of bacteria, fungi, archaea and 
viruses extracted from the NCBI NR database (Buchfink 
et  al. 2015). Alignment filtering was conducted using 
evalue ≤ minimum evalue * 10 for each sequence align-
ment for subsequent analysis. Multiple alignment results 
for each sequence may arise after filtering, yielding dif-
ferent species classification information. Thus, to ensure 
its biological significance, the LCA algorithm (a system-
atic classification algorithm applied in MEGAN software) 
was adopted to assign the classification level before the 
first branch as the species annotation information of the 
sequence (Huson et  al. 2011). Based on the LCA anno-
tation results and the gene abundance table, the abun-
dance information of each sample at each classification 
level (genus and species) was obtained. The abundance of 
a species in a sample was determined as the sum of the 
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gene abundance of the species annotated. For each spe-
cies, the number of genes in a sample was equal to the 
number of genes with abundances greater than 0 in the 
annotated species.

Functional database and resistance gene annotation
Currently, the commonly used databases providing func-
tional annotations mainly include Kyoto Encyclopedia of 
Genes and Genomes (KEGG), Evolutionary Genealogy of 
Genes: Non-supervised Orthologous Groups (eggNOG), 
and Carbohydrate-Active Enzymes Database (CAZy). 
The KEGG database was introduced by Kanehisa Labora-
tories in 1995 with version 0.1. It has since developed into 
a comprehensive database, the core of which is the KEGG 
pathway database and the KEGG Ortholog database. In 
the KEGG Ortholog database, genes performing the 
same function are clustered together into groups called 
ortholog groups (KO entries). In the KEGG pathway 
database, biological metabolic pathways are divided into 
6 categories: cellular processes, environmental informa-
tion processing, genetic information processing, human 
diseases, metabolism, and organismal systems. The sec-
ond layer currently includes 43 seed pathways, the third 
layer comprises metabolic pathway diagrams, and the 
fourth layer provides specific annotation information for 
each metabolic pathway map. The eggNOG database uses 
the Smith-Waterman comparison algorithm to annotate 
the orthologous groups of genes. eggNOG V4.1 covers 
2,031 species and approximately 190,000 orthologous 
groups. The CAZy database is used to annotate carbohy-
drate enzymes and covers six main functional categories: 
GHs (glycoside hydrolases), GTs (glycosyl transferases), 
PLs (polysaccharide lyases), CEs (carbohydrate ester-
ases), AAs (auxiliary activities) and CBMs (carbohy-
drate-binding modules). DIAMOND software was used 

to compare unigenes with each functional database 
(blastp, evalue ≤ 1e−5). In the alignment filtering step, 
the alignment results of each sequence with the highest 
score (one HSP > 60 bits) were selected for subsequent 
analysis. Based on the results of the functional annota-
tions and the gene abundance table, the number of genes 
in each sample at each classification level was obtained. 
The number of genes with a certain function in a sam-
ple was calculated as the number of genes with non-zero 
abundance. Based on the abundance table at each classi-
fication level, analyses of the number and relative abun-
dance of annotated genes were conducted. Resistance 
Gene Identifier (RGI) software provided by CARD was 
employed to compare unigenes with the CARD database 
(RGI built-in blastp, evalue ≤ 1e–30) (Qin et  al. 2010). 
Based on the comparison results of RGI and the abun-
dance information of unigenes, the relative abundance 
of ARO was calculated. Employing the ARO abundance 
data, a Venn diagram of abundance distribution was con-
structed, ARO differences between groups were analysed, 
and species attribution analysis of resistance genes (with 
focus on ARO unigenes) was conducted.

Results
Extraction of total microbial DNA from samples
The microbial genomes of the samples were extracted 
using the QIAGEN kit specialized for DNA extrac-
tion from stool samples. Total DNA was preliminarily 
detected by agarose-gel electrophoresis, and the total 
DNA concentration was detected by Qubit fluorom-
eter to determine whether the samples met the require-
ments for database construction. The results are shown 
in Table 2.

Table 2  The detection report of DNA

Sample name Concentration (ng/µl) Volume (µl) Total (ng) Library type Test results

MZF.1 11.4 51 581 Meta A

MZF.2 13 51 663 Meta A

MZF.3 7.6 51 388 Meta A

MZF.4 10 51 510 Meta A

MZF.5 0.8 51 41 Meta A

MZM.1 37 51 1887 Meta A

MZM.2 5.7 51 291 Meta A

MZM.3 16 51 816 Meta A

MZM.4 2.54 51 130 Meta A

MZS.1 7.2 51 367 Meta A

MZB.1 4.7 51 240 Meta A

MZB.2 21 51 1071 Meta A
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Sequencing data statistics
The Illumina HiSeq 4000 sequencing platform was used 
to obtain the original data (raw data), and the sequenc-
ing data were statistically analysed. For quality control, 
low-quality reads were removed. In total, after size filter-
ing and quality control, read numbers were obtained. The 
clean data accounted for more than 98% of the raw data, 
showing that the data met the quality requirements for 
subsequent analysis. Descriptive statistics are shown in 
Table 3.

Valid data assembly results
After quality control and filtering, the data were assem-
bled. After determining the overlap between sequences 
based on sequence similarity, we constructed con-
tig sequences. Furthermore, scaffold sequences were 
obtained by connecting contig sequences based on 
paired-end relationships. The scaffold sequences 

contained gaps, denoted by N or n. Next, the assembled 
scaffolds were interrupted from the N connections to 
obtain scaftig sequence fragments without N. We used 
NOVO_MIX to filter out the scaftig fragments under 
500  bp. The remaining sequences were used for subse-
quent analysis. The results of data assembly are shown in 
Table 4.

Gene prediction
After data assembly, MetaGeneMark was used to predict 
the open reading frames (ORFs). The ORFs with pre-
dicted lengths less than 100 nt were filtered out. We then 
used CD-HIT software to remove redundant informa-
tion (protein level) and obtain the initial non-redundant 
gene catalogue. We selected an identity value of 95% and 
a coverage value of 90% for clustering, and the longest 
sequence was selected as the representative sequence. 
Next, the clean data for each sample were compared with 

Table 3  The statistical information of sample data

Sample Raw data Clean data Clean_Q20 Clean_Q30 Clean_GC (%) Effective (%)

MZF.1 6423.43 6348.62 97.36 95.16 52.27 98.835

MZF.2 6400.51 371.69 97.28 95.07 49.81 99.55

MZF.3 6337.84 6290.67 97.46 95.33 51.35 99.256

MZF.4 6792.60 6769.70 97.12 94.95 41.59 99.663

MZF.5 6390.60 6341.12 96.89 95.33 45.32 99.226

MZM.1 6272.72 6260.54 97.11 94.76 47.25 99.806

MZM.2 7024.25 7010.36 96.72 94.53 38.97 99.802

MZM.3 6252.62 6230.76 97.25 95.01 50.56 99.65

MZM.4 6612.68 6556.58 95.95 94.00 41.27 99.152

MZS.1 6438.21 6360.45 96.71 94.22 42.41 98.792

MZB.1 6266.57 6244.48 96.58 94.82 47.00 99.648

MZB.2 6809.10 6693.22 96.75 91.59 47.48 98.298

Table 4  The statistical information of sample assembled results

Sample Total len. (bp) Num. Average len. (bp) N50 Len. (bp) Max len. (bp)

MZF.1 36,356,589 34,785 1045.18 1087 73,452

MZF.2 31,081,373 22,094 1406.78 1711 305,593

MZF.3 18,869,947 14,803 1274.74 1492 39,052

MZF.4 62,710,239 46,632 1344.79 1670 91,860

MZF.5 32,307,271 23,551 1,371.80 1703 52,978

MZM.1 45,524,309 37,738 1206.33 1328 226,903

MZM.2 79,892,828 65,995 1210.59 1373 185,211

MZM.3 14,205,478 11,729 1211.14 1341 41,989

MZM.4 33,869,693 26,595 1273.54 1511 86,091

MZS.1 33,880,650 26,234 1291.48 1419 243,912

MZB.1 30,495,188 17,768 1716.30 2789 400,796

MZB.2 2,101,244 2820 745.12 692 15,984

NOVO_MIX 205,647 273 753.29 700 5562
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the original gene catalogue using SOAP aligner soft-
ware, and the number of reads of each gene in each sam-
ple was obtained. Those genes in each sample with 2 or 
fewer reads were filtered out. We then obtained the dis-
tribution of reads for the reference genes. Moreover, the 
abundance information of each gene in each sample was 
obtained. We obtained a total of 603,031 open reading 
frames (ORFs). Genes with both start and stop codons 
accounted for 29.38%~49.66% of the genes in each sam-
ple, and genes with neither initiation nor termination 
codons accounted for 5.83–12.09%. The average ORF 
length was 347.36 Mbp. The average length for each sam-
ple is shown in Table 5.

Species abundance
Based on the relative abundance table of different clas-
sification levels, the top 35 genera with respect to abun-
dance and their abundance information in each sample 
were selected to constructed a heat map. Clustering was 
conducted at the species level to visualize the data and 
identify the species with higher levels of aggregation in 
the samples (Fig. 1).

To visualize the relative abundance data of the intesti-
nal flora, boxplots of the relative abundances of gut bac-
teria at the phylum level were constructed. Firmicutes 
and Proteobacteria were the preponderant phyla in all 
groups (Fig. 2).

Principal component analysis
Because of the complexity of sample data, we used Prin-
cipal Component Analysis (PCA) to reduce and simplify 
the sample data. Results from principal component anal-
ysis (PCA) are shown in Fig. 3.

KEGG annotation results
The predicted unique genes were searched against 
the KEGG functional database, and 7140 genes were 
obtained. The total number of genes across all samples 
reached 127,839. As shown in Fig. 4, the category associ-
ated with the highest number of genes was carbohydrate 
metabolism, accounting for 11.86% of the genes, which 
suggests that carbohydrate, as the most important energy 
supplier, is the main energy source provided to the host 
by the intestinal flora. Among the processing functions, 
membrane transportation was associated with a high 
proportion of genes, accounting for 7.79% of the total 
number of genes in all samples. This finding indicates 
that continuous exchange of nutrients and metabolites 
occurs between the intestinal flora and the host via mem-
brane transportation, with the intestinal microorganisms 
aiding host digestion of food and providing the host with 
vitamins and amino acids. Based on the KEGG metabolic 
pathway annotations, we acquired information on gene 
function (Fig. 5).

CAZy annotation results
Searching the unique genes against the CAZy database 
(Carbohydrate-Active Enzymes database), the number of 
genes corresponding to the six categories of carbohydrate 
enzymes was obtained. As shown in Fig. 3, the category 
GH (glycoside hydrolases) corresponded to the greatest 
proportion of genes, and the category PL (polysaccha-
ride lyases) corresponded to the lowest number of genes. 
Based on the annotation results, the relative abundances 
of genes belonging to the six carbohydrate enzyme cat-
egories were plotted in a bar chart (Fig. 6), and the num-
bers of matched genes of carbohydrates were plotted 
(Fig. 7). 

Table 5  The statistical information of predicted gene

Sample ORFs NO Integrity: none Integrity: all Total length Average length

MZB.1 39,513 3,004 (7.6%) 19,623 (49.66%) 25.86 654.52

MZB.2 1766 103 (5.83%) 718 (40.66%) 0.5 284.09

MZF.1 57,458 6,949 (12.09%) 16,882 (29.38%) 31.42 546.78

MZF.2 43,961 3,734 (8.49%) 18,541 (42.18%) 26.64 606

MZF.3 27,858 2,972 (10.67%) 10,265 (36.85%) 16.63 597.07

MZF.4 91,228 8,049 (8.82%) 37,356 (40.95%) 54.37 595.93

MZF.5 47,236 3,832 (8.11%) 20,673 (43.77%) 27.95 591.7

MZM.1 67,006 7,037 (10.5%) 24,051 (35.89%) 39.32 586.82

MZM.2 105,623 8,052 (7.62%) 46,010 (43.56%) 54.35 514.59

MZM.3 21,266 2,107 (9.91%) 8,287 (38.97%) 12.07 567.54

MZM.4 50,935 4,540 (8.91%) 20,947 (41.12%) 29.4 577.3

MZS.1 49,063 4,797 (9.78%) 20,141 (41.05%) 28.82 587.47

NOVO_MIX 118 4 (3.39%) 57 (48.31%) 0.03 234.56
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EggNOG annotates
The eggNOG database encompasses the COG, KOG and 
Orthologous Groups databases, and was used to obtain 
corresponding functional annotations of the sequences. 
Comparison of the unique genes with genes in the 

eggNOG database revealed that the main functions of 
the genes included gene replication, repair of amino acid 
transport, carbohydrate metabolism and transport. The 
eggNOG database annotation results are shown in Figs. 8 
and 9.

Fig. 1  Cluster heat map of relative abundance at genus level
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Resistant gene annotation
To reflect the distribution of ARO in each sample, 
based on the abundance information of ARO in each 

sample, the top 30 AROs were selected to construct 
an abundance cluster heat map (Fig.  10). In addition, 
based on the annotation results of the CARD database, 

Fig. 2  Relative abundance of gut bacterial at the phylum taxonomical level

Fig. 3  Principal Component Analysis
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Fig. 4  Relative abundance of pathways

KEGG pathway annotation
Cellular Processes

1004Transport and catabolism
3542Cellular community 1336Cell motility 1324Cell growth and death

Signaling molecules and interaction
Environmental Information 

19
5742Signal transduction 10106Membrane transport

Genetic Information Processing
Translation 5796

Transcription 667Replication and repair 5051

Folding, sorting and degradation
3345

Human DiseasesSubstance dependence 113
Neurodegenerative diseases

579344Infectious diseases: Viral 143Infectious diseases: Parasitic 1802Infectious diseases: Bacterial 166Immune diseases 703Endocrine and metabolic diseases 28Cardiovascular diseases 236Cancers: Specific types 1362Cancers: Overview 282Antineoplastic resistance 2409Antimicrobial resistance
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a network diagram of species associated with resistance 
genes was constructed (Fig. 11).

Discussion
The dominant phyla in the human and mouse gut are 
Firmicutes and Bacteroidetes (Consortium 2012), and 
in chickens, the four most abundant bacterial phyla are 

Fig. 6  Relative abundance of carbohydrates

Fig. 7  Number of matched genes of carbohydrates
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Firmicutes, Proteobacteria, Bacteroidetes and Actinobac-
teria (Choi et al. 2014). Firmicutes and Bacteroidetes are 
the two most prevalent bacteria phyla found in the rumi-
nant gastrointestinal tract (Ye et  al. 2016). Among fish, 
the two most common and abundant bacterial phyla are 
Proteobacteria and Fusobacteria (Hill et  al. 2016; Wong 
and Rawls 2012). Regarding invertebrates, Proteobacte-
ria and Firmicutes have been identified as the dominant 

phyla in the gut bacterial communities of Drosophila 
melanogaster (Broderick and Lemaitre 2012), and Pro-
teobacteria has been identified as the dominant phylum 
in E. sinensis (Chen et  al. 2015). The results from this 
study show that Proteobacteria and Firmicutes are the 
dominant bacteria among the intestinal microorganisms 
of sable at the phylum level. Below the phylum level, the 
most abundant taxa were similar among the samples, 

Fig. 8  Relative abundance of function class

Fig. 9  Number of matched genes of function class
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although they differed significantly in abundance. The 
dominant species within the phyla Bacteroidetes, Teneri-
cutes, Proteobacteria and Firmicutes were similar among 
the samples, demonstrating close relationships of these 
taxa with the host. Our studies support the view there 
these microbial taxa have coevolved with their sable host.

The KEGG annotation results revealed that the num-
ber of genes corresponding to the function metabolism 
reached 77,891, representing 60.93% of the total num-
ber of genes. Within the metabolism category, the sub-
category associated with the highest number of genes, 
15,397, was carbohydrate catabolism, which accounted 
for 11.86% of the genes. These results indicated that the 
bacterial community of sable is closely associated with 
digestive tract function. At the order level, Enterobacteri-
ales, Lactobacillales and Clostridiales were the dominant 
bacterial taxa, demonstrating that the intestinal flora 
plays significant roles in carbohydrate metabolism. The 
dominant order of intestinal microorganisms within Fir-
micutes was Clostridium, which is involved in the decom-
position of cellulose. In addition, some carbohydrate 

catabolism and vitamin synthesis are usually performed 
by the intestinal flora (Gao et al. 2020).

In the CAZy database annotation, the number of genes 
corresponding to glycoside hydrolases was 5267. Glyco-
side hydrolases are involved in the synthesis of glycocon-
jugates. The number of glycosyltransferase-associated 
genes was 3347. The main function of glycosyltrans-
ferases is to attach activated sugar groups to various 
receptor molecules. The number of genes correspond-
ing to carbohydrate-binding modules was 1421, and the 
number corresponding to carbohydrate esterases was 
542. The number of polysaccharide lysate-associated 
genes was 51, and the number of genes involved in aux-
iliary activities was 174. These enzymes participate in the 
degradation and modification of carbohydrates and the 
formation of glycosidic bonds. Recently, much research 
has been aimed at determining the complexity of the 
relationships between the host and the gut microbiota.

Although intestinal microbes are closely associated 
with the immune system, their relationships with gut 
immunity remain unknown. The intestinal flora plays 

3 GGrroouuppGGrroouupp
MZI

QnrD2 2 MZF

MZM1
sul1

0

tetG
−1

−2

−3

adeG

adeC

aadA17

mfd

macA

macB

mdtC

mdtF

mexB

PmrC

adiY

TEM−1

Streptomyces_cinnamoneus_EF−Tu

floR

sul2

tetAP

ErmT

tetL

ANT4−Ib

lnuA

lmrB

aminocoumarin_resistant_alaS

tetK

Bifidobacteria_intrinsic_ileS

ErmB

tetO

Staphylococcus_aureus_rpoB

Fig. 10  ARO distribution and abundance cluster heat map. The right vertical axis is the ARO name, and the left vertical axis is the ARO cluster tree



Page 13 of 16Yan et al. AMB Expr          (2020) 10:169 	

important roles in maintaining intestinal health (Zhou 
et  al. 2019). In this study, based on sequence alignment 
using non-redundant CARD databases and the annota-
tion results, we found an abundance of multiple drug-
resistant Mexb protein genes, indicating that the gut 
microflora plays a role in the immune response to exog-
enous substances. Regarding the functions of genes in 
the category environmental information processing, the 
subcategory membrane transport was associated with 
the highest number of genes, accounting for 7.79% of the 
total genes of all samples. This finding indicates that the 
host and intestinal flora are constantly exchanging sub-
stances. The genes associated with the category inorganic 
transport and metabolism encode phosphate, sulfate, and 
various cation transporters (Gill et al. 2006). The identi-
fied microbial proteins were searched in the COG func-
tional database, which revealed high expression levels of 

genes associated with inorganic transport and metabo-
lism in healthy children and low levels in obese children 
with non-alcoholic fatty liver disease (Michail et al. 2014). 
The cell wall/membrane/envelope biogenesis genes par-
ticipate in transmembrane transport and the exocytosis 
of antibiotics to resist the effects of tetracycline hydro-
chloride, indicating that gut microbiota can enhance 
antibiotic resistance. Hence, opportunistic microorgan-
isms can survive in the mouse gut (Horie et  al. 2017). 
The numbers of genes related to genetic information 
processing, such as gene replication, transcription, trans-
lation and repair, was 14,859, accounting for 11.62% of 
the total genes. The annotation results revealed a large 
number of genes related to host diseases in the intesti-
nal flora; 8167 such genes were identified, accounting 
for 6.39% of the total. Innate immunity is a significant 
host defence mechanism that lacks the high selection 

Fig. 11  The overview circle graph of resistance gene
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mechanisms of adaptive immunity. This observation is 
consistent with our findings. Interestingly, TLRs have 
been found to be expressed at low levels in the gut of 
Drosophila melanogaster (Broderick and Lemaitre 2012). 
Many studies have shown that the correlations between 
microbial community composition and inflammatory 
parameters can serve as biological indicators of diseases 
(Becattini et  al. 2016). Lactobacillaceae and Enterobac-
teriaceae, the dominant bacteria at the family level, play 
important roles in assisting the host breakdown of car-
bohydrates and ferment sugars to maintain host nutrition 
and metabolism. At the genus level, Lactobacillus and 
Escherichia were observed at high abundance. Lactoba-
cillus, as a beneficial bacterium, act as a barrier against 
foreign invaders, inhibits the growth of pathogenic bac-
teria and synthesises vitamins and amino acids for host, 
maintaining a dynamic balance of gut microbes. This 
bacterium also plays an important role in tumour inhibi-
tion; in some hosts with disease, Lactobacillus abundance 
in the gut is decreased (Azad et al. 2018).

In addition, genes regulating cell processes were iden-
tified in the intestinal flora. The number of genes regu-
lating cell growth and apoptosis was 1324, representing 
1.04% of the genes. The number of genes regulating cell 
movement was 1336, representing 1.05% of the total. The 
number of genes regulating the cell community was 3542, 
representing 2.77%. The number of genes regulating the 
transport and catabolism of cells was 1004, representing 
79%. The number of genes related to biological systems 
was 3849, representing 3.01% of the total genes. In addi-
tion, in this functional category, the number of genes 
related to the endocrine system was 1372, accounting for 
1.07% of the total.

In this study, we identified the complex popula-
tion structure of the intestinal microbiota of sables 
based on metagenomic sequencing methods, which use 
whole metagenomic data, and we mapped the obtained 
sequences to known genes or pathways in existing data-
bases, such as CAZy, KEGG, and eggNOG. We then 
explored the genetic composition and functional diver-
sity of the microbial community based on the mapped 
functional categories.
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