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Abstract 

Salmonella is an important food-borne pathogen associated with public health and high economic losses. To 
investigate the prevalence and the characteristics of Salmonella in a pig slaughterhouse in Yangzhou, a total of 80 
Salmonella isolates were isolated from 459 (17.43%) samples in 2016–2017. S. Derby (35/80, 43.75%) was the most 
prevalent, followed by S. Rissen (16/80, 20.00%) and S. Newlands (11/80, 13.75%). The highest rates of susceptibility 
were observed to cefoxitin (80/80, 100.0%) and amikacin (80/80, 100.0%), followed by aztreonam (79/80, 98.75%) and 
nitrofurantoin (79/80, 98.75%). The highest resistance rate was detected for tetracycline (65/80, 81.25%), followed by 
ampicillin (60/80, 75.00%), bactrim (55/80, 68.75%), and sulfisoxazole (54/80, 67.50%). Overall, 91.25% (73/80) of the 
isolates were resistant to at least one antibiotic, while 71.25% (57/80) of the isolate strains were multidrug resistant 
in the antimicrobial susceptibility tested. In addition, 86.36% (19/22) of the 22 antimicrobial resistance genes in the 
isolates were identified. Our data indicated that the resistance to certain antimicrobials was significantly associated, in 
part, with antimicrobial resistance genes. Furthermore, 81.25% (65/80) isolates harbored the virulence gene of mogA, 
of which 2 Salmonella Typhimurium isolates carried the mogA, spvB and spvC virulence genes at the same time. The 
results showed that swine products in the slaughterhouse were contaminated with multidrug resistant Salmonella 
commonly, especially some isolates carry the spv virulence genes. The virulence genes might facilitate the dissemi-
nation of the resistance genes to consumers along the production chain, suggesting the importance of controlling 
Salmonella during slaughter for public health.
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Introduction
Salmonella has emerged as a major food-borne patho-
gen associated with breeding industry and public health 
in many countries (Eurosurveillance editorial team 2012; 
Majowicz et  al. 2010; Kasimoglu Dogru et  al. 2010). So 

far, more than 2600 identified serovars of Salmonella 
have been recorded (Guibourdenche et  al. 2010). It is 
one of the leading causes of human gastroenteritis and 
causes more than 93.8 million infection cases annually 
(Majowicz et  al. 2010). Salmonella has been estimated 
at least 1 million cases in the USA each year, result-
ing in the loss of 365 million dollars (Yang et  al. 2019). 
In China, Salmonella infection cases are also frequently 
reported and accounted for 70–80% of bacterial food poi-
sonings (Wang et al. 2006; Yang et al. 2016). Chen et al. 
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reported that there were 134 outbreaks of food poison-
ing events caused by Salmonella in Guangxi from 1981 
to 2003, which caused 7285 cases of salmonellosis (Chen 
et al. 2004). Between July 2010 and December 2011, non-
typhoidal Salmonella were isolated from 316 (17.2%) of 
1833 cases of acute gastroenteritis in children in Shang-
hai (Li et  al. 2014a). After being infected with Salmo-
nella, human and livestock can be asymptomatic carriers, 
which can reduce the fertility, aggravate the morbidity or 
mortality, and even be manifested as clinically fatal dis-
eases. Pigs are considered to be one of the most impor-
tant reservoir for many serovars of Salmonella, and most 
human infections are attributed to consumption of con-
taminated pork (Eurosurveillance editorial team 2012; Li 
et al. 2013; Vo et al. 2006a). Information on the distribu-
tion of different Salmonella enterica serovars in contami-
nated pork is important to public health.

Slaughterhouse is a main place where livestock and 
poultry products might be contaminated with Salmo-
nella. In order to control the transmission of salmonella, 
the European Union has carried out many studies on pig 
slaughterhouses and processes. From these studies, Swart 
et  al. have developed a model to evaluate the effects of 
different interventions (Swart et al. 2016). The swine herd 
population and pork production in China account for half 
of the world (Windhorst 2012). Therefore, it is of great 
public health significance to study the status of Salmo-
nella contamination from pig slaughterhouses in China 
(Botteldoorn et al. 2004). As a big pork producer, China 
must strengthen its control of Salmonella transmission.

As of 2013, the total antibiotics usage in China was 
approximately 162,200 tons, of which 84,100 tons were 
for animals (Tang et  al. 2016). The use of antibiotics in 
China accounts for about half of the world. These data 
show that China is one of the countries with the most 
severe abuse of antibiotics. In animals, salmonellosis is 
mainly treated with antibiotics for prevention and con-
trol. However, due to the abuse of antibiotics in recent 
years, the rate of Salmonella with drug resistance and 
even multidrug resistance has risen significantly result-
ing in the increased frequency of treatment failure in 
human clinical medicine (Hidalgo-Vila et al. 2008; Kari-
uki et al. 2015; Kingsley et al. 2009; Dahshan et al. 2011; 
Beyene et al. 2011; Hendriksen et al. 2009; Pan et al. 2009; 
Li and Liu 2005). Salmonella with antibiotic resistance 
in contaminated products could infect humans directly 
or transmit their resistance genes to human pathogens 
through the food chain, leading to the failure of antibiotic 
treatment and posing a threat to human health. Thus it is 
a reason that the disease caused by Salmonella is not well 
controlled clinically.

In this study, a total of 459 swine samples were ran-
domly collected from a pig slaughterhouse between 2016 

and 2017 in Yanzhou, China. All the isolates were exam-
ined for serotype distribution, antimicrobial resistance, 
major genotypes, and the relationship between drug 
resistance phenotype and drug resistance genes. The 
results could provide a reference for the epidemiological 
investigation of Salmonella in pigs.

Materials and methods
Sample collection and Salmonella isolation
During a period of 13  months, from October 2016 to 
October 2017, a total of 459 samples (distal ilea, n = 230; 
livers, n = 166; feces, n = 63) were collected at the start of 
the slaughter line from slaughtered pigs in a large scale 
industrialized slaughterhouse in Yangzhou, China. After 
collection, all samples were stored in sterilized contain-
ers with ice bags, and immediately processed to isolate 
Salmonella strains. Briefly, the samples of the ileum and 
liver were sheared, and 0.5 g fecal samples were picked. 
The samples mentioned above were added to 5 mL buff-
ered peptone water (BPW; Neogen, Lansing, MI, USA) 
and incubated at 37 °C for 8–18 h. Subsequently, 100 μL 
pre-enriched culture was inoculated into in 5 mL of sel-
enite cysteine (SC) broth at 37  °C for 12–18 h and then 
streaked on MacConkey and Salmonella and Shigella 
(SS) plates. After incubation for 18–24  h at 37  °C, sus-
pected colonies were picked from MacConkey medium 
plates for purification. After purifying, the suspected 
Salmonella colonies were stained according to the Gram 
staining instruction manual. Then, the gram-negative 
bacteria were further confirmed by combined polymer-
ase chain reaction (PCR) analysis using 2 pairs of primers 
[Salmonella enterotoxin gene (stn, 260 bp) and histidine 
transporter gene (hut, 495 bp)]. The wild-type S. Choler-
aesuis strain C78-3 (CVCC79103) was purchased from 
China Institute of Veterinary Drugs Control and used 
as a positive control. The primers used in this study are 
described in Table 1.

Salmonella serotyping
To evaluate the serotype distribution of the Salmonella 
isolates, the confirmed Salmonella strains were sero-
typed by slide agglutination test for O and H antigens 
of Salmonella using commercially available antiserum 
(Lanzhou Institute of Biological Products, China). Briefly, 
a single colony, picked with a loop, was evenly coated 
to a 10 μL of Salmonella standard antiserum on a slide. 
The slide was shaked gently for 1–2 min. The agglutina-
tor which showed a uniform turbidity was determined as 
the serotype positive of Salmonella based on the meas-
ured antigenic formula according to GB/T 4789.4-2010. 
In this process, the negative control of saline group was 
also included.
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Analysis of the 16S rRNA sequence
To determine the homology of the Salmonella isolates, 
16S rRNA genes of the identified strains were sequenced 
by Sangon Biotech. Primers for the amplification of 16S 
rRNA corresponding to the universal primers 27F and 
1492R are listed in Table 1. The DNA sequences of 16S 
rRNA were edited and assembled using the programs 
SeqMan and Edit Seq (DNA Star, Laser Gene 6, Madison, 
WI, USA). The sequences were aligned using MEGA v6.0 
and MegAlign software. Genetic distances were defined 
using the Kimura 2-parameter model (Kumar et al. 2004). 
The phylogenetic tree was constructed by the neigh-
bour-joining method in MEGA v6.0 (Saitou et al. 1987). 
Percent divergence and similarity were calculated by 
comparing sequence pairs in relation by MegAlign.

Antimicrobial susceptibility testing
Antimicrobial susceptibility test results of the Salmonella 
isolates to 22 kinds of antimicrobials was carried out in 
accordance with the standard Kirby-Bauer disk diffusion 
method recommended by the Clinical and Laboratory 
Standards Institute (CLSI 2017) (Berchieri et  al. 2001). 
The reference strain, Escherichia coli ATCC 25922 was 
used as a control. The isolates were classified as suscep-
tible, intermediate, or resistant according to the CLSI 
(2017) guidelines. Salmonella isolates resistant to at least 
3 different antimicrobials were defined as multidrug 
resistance isolates (Pokharel et  al. 2006). The following 

Table 1 Primers used for PCR amplification

Target genes Nucleotide sequences Size (bp)

Salmonella spp. detection primer sets

 stn-F 5′-CTT TGG TCG TAA AAT AAG GCG-3′ 260

 stn-R 5′-TGC CCA AAG CAG AGA GAT TC-3′

 hut-F 5′-ACT GGC GTT ATC CCT TTC TCT GCT G-3′ 495

 hut-R 5′-ATG TTG TCC TGC CCC TGG TAA GAG A-3′

16S rRNA primer set

 27F 5′-AGA GTT TGA TCC TGG CTC AG-3′ 1466

 1492R 5′-TAC GGT TAC CTT GTT ACG ACTT-3′

Antimicrobial resistance gene primer sets

 Quinolones

  qnrA-F 5′-TTC AGC AAG AGG ATT TCT CA-3′ 500

  qnrA-R 5′-GGC AGC ACT ATT ACT CCC AA -3′

  qnrB-F 5′-CCT GAG CGG CAC TGA ATT TT-3′ 617

  qnrB-R 5′-GTT TGC TGC TCG CCA GTC GA-3′

  qnrC-F 5′-GGG TTG TAC ATT TAT TGA ATC-3′ 447

  qnrC-R 5′-TCC ACT TTA CGA GGT TCT -3′

  qnrD-F 5′-TTA CGG GGA ATA GAG TTA -3′ 468

  qnrD-R 5′-AAT CAG CCA AAG ACC AAT -3′

  qnrS-F 5′-ACA TAA AGA CTT AAG TGA TC-3′ 619

  qnrS-R 5′-CAA TTA GTC AGG ATA AAC -3′

  qepA-F 5′-CCA GCT CGG CAA CTT GAT AC-3′ 570

  qepA-R 5′-ATG CTC GCC TTC CAG AAA A-3′

  oqxA-F 5′-CTC GGC GCG ATG ATG CTC -3′ 392

  oqxA-R 5′-CAC TCT TCA CGG GAG ACG A-3′

  oqxB-F 5′-TTC TCC CCC GGG GGG AAG TCC TCG GC-3′ 512

  oqxB-R 5′-CAT TTT GGC GCG TA-3′

 Aminoglycosides

  aac(6′)-Ib-F 5′-TTG CGA TGC TCT ATG AGT GGCTA-3′ 482

  aac(6′)-Ib-R 5′-CTC GAA TGC CTG GCG TGT T-3′

  aadA1-F 5′-GCG CCA TCT CGA ACC GAC GTT-3′ 573

  aadA1-R 5′-GCC CAG TCG GCA GCG ACA TC-3′

 Sulfonamides

  sul1-F 5′-TGG CGT CGC GAC TGC GAA AT-3′ 813

  sul1-R 5′-TGG TGA CGG TGT TCG GCA TTCT-3′

  sul2-F 5′-GTT TCT CCG ATG GAG GCC GGT-3′ 517

  sul2-R 5′-AGC GAG GTT TCG GGA GCA GC-3′

 Trimethoprim

  dfrA1-F 5′-AGT GCC AAA GGT GAA CAG CTCCT-3′ 308

  dfrA1-R 5′-ACA TCA CCT TCC GGC TCG ATG TCT -3′

 β-lactamase

  blaOXA-1-F 5′-ATG AAA AAC ACA ATA CAT ATC-3′ 830

  blaOXA-1-R 5′-AAT TTA GTG TGT TTA GAA TGG-3′

  blaPSE-1-F 5′-CGC TTC CCG TTA ACA AGT AC-3′ 420

  blaPSE-1-R 5′-CTG GTT CAT TTC AGA TAG CG-3′

  blaTEM-F 5′-ATA AAA TTC TTG AAG ACG AAA-3′ 1080

  blaTEM-R 5′-GAC AGT TAC CAA TGC TTA ATC-3′

  BlaCMY-2-F 5′-TGG CGG TTG CCG TTA TCT AC-3′ 210

  BlaCMY-2-R 5′-CCC GTT TTA TGC ACC CAT GA-3′

Table 1 (continued)

Target genes Nucleotide sequences Size (bp)

 Tetracyclines

  tetA-F 5′-TGG TCC GGA GGC CAG ACG TG-3′ 867

  tetA-R 5′-TTC CGA GCA TGA GTG CCC GC-3′

  tetB-F 5′-GGA GCT ACT GGG GCT GTC GCACC-3′ 374

  tetB-R 5′-ACC CAC ACC GTT GCG GGA AT-3′

  tetG-F 5′-TCT TGC AGG AGC CGC AGT CGAT-3′ 721

  tetG-R 5′-GGC CGG CAT GCC AAC ACC C-3′

 Chloramphenicols

  catA1-F 5′-TCT TGC CCG CCT GAT GAA TGC-3′ 388

  catA1-R 5′-AAC CTG AAT CGC CAG CGG CA-3′

  floR-F 5′-AAC CCG CCC TCT GGA TCA AGT CAA -3′ 549

  floR-R 5′-CAA ATC ACG GGC CAC GCT GTATC-3′

Virulence gene primer sets

  mogA-F 5′-ATT GGC TTA GTT TCT ATC TCCG-3′ 419

  mogA-R 5′-CCT TCC AGC GTT TCT TTG A-3′

  pvB-F 5′-CCG TAG AGC AGA CGC TGT AAGC-3′ 1856

  spvB-R 5′-GTA TCT ATG AGT TGA GTA CCC CTA TG-3′

  spvC-F 5′-CCG CAA AGT AGT GCA TCT AAAC-3′ 919

 spvC-R 5′-CCA TAC TTA CTC TGT CAT CAA ACG -3′
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antibiotics were used in this study: ampicillin (AMP, 
10  μg), mezlocillin (MEZ, 75  μg), amoxicillin/clavu-
lanic acid (augmentin, AMC, 20/10 μg), cefoxitin (CFX, 
30  μg), ceftriaxone (CRO, 30  μg), aztreonam (ATM, 
30  μg), polymyxin B (POL, 300  IU), gentamicin (GEN, 
10  μg), tobramycin (TOB, 10  μg), amikacin (AMK, 
30 μg), kanamycin (KAN, 30 μg), neomycin (NEO, 30 μg), 
streptomycin (STR, 10  μg), tetracycline (TET, 30  μg), 
chloramphenicol (CHL, 30 μg), florfenicol (FFC, 30 μg), 
ciprofloxacin (CIP, 5  μg), enrofloxacin (ENR, 10  μg), 
sulfisoxazole (SUL, 300  μg), trimethoprim/sulfameth-
oxazole (bactrim, SXT, 1.25/23.75  μg), trimethoprim 
(TMP, 5 μg), and nitrofurantoin (NIT, 300 μg). The disks 
of 22 different antimicrobial agents were purchased from 
Hangzhou Microbiological Reagent Co., Ltd.

PCR amplification of antimicrobial resistance genes
DNA templates of the Salmonella isolates for PCR were 
prepared according to the boiled lysis method (Ahmed 
et  al. 2010). In short, all the Salmonella isolates were 
maintained in Luria–Bertani (LB) broth. Then, an over-
night bacterial culture (200 μL) was mixed with 800 μL of 
distilled water and boiled for 10  min. The mixture sam-
ples were centrifuged at 4  °C for 5 min and the superna-
tant were used as the DNA templates. After extraction of 
DNA, the antimicrobial resistance genes, including qui-
nolones, aminoglycosides, sulfonamides, trimethoprim, 
β-lactamase, tetracyclines, and chloramphenicols, were 
examined by PCR amplification, using the previously 
described primers listed in Table 1 (Petermann et al. 2011). 
The PCR products were subjected to electrophoresis in a 
1.0% agarose gel, and sequenced by Sangon Biotech Co., 
Ltd. (Shanghai, China). The DNA sequences were com-
pared with data in the GenBank database using the BLAST 
tool available at the National Center for Biotechnology 
Information website (http://www.ncbi.nlm.nih.gov).

Detection of virulence genes
The Salmonella pathogenicity island-I (SPI-1) virulence 
gene mogA and the virulence genes spvB and spvC were 
selected to detect the virulence of Salmonella through 
the multiplex PCR as described by Skyberg et al. (Skyberg 
et al. 2006). The primers of virulence genes used in this 
study are described in Table 1.

Results
Isolation of Salmonella
To investigate the contamination status of Salmonella in 
a pig slaughterhouse, 459 samples (distal ilea, n = 230; 
livers, n = 166; feces, n = 63) were collected randomly 
from the slaughtered pigs in Yangzhou between October 
2016 and October 2017. After enrichment, purification, 
Gram stain and PCR procedure, a total of 80 Salmonella 

isolates were recovered and identified from 459 (17.43%) 
samples. The isolation rate of Salmonella spp. was 27.83% 
(64/230) in ileum samples, 8.43% (14/166) in liver sam-
ples and 3.17% (2/63) in feces samples, respectively 
(Table  2). The isolates showed higher positive rate for 
Salmonella in ileum samples than that in liver and feces 
samples.

Serotyping of Salmonella isolates
Of the 80 isolates, 79 (98.75%) were typable and 1 (1.25%) 
was non-typable (Table 3). The 79 Salmonella isolates con-
sisted of 7 serotypes: S. Derby, S. Rissen, S. Newlands, S. 
Typhimurium, S. Sinstorf, S. Nchanga, and S. Chester. S. 
Derby (35/80, 43.75%) was the predominant one, followed 
by S. Rissen (16/80, 20.00%) and S. Newlands (11/80, 
13.75%). The isolates contained 3 serovar groups: B (46/80, 
57.50%), C1 (16/80, 20.00%), and E1 (18/80, 22.5%).

Phylogenetic analysis based on 16S rRNA gene sequences
To investigate the serotype homology of the Salmonella 
isolates, phylogenetic analysis of 16S rRNA sequences 
was carried out. All sequences of the isolates were 
submitted to GenBank (GenBank ID: MH548440–
MH548519). A total of 80 16S rRNA gene sequences 
from isolates were compared based on differences in 
16S rRNA sequence to construct an evolutionary tree. 
As shown in Fig.  1, the 80 isolates in the phylogenetic 
analysis were divided into three main clusters. We found 
that the same serotype can not be divided into discrete 
clusters, while the same cluster can contain multiple 
serotypes, which means that some Salmonella serotypes 
closely related to the gene sequences of 16S rRNA.

Antimicrobial resistance of Salmonella isolates
All of the 80 Salmonella isolates were tested for antimi-
crobial susceptibility against 22 antimicrobial agents. The 
results of the antimicrobial resistance determination of 
the isolates are shown in Table 4. All the Salmonella iso-
lates were susceptible to cefoxitin and amikacin and 65 
(81.25%), 60 (75.00%), 55 (68.75%) and 54 (67.50%) iso-
lates were resistant to tetracycline, ampicillin, bactrim 
and sulfisoxazole, respectively. Of particular note, all 
isolates were nonresistant against ceftriaxone, cefoxitin, 
azimium, polymyxin B, amikacin, and nitrofurantoin. In 
addition, 44 (55.00%), 31 (38.75%) and 30 (37.50%) of the 
isolates were moderately sensitive to enrofloxacin, poly-
myxin B and mezlocillin, respectively.

The drug resistance profiles of the 80 isolates were 
constructed (Table  5). Among all of the 80 isolates, 73 
(91.25%) of the isolates were resistant to at least one 
antibiotic, and 57 isolates showed multidrug resist-
ance (resistant to three or more different antimicrobial 
agents), yielding the high rate of 71.25%. The Salmonella 
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Table 2 Information of Salmonella isolated from a pig slaughterhouse in Yangzhou, China

No. Serotype Origin Virulence genes Resistance genes Date

mogA spvB spvC

1 S. Sinstorf Feces − − − oqxA, oqxB, aac(6′)-Ib, sul1, sul2, tetA, tetG, catA1, floR 2 Oct 2016

2 S. Typhimurium Liver + + + blapsE-1, tetG, catA1 2 Oct 2016

3 S. Typhimurium Ileum + + + blapsE-1, tetG, catA1 2 Oct 2016

4 S. Typhimurium Ileum + − − qnrS, oqxB, blatem, tetA, floR, catA1 2 Oct 2016

5 S. Rissen Ileum + − − qepA, sul2, tetA 2 Oct 2016

6 S. Derby Liver + − − qepA, oqxB, aac(6′)-Ib, blaoxA-1, tetA, tetG, floR, dfrA1 22 Oct 2016

7 S. Sinstorf Liver + − − oqxA, aac(6′)-Ib, blaCMY-2, tetA, tetG, floR, dfrA1 23 Oct 2016

8 S. Rissen Ileum + − − qepA, oqxB, blatem, tetA, catA1, dfrA1 23 Oct 2016

9 S. Sinstorf Liver − − − oqxA, oqxB, aac(6′)-Ib, tetA, tetG, catA1, floR, dfrA1 23 Oct 2016

10 S. Derby Liver + − − qepA, aac(6′)-Ib, blaoxA-1, tetA, dfrA1 23 Oct 2016

11 S. Derby Liver + − − oqxA, oqxB, tetA, dfrA1 4 Dec 2016

12 S. Newlands Ileum − − − tetA 4 Dec 2016

13 S. Newlands Ileum − − − 4 Dec 2016

14 S. Newlands Ileum − − − catA1 4 Dec 2016

15 S. Derby Ileum + − − aac(6′)-Ib, blatem, aadA1, floR 4 Dec 2016

16 S. Derby Ileum + − − aac(6′)-Ib, aadA1 4 Dec 2016

17 S. Derby Ileum + − − aac(6′)-Ib, aadA1 10 Dec 2016

18 S. Typhimurium Ileum + − − qnrB, oqxA, oqxB, tetB, floR, catA1, aadA1 10 Dec 2016

19 S. Derby Ileum + − − aac(6′)-Ib 10 Dec 2016

20 S. Derby Ileum + − − 10 Dec 2016

21 S. Derby Ileum + − − tetA 10 Dec 2016

22 S. Newlands Ileum − − − tetA 10 Dec 2016

23 S. Newlands Ileum − − − 10 Dec 2016

24 S. Derby Liver + − − tetA 26 Dec 2016

25 S. Newlands Feces − − − dfrA1 26 Dec 2016

26 S. Derby Ileum + − − oqxA, aac(6′)-Ib, sul1, sul2, blaoxA-1, tetA, aadA1, floR 26 Dec 2016

27 S. Typhimurium Ileum + − − qnrS, oqxB, blatem, tetA, floR, catA1 26 Dec 2016

28 S. Rissen Ileum + − − tetA, aadA1, catA1 26 Dec 2016

29 S. Typhimurium Ileum + − − qnrS, oqxB, blatem, tetA, floR, catA1 26 Dec 2016

30 S. Derby Liver + − − oqxA, sul2, blatem, tetA, aadA1, catA1, dfrA1 14 Jan 2017

31 S. Derby Liver + − − oqxA, sul2, blatem, tetA, aadA1, dfrA1 14 Jan 2017

32 S. Derby Liver + − − oqxA, tetA, aadA1, dfrA1 14 Jan 2017

33 S. Newlands Ileum − − − sul2, blapsE-1, tetA, catA1, floR 14 Jan 2017

34 S. Rissen Ileum − − − sul2, catA1 25 Feb 2017

35 S. Newlands Ileum − − − sul2, tetA, aadA1, floR 25 Feb 2017

36 S. Derby Ileum + − − oqxA, aac(6′)-Ib, sul1, sul2, blaoxA-1, blapsE-1, tetA, aadA1, floR 25 Feb 2017

37 S. Nchanga Ileum − − − sul2, blapsE-1, catA1, floR 25 Feb 2017

38 S. Derby Ileum + − − oqxA, sul1, sul2, blaoxA-1, blapsE-1, tetA, aadA1, floR 25 Feb 2017

39 S. Derby Ileum + − − oqxA, aac(6′)-Ib, sul1, sul2, blaoxA-1, tetA, aadA1, floR 25 Feb 2017

40 S. Derby Ileum + − − oqxA, aac(6′)-Ib, sul1, sul2, blaoxA-1, tetA, aadA1, floR 25 Feb 2017

41 S. Newlands Ileum − − − 25 Feb 2017

42 S. Derby Liver + − − aac(6′)-Ib, blaoxA-1, tetA 2 Apr 2017

43 S. Newlands Ileum + − − sul2, tetA, aadA1, floR 2 Apr 2017

44 S. Derby Liver + − − tetA, aadA1, catA1 22 Apr 2017

45 S. Derby Ileum + − − aadA1 22 Apr 2017

46 S. Derby Ileum + − − tetA 22 Apr 2017

47 S. Newlands Ileum − − − 22 Apr 2017

48 S. Rissen Ileum + − − sul2, blatem, tetA, aadA1, catA1 22 Apr 2017
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isolates in this study displayed a high and wide spectrum 
of antibiotic resistance. The most common resistance 
spectrums were AMP-STR-TET-SXT-SUL-TMP (n = 5) 
and AMP (n = 5). Totally, 46 resistance phenotypes of 
these isolates to 22 classes of antimicrobials were found 
in this study, among which most isolates were multidrug 
resistant to 6 and 8 classes of antimicrobials, accounted 
for 13.75% (11/80) and 12.50% (10/80), respectively. The 
highest drug resistance in the isolates were resistance to 
14 antibacterial agents. Of particular note, our results 
showed that multidrug resistance of the isolates were fre-
quently observed among the pig slaughterhouse.

Table 2 (continued)

No. Serotype Origin Virulence genes Resistance genes Date

mogA spvB spvC

49 S. Rissen Ileum + − − Blatem, tetA, aadA1, catA1 22 Apr 2017

50 S. Rissen Ileum + − − Blatem, tetA, aadA1, catA1 22 Apr 2017

51 S. Rissen Ileum + − − Blatem, tetA, aadA1, catA1 22 Apr 2017

52 S. Rissen Ileum + − − Blatem, tetA, aadA1, catA1 22 Apr 2017

53 S. Derby Ileum + − − Blatem, tetA, aadA1, catA1, floR 22 Apr 2017

54 S. Rissen Ileum + − − Blatem, tetA, aadA1, catA1, dfrA1 22 Apr 2017

55 S. Rissen Ileum + − − Blatem, tetA, aadA1, catA1 22 Apr 2017

56 S. Rissen Ileum + − − Blatem, tetA, aadA1, catA1 22 Apr 2017

57 S. Rissen Ileum + − − Blatem, tetA, aadA1, catA1 22 Apr 2017

58 S. Rissen Ileum + − − sul2, blatem, tetA, aadA1, catA1, dfrA1 22 Apr 2017

59 S. Derby Ileum + − − sul2, tetA, aadA1, catA1 22 Apr 2017

60 S. Derby Liver + − − tetA, aadA1, catA1, floR 20 May 2017

61 S. Derby Ileum + − − tetA 20 May 2017

62 S. Rissen Ileum + − − qnrS, blatem, tetA 20 May 2017

63 Untyped Ileum + − − blatem, tetA 20 May 2017

64 S. Derby Ileum + − − tetA 17 Jul 2017

65 S. Nchanga Ileum + − − aac(6′)-Ib, tetA 17 Jul 2017

66 S. Derby Ileum + − − tetA 20 Oct 2017

67 S. Derby Ileum + − − 20 Oct 2017

68 S. Derby Ileum + − − catA1 20 Oct 2017

69 S. Derby Ileum + − − 20 Oct 2017

70 S. Derby Liver + − − 22 Oct 2017

71 S. Derby Ileum + − − 22 Oct 2017

72 S. Nchanga Ileum − − − qnrS, sul2, blapsE-1, tetA, aadA1, catA1, floR 22 Oct 2017

73 S. Rissen Ileum + − − aadA1, catA1 22 Oct 2017

74 S. Derby Ileum + − − 22 Oct 2017

75 S. Chester Ileum + − − tetB, catA1 22 Oct 2017

76 S. Chester Ileum + − − tetB, catA1 22 Oct 2017

77 S. Derby Ileum + − − oqxA, aac(6′)-Ib, sul1, sul2, blaoxA-1, blapsE-1, tetA, aadA1, catA1, floR 22 Oct 2017

78 S. Typhimurium Ileum + − − sul2, tetB, catA1 28 Oct 2017

79 S. Typhimurium Ileum + − − sul2, tetB, catA1 28 Oct 2017

80 S. Typhimurium Ileum + − − sul2, tetB, catA1 28 Oct 2017

Table 3 Serotype distribution of the Salmonella isolates

Groups of sero-group 
of Salmonella

Serotype of Salmonella Numbers 
of isolates

Group B S. Derby 35

S. Typhimurium 9

S. Chester 2

Group C1 S. Rissen 16

Group E1 S. Newlands 11

S. Sinstorf 3

S. Nchanga 3

Untyped 1
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58 S. Rissen

73 S. Rissen

57 S. Rissen

50 S. Rissen

51 S. Rissen

52 S. Rissen

56 S. Rissen

48 S. Rissen

49 S. Rissen

54 S. Rissen

55 S. Rissen

62 S. Rissen

34 S. Rissen

76 S. Chester

63 Untyped

75 S. Chester

8 S. Rissen

5 S. Rissen

28 S. Rissen

65 S. Nchanga

1 S. Sinstorf

7 S. Sinstorf

9 S. Sinstorf

37 S. Nchanga

72 S. Nchanga

6 S. Derby

10 S. Derby

16 S. Derby

26 S. Derby

30 S. Derby

36 S. Derby

38 S. Derby

39 S. Derby

40 S. Derby

42 S. Derby

45 S. Derby

11 S. Derby

31 S. Derby

32 S. Derby

44 S. Derby

77 S. Derby

70 S. Derby

17 S. Derby

59 S. Derby

15 S. Derby

19 S. Derby

20 S. Derby

21 S. Derby

24 S. Derby

46 S. Derby

53 S. Derby

60 S. Derby

61 S. Derby

64 S. Derby

69 S. Derby

71 S. Derby

74 S. Derby

67 S. Derby

68 S. Derby

66 S. Derby

79 S. Typhimurium

80 S. Typhimurium

78 S. Typhimurium

18 S. Typhimurium

27 S. Typhimurium

35 S. Newlands

47 S. Newlands

29 S. Typhimurium

4 S. Typhimurium

2 S. Typhimurium

3 S. Typhimurium

43 S. Newlands

14 S. Newlands

41 S. Newlands

12 S. Newlands

13 S. Newlands

22 S. Newlands

23 S. Newlands

25 S. Newlands

33 S. Newlands

Fig. 1 Phylogenetic tree of 80 Salmonella isolates based on 16S rRNA 
analysis. 16S rRNA gene sequences (1466 bp) were amplified by PCR 
and the nucleotide sequences determined. This is a neighbour-joining 
tree based on 80 Salmonella 16S rRNA sequences. The scale bar 
indicates one base substitution per 10,000 nt position. The number 
shown next to each node indicates the bootstrap value (1000 
replicates)

Detection of antimicrobial resistance genes
Among the 22 resistance genes detected by PCR, 19 
kinds of resistant genes in the Salmonella isolates 
were detected (Table 6). The highest rate was observed 
to the tetA gene (51/80, 63.75%), followed by catA1 
(38/80, 47.50%) and aadA1 (33/80, 41.25%), which 
mediate the resistance to chloramphenicol and strepto-
mycin, respectively. Only two isolates carried the qnrB 
gene and blaCMY-2 gene, respectively, each account-
ing for 1.25%. It is noteworthy that all of the aac(6′)-Ib 
genes harbored the -cr mutation (Trp-Arg at locus 102 
and Asp-Tyr at locus 179). Three antimicrobial resist-
ance genes qnrA, qnrC and qnrD were not detected 
in the isolates. Moreover, 12.50% (10/80) of the iso-
lates did not harbored any resistance genes, of which 
six of them exhibited extremely weak drug resistance 
(intermediate). We found that the resistance genes of 
tetracyclines (59/80, 73.75%) displayed the highest 
rate, which is in general consistency with the observa-
tions of antimicrobial resistance of the isolates. Higher 
rates of resistance genes to chloramphenicols (48/80, 
60.00%) and aminoglycosides (41/80, 51.25%) than 
to sulfonamides (22/80, 27.50%) and trimethoprim 
(12/80, 15.00%) were observed. Among the 22 resist-
ance genes, the genes including tetA (63.75%), catA1 
(47.50%), aadA1 (41.25%) and sul2 (26.25%) were the 
dominate genes in their corresponding resistance gene 
categories. Although the detection rates of quinolones 
and β-lactamase resistance genes were relatively high, 
the composition of each resistance gene was relatively 
dispersed.

Relationship of antimicrobial resistance genes 
with antimicrobial susceptibility
The relationship between the antimicrobial resistance 
genes and the resistance phenotypes of the Salmonella 
isolates were analyzed by integrating the above data in 
this study. As shown in Table 7, the association of anti-
microbial resistance genes with antimicrobial suscepti-
bility was variable among differents Salmonella isolates. 
Among the six major categories of antimicrobials, the 
high relativity (> 80%) between the phenotypes and the 
antimicrobial resistance genotypes in the isolates was 

◂
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Table 4 Antimicrobial resistance rates of  the  80 
Salmonella isolates

Antimicrobials Susceptible Intermediate Resistant

Ampicillin 6 (7.50%) 14 (17.50%) 60 (75.00%)

Mezlocillin 40 (50.00%) 30 (37.50%) 10 (12.50%)

Augmentin 52 (65.00%) 6 (7.50%) 22 (27.50%)

Ceftriaxone 68 (85.00%) 12 (15.00%) 0 (0.00%)

Cefoxitin 80 (100.00%) 0 (0.00%) 0 (0.00%)

Aztreonam 79 (98.75%) 1 (1.25%) 0 (0.00%)

Polymyxin B 49 (61.25%) 31 (38.75%) 0 (0.00%)

Gentamicin 64 (80.00%) 3 (3.75%) 13 (16.25%)

Tobramycin 65 (81.25%) 3 (3.75%) 12 (15.00%)

Amikacin 80 (100.00%) 0 (0.00%) 0 (0.00%)

Kanamycin 64 (80.00%) 4 (5.00%) 12 (15.00%)

Neomycin 70 (87.50%) 0 (0.00%) 10 (12.50%)

Streptomycin 31 (38.75%) 26 (32.50%) 23 (28.75%)

Tetracycline 14 (17.50%) 1 (1.25%) 65 (81.25%)

Florfenicol 46 (57.50%) 4 (5.00%) 30 (37.50%)

Ciprofloxacin 55 (68.75%) 17 (21.25%) 8 (10.00%)

Enrofloxacin 25 (31.25%) 44 (55.00%) 11 (13.75%)

Bactrim 25 (31.25%) 0 (0.00%) 55 (68.75%)

Sulfisoxazole 21 (26.25%) 5 (6.25%) 54 (67.50%)

Chloramphenicol 41 (51.25%) 2 (2.50%) 37 (46.25%)

Nitrofurantoin 79 (98.75%) 1 (1.25%) 0 (0.00%)

Trimethoprim 49 (61.25%) 7 (8.75%) 24 (30.00%)

Table 5 Antimicrobial resistance phenotypes of  the  80 
Salmonella isolates

Resistant phenotypes (numbers) Numbers 
of isolates

AMP 5

STR 1

TET 3

FFC 1

AMP-TET 2

TET-SUL 2

TET-SXT 2

TET-SXT-SUL 1

AMP-TET-SXT 1

AMP-TET-SXT-SUL 2

STR-TET-SXT-TMP 1

TET-CHL-SXT-SUL 1

AMP-TET-SXT-SUL-TMP 4

AMP-MEZ-TET-SXT-SUL-TMP 1

AMP-AMC-TET-SXT 1

AMP-KAN-TET-CHL 2

AMP-AMC-TET-SXT-SUL 1

AMP-TET-CHL-SXT-SUL 1

AMP-MEZ-AMC-TET-SXT-SUL 1

AMP-STR-TET-SXT-SUL-TMP 5

AMP-TET-CHL-FFC-SXT-SUL 2

AMP-TET-CHL-SXT-SUL-TMP 1

STR-TET-CHL-FFC-SXT-SUL 1

AMP-MEZ-STR-TET-SXT-SUL-TMP 1

AMP-TET-CHL-FFC-SXT-SUL-TMP 1

AMP-AMC-TET-CHL-FFC-SXT-SUL 3

AMP-STR-TET-FFC-SXT-SUL-TMP 1

AMP-GEN-STR-TET-CHL-FFC-SXT-SUL 1

AMP-MEZ-AMC-TET-CHL-FFC-SXT-SUL 3

AMP-NEO-STR-TET-CHL-SXT-SUL-TMP 1

AMP-STR-TET-CHL-FFC-SXT-SUL-TMP 3

AMP-GEN-STR-TET-CHL-FFC-SXT-SUL-TMP 1

AMP-MEZ-STR-TET-CHL-FFC-SXT-SUL-TMP 1

AMP-AMC-GEN-TOB-KAN-STR-CHL-FFC-SXT-SUL 1

AMP-AMC-STR-TET-CHL-SXT-SUL 1

AMP-AMC-GEN-STR-TET-CHL-SXT-SUL 1

AMP-MEZ-AMC-TET-CHL-FFC-ENR-SUL 1

AMP-MEZ-GEN-TOB-STR-TET-CHL-FFC-CIP-ENR-SUL 1

AMP-GEN-TOB-KAN-NEO-STR-TET-CHL-FFC-CIP-ENR-SXT-SUL-
TMP

1

AMP-AMC-GEN-TOB-STR-TET-CHL-ENR-SXT-SUL 1

AMP-AMC-TOB-KAN-NEO-TET-CHL-FFC-CIP-SXT-SUL 1

AMP-AMC-GEN-TOB-KAN-NEO-TET-CHL-FFC-ENR-SXT-SUL 1

AMP-AMC-GEN-TOB-KAN-NEO-TET-CHL-FFC-CIP-ENR-SXT-SUL 3

AMP-AMC-TOB-KAN-NEO-TET-CHL-FFC-CIP-ENR-SXT-SUL-TMP 1

AMP-MEZ-AMC-GEN-TOB-KAN-NEO-TET-CHL-FFC-ENR-SXT-SUL 1

AMP-AMC-GEN-TOB-KAN-NEO-TET-CHL-FFC-CIP-ENR-SXT-SUL-
TMP

1

33/41 (strains resistant to aminoglycosides antimicro-
bials/strains harbored resistant genes to aminoglyco-
sides antimicrobials), 65/59 and 39/48, respectively for 
aminoglycosides, tetracyclines and chloramphenicols 
antimicrobials. In contrast, there were different in the 
quinolones, folate pathway inhibitors and β-lactamase 
with a coincidence rate of about 50%. For the specific 
antimicrobial resistance, the correlations between phe-
notypes and genotypes of the isolates for cephalosporins 
and tetracyclines were 0/1 and 65/59, respectively, much 
higher (> 90%) than other antimicrobials. These data indi-
cated that the resistance to certain antimicrobials was 
associated, in part, with antimicrobial resistance genes.

Detection of virulence genes
Among the 80 isolates, 3 virulence genes mogA, spvB and 
spvC were detected. We found that 81.25% (65/80) iso-
lates at least carried the virulence gene of mogA, of which 
2 Salmonella Typhimurium strains (2.50%) harbored the 
mogA, spvB and spvC virulence genes at the same time 
(Table  2). 18.75% (15/80) of the isolates did not carried 
any of the virulence genes. The results suggested that 
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swine products in the slaughterhouse were commonly 
contaminated with mogA virulence gene. It is noteworthy 
that some isolates had the spv virulence genes, which is a 
great threat to public health safety.

Discussion
Salmonella is one of the most common food-borne path-
ogens, with a wide range of hazards that can cause con-
tamination of various agricultural products (Shao et  al. 
2011). It has been reported that the isolation rate of swine 
Salmonella in China was range from 11 to 35% and the 
predominant serotypes of the isolates were S. Derby, S. 
Typhimurium, S. Enteritidis, and S. Argona (Huang et al. 
2012; Wang et al. 2016; Zou et al. 2012; Song et al. 2004; 
Kuang et al. 2015). Salmonella strains with strong patho-
genicity were widespread, among them, S. Typhimurium 
and S. Enteritidis are the major non-typhoid Salmo-
nella that cause diarrhea in humans. In this study, sam-
ples were collected randomly from the slaughtered pigs 
in mainland China between October 2016 and October 
2017. Eventually, 80 Salmonella isolates were recovered 
from 459 samples of the pig slaughterhouse, and the over-
all isolation rate of Salmonella spp. was 17.43%. Among 
the isolates, the prevalence of Salmonella was 27.83% 
(64/230) in ileum samples, 8.43% (14/166) in liver sam-
ples and 3.17% (2/63) in feces samples, respectively. The 
prevalence of Salmonella from ileum was slightly higher 
than the 23.8% observed in Brazil (da Silva et  al. 2012) 
and lower than the 36.5% reported in Huaian in China 
(Zhou et al. 2017).The serotyping results indicated that S. 
Derby (43.75%) in B group was the predominant serovar 
in the slaughterhouse and processing chain, which is con-
sistent with previous studies (Bonardi et  al. 2016; Piras 
et  al. 2011). In fact, S. Derby has been shown to be the 
most common serovar across the world. For example, S. 
Derby has been shown to represent the most significant 
proportion of serovars in both pork and slaughterhouse 
in China (Cai et al. 2016; Li et al. 2014b). In general con-
sistency with the reports by Zhou et al. (Zhou et al. 2017), 
we observed that S. Rissen was the second most common 
serovar in the slaughterhouse. A total of 14 Salmonella 
strains were isolated from liver samples consisting of S. 
Derby (n = 11), S. Chester (n = 2) and S. Typhimurium 

Table 6 Antimicrobial resistance genes of  the  Salmonella 
isolates

Drug classes Resistance genes Number 
of isolates

Positive rates (%)

Quinolones
40.00%

qnrA 0 0.00

qnrB 1 1.25

qnrC 0 0.00

qnrD 0 0.00

qnrS 5 6.25

qepA 4 5.00

oqxA 14 17.50

oqxB 9 11.25

Aminoglycosides
51.25%

aac(6′)-Ib 16 20.00

aadA1 33 41.25

Sulfonamides
27.50%

sul1 8 10.00

sul2 21 26.25

β-lactamase
43.75%

blaOXA-1 9 11.25

blaPSE-1 8 10.00

blaTEM 20 25.00

blaCMY-2 1 1.25

Tetracyclines
73.75%

tetA 51 63.75

tetB 6 7.50

tetG 6 7.50

Chloramphenicols
60.00%

catA1 38 47.50

floR 22 27.50

Trimethoprim
15.00%

dfrA1 12 15.00

Table 7 Resistance genes and phenotype relationship of Salmonella isolates

Drug classes Quinolones Aminoglycosides Folate pathway inhibitors β-lactamase Tetracyclines Chloramphenicols

Ciprofloxacin
Enrofloxacin

Gentamicin, 
Tobramycin
Kanamycin, 
Neomycin
Streptomycin

Sulfonamides Trimethoprim Penicillins Cephalosporins Tetracycline Chloramphenicol
Florfenicol

Resistance genes qnr/qepA/oqxA/oqxB aadA1/aac(6′)-Ib sul1/sul2 dfrA1 blaOXA-1/blaPSE-

1/blaTEM

blaCMY-2 tetA/tetB/tetG catA1/floR

Number of isolates 
carrying drug-
resistant genes

23 41 22 12 34 1 59 48

Number of drug-
resistant isolates

12 33 59 24 60 0 65 39



Page 10 of 12Li et al. AMB Expr           (2019) 9:210 

(n = 1). It is noteworthy that all the 3 serotypes of Salmo-
nella have been reported to infect humans in China with 
the clinical syndromes including diarrhoea and septice-
mia (Liang et al. 2016; Zhou et al. 2013; Guo et al. 2015; 
Sun et  al. 2014). These results suggest the importance 
of controlling Salmonella during slaughter process and 
regular surveillance for public health. In addition, Salmo-
nella was isolated from October 2016 to October 2017, 
no significant difference in the prevalence was observed 
(data not shown).

It has been shown that Salmonella is widely drug-
resistant and commonly multidrug resistant (Hidalgo-
Vila et al. 2008; Li and Liu 2005; Chen et al. 2008; Wang 
et al. 2007, 2009). In this study, our results showed that 
73 Salmonella isolates were resistant to at least one anti-
microbial agent and most of the isolates showed multid-
rug resistance, mainly to tetracycline, ampicillin, bactrim, 
sulfisoxazole, and chloramphenicol. Our results concern-
ing the phenomenon of particularly severe drug resist-
ance are consistent with previously described findings in 
China (Yang et al. 2019; Lu et al. 2011). In this study, mul-
tidrug resistance isolate rate of Salmonella (71.25%) was 
similar to another two studies (71.4% and 73.9%) in China 
(Yang et  al. 2019; Li et  al. 2013). Our results showed 
that multidrug resistance of the isolates were frequently 
observed among the pig slaughterhouse. Reducing anti-
biotics use in pigs is particularly important to limit the 
emergence of multidrug resistance bacteria and to main-
tain good public health. According to previous reports 
(Chen et al. 2008; Vo et al. 2006b; Zhao et al. 2007), Sal-
monella strains were highly resistant to ampicillin, chlo-
ramphenicol, kanamycin, streptomycin, sulfonamides, 
tetracyclines and quinolones, consistent with the results 
in this study. Among the 80 Salmonella isolates, 7 isolates 
were none drug resistant strains including 5 S. Newlands 
strains, one S. Derby and one S. Typhimurium. The none 
drug resistant isolates were mainly distribution the S. 
Newlands, accounted for 45.45% (5/11) of all the isolated 
S. Newlands. Among all of the 9 S. Typhimurium isolates, 
one isolate was none drug resistant, and 5 isolates were 
only resistant to 1 or 2 kinds of antibiotics, indicating that 
the resistance of S. Newlands and S. Typhimurium were 
relatively low. Combined with the data of the resistant 
phenotypes and the antimicrobial resistance genes of the 
Salmonella isolates, the isolates have a high correlation 
between the phenotypes and genotypes of aminoglyco-
sides, cephalosporins, tetracyclines and chlorampheni-
cols, while the relationship between the resistance genes 
and the resistance phenotypes of the Salmonella isolates 
of trimethoprim, sulfonamides, penicillins and quinolo-
nes were relatively lower. These data indicated that the 
resistance to certain antimicrobials was associated with 
antimicrobial resistance genes. Moreover, the association 

of antimicrobial resistance genes with antimicrobial sus-
ceptibility were variable among differents Salmonella iso-
lates. Some isolates harboring drug resistance genes were 
not highly drug-resistant while resistance genes could not 
be amplified by PCR from some highly drug-resistant iso-
late strains. It might be due to untested or unknown drug 
resistance genes in the resistant strains, and propose that 
further study is necessary.

MogA is a virulence gene associated with invasive-
ness on Salmonella SPI-1. SpvB gene has adenosine 
diphosphate (ADP) ribose transferase activity which 
mediates the modification of G-actin and the block of 
F-actin, and then disrupts the cytoskeletal function of 
actin (Tezcan-Merdol et  al. 2005; Mesa-Pereira et  al. 
2013). The protein encoded by the spvC gene has a 
phosphorylated threonine lyase activity that inhibits 
MAP phosphokinase (Haneda et  al. 2012; Mazurkie-
wicz et  al. 2008). Notably, spvB and spvC are required 
for the expression of the spv gene simultaneously. The 
pathogenicity of Salmonella strains will greatly increase 
when both spvB and spvC genes exist at the same time. 
In this study, we found that swine products in the 
slaughterhouse were commonly contaminated with the 
mogA virulence gene (65/80, 81.25%). In general, the 
high detection rate of virulence genes highlights the 
pathogenic potential of these isolates, which may indi-
cate serious salmonellosis and a threat to public health 
(Fardsanei et al. 2017). Our results also suggested that 
the Salmonella isolates harboring spvB and spvC viru-
lence genes existed in the swine slaughterhouse, which 
is a great threat to public health.

The work described here highlights the prevalence and 
antimicrobial resistance of Salmonella in a pig slaughter-
house in mainland China. Swine products in the slaugh-
terhouse were contaminated with multidrug resistant 
Salmonella commonly, even a small fraction of them 
might carry the spv virulence genes, which suggests effi-
cient measures to facilitate the reasonable use of antimi-
crobials in animal husbandry must be taken to control 
Salmonella during slaughter for public health, underly-
ing strict hygiene method and HACCP (Hazard Analy-
sis and Critical Control Points) management are vital 
for reducing cross-contamination. To reduce Salmonella 
contamination, several other interventions have proven 
successful. Moreover, a mature and healthy livestock 
system should be established to strictly control the envi-
ronmental hygiene, carcass hygiene, drinking water and 
feed hygiene, as well as the supervision of the processing 
and circulation of animal products. We believe that it is 
necessary to extend more studies about practical inter-
ventions in pig slaughterhouses to control Salmonella 
in China. Collectively, nationwide regular surveillance is 
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needed to screen any changes in antimicrobial resistance 
patterns in Salmonella isolates in the swine industry.
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