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Effects of dietary supplementation 
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Abstract 

The adverse effects of antibiotics have attracted widespread attention, thus reducing the use of antibiotics in animal 
feed has become a very important issue in improving of the health of livestock. The effects of Enterococcus faecium 
(E. faecium) on growth performance and gut microbiota in weaned piglets were investigated in the present study. 
Piglets were randomly assigned to four treatments: a control group fed with a diet containing 75 mg/kg aureomy-
cin (Diet 1 group) and three experimental groups fed with diets of 50 mg/kg aureomycin (Diet 2 group), 50 mg/kg 
aureomycin + 9 × 105 CFU/g E. faecium (Diet 3 group), or 50 mg/kg aureomycin + 1.2 × 106 CFU/g E. faecium (Diet 4 
group). Their gut microbial communities were analyzed by sequencing the V3–V4 region of the 16SrRNA gene. The 
results showed that the final body weights and the average daily gain of the weaned piglets in the Diet 2 group were 
higher (P = 0.05) than those in the Diet 1 or Diet 3 group. Decreasing trends (P = 0.08) was observed in mortality rate 
in the Diet 3 and 4 group when compared with that in the Diet 1 group. Increases in the Sobs, Chao1, ACE, and Shan-
non indexes and a decrease in the Simpson index were observed at intervals from day 1 to 14 (P < 0.05). The Sobs, 
Chao1, and ACE indexes in the Diet 3 group were the lowest on day 14 (P < 0.05). The abundance of Bacteroidetes was 
increased and that of Proteobacteria was decreased from day 1 to 7, but both of them kept stable from day 7 to 14. 
Besides, the lowest abundance of Fusobacteria, Lentisphaerae, and Planctomycetes was observed on day 1 and the low-
est abundance of Actinobacteria was observed on day 14 in the Diet 3 group (P < 0.05). Overall, these results suggest 
that the antibiotics and E. faecium interventions result in different changes in the gut microbiota, and a reduced anti-
biotics diet supplemented with 1.2 × 106 CFU/g E. faecium does not affect the growth performance in weaned piglets.
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Introduction
Antibiotics have been widely used in the prevention of 
diarrhea and the improvement of the growth of livestock. 
However, the adverse effects of antibiotics, such as resi-
dues in meat products and the emergence of antibiotic-
resistant bacteria (van den Bogaard and Stobberingh 
2000), have attracted widespread attention. Thus, antibi-
otics are forbidden to be used as additives in animal feed 
in some countries (Casewell et al. 2003). In recent years, 
the use of antibiotics in animal feed has been gradu-
ally reduced in China, but is still sometimes available in 
animal feed. Therefore, it’s of great significance to find 
alternatives to antibiotics in animal feed to promote the 
development of livestock industry.

Probiotic feed additives have been proposed as alterna-
tives to antibiotics due to their positive effects on hosts 
(Liu et  al. 2014; Abhisingha et  al. 2017; Yu et  al. 2017). 
Enterococcus faecium is widely used as a probiotic sup-
plement in feed. Previous studies showed a beneficial 
effect of probiotic E. faecium on diarrhea, growth perfor-
mance, and microbiota composition (Zeyner and Boldt 
2006; Bednorz et al. 2013; Wang et al. 2016; Lan and Kim 
2017), suggesting that antibiotics may be replaced by E. 
faecium. However, some studies indicate that E. faecium 
treatment has no effects on body weight gain (Busing 
and Zeyner 2015), feed intake, or feed efficiency in pig-
lets (Taras et  al. 2006). Thus, the effects of E. faecium 
on growth performance in piglets remain highly contro-
versial. Thus, further studies are needed to elucidate the 
mechanisms in the effect of E. faecium.

In recent years, the roles of gut microbiota have been 
extensively investigated and revealed (Kahrstrom et  al. 
2016; Sonnenburg and Backhed 2016). Symptoms of 
metabolic syndrome of the hosts such as obesity are 
closely associated with dysbiosis of the gut microbi-
ota (Sen et  al. 2017). The gut microbiota have a major 
impact on the health of piglets; for instance, the produc-
tion of amino acids, the fermentation of carbohydrates, 
the maintenance integrity of the intestinal villi, and the 
protection from pathogenic bacteria (Gresse et al. 2017). 
The decrease in the population of Lactobacillus genus 
and the increase in the population of Enterococcus and 
Escherichia coli were observed in early weaning piglets 
(Wei et  al. 2017). Moreover, changes in the microbial 
community structure are seen in piglets with intestinal 
disorders, such as diarrhea (Li et  al. 2014). Obviously, 
gut microbiota are an important factor that affects the 
growth of piglets. The composition of the microbiota in 
the gastrointestinal tract varies between piglets fed with 
an antibiotics-supplemented diet and those fed with an 
antibiotics-free diet (Mu et al. 2017), which indicates that 
antibiotics-induced changes in the gut microbiota may 

lead to the changes in the growth of piglets (Andreas 
et al. 2016).

Although some studies have focused on the roles of 
antibiotics and E. faecium in the growth of piglets (Wang 
et  al. 2013, 2016; Lan and Kim 2017), there’s still little 
information about the effects of a diet with reduced anti-
biotics and E. faecium supplementation on the growth 
and fecal bacterial community structure of animals. Early 
weaned piglets are exposed to several stress factors which 
make gut microbiota dramatically change and make the 
diarrhea increase without antibiotics treatment (Von-
druskova et al. 2010; Li et al. 2017). Therefore, this study 
is conducted to evaluate the effects of antibiotics and E. 
faecium on growth performance and gut microbiota in 
weaned piglets.

Materials and methods
Animals and experimental treatments
The experimental design and procedure presented in this 
study are reviewed and approved by the Animal Care 
and Use Committee of the South China Agricultural 
University.

364 weaned piglets (Duroc × Landrace × Large White) 
with an initial body weight of 7.03 ± 0.03  kg were ran-
domly assigned to four treatments with seven pens, 
and each pen contains 13 weaned piglets. The piglets 
are fed with water and a corn and soybean meal-based 
diet (Table  1) ad  libitum through a nipple drinker and 
a feeder. The piglets in the control group were fed with 
a basal diet containing 75  mg/kg aureomycin (Diet 1 
group), and those in the three experimental groups were 
fed a basal diet with the following supplements: 50 mg/
kg aureomycin (Diet 2 group), 50  mg/kg aureomy-
cin + 9 × 105 CFU/g E. faecium (Diet 3 group), or 50 mg/
kg aureomycin + 1.2 × 106 CFU/g E. faecium (Diet 4 
group). E. faecium (China Center for Type Culture Col-
lection, Wuhan, China, CCTCC No. M2011031, 3 × 109 
CFU/g) was provided by Huada-real Technology Co., 
Ltd. (Wuhan, China). The experiment was performed for 
14 days.

Sample collection and measurements
Initial body weight and final body weight of the piglets 
were measured at the age of 21 days (experimental day 1) 
and 35 days (experimental day 14) to calculate the aver-
age daily weight gain. The amounts of feed offered and 
refused were recorded every day to confirm the individ-
ual daily feed intake, and the feed efficiency was calcu-
lated by the weight gain/feed intake ratio based on the 
data of feed intake and body weight. The diarrhea rate 
was calculated according to the following formula (Hu 
et al. 2017): A/(B × C), where A is the number of piglets 
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with diarrhea in the pen, B is the total number of piglets 
in the pen, and C is the number of experimental days.

DNA extraction and 16SrRNA gene sequencing
72 fecal samples were collected after feeding, with 18 
samples collected per group, and 6 samples collected per 
period (on day 1, 7, and 14, respectively). Total genomic 
DNA were extracted from fecal samples using QIAamp 
DNA Stool Mini Kit (Qiagen, Hilden, Germany) fol-
lowing the instructions. A NanoDrop ND-1000 sys-
tem (Thermo Fisher, Wilmington, DE, USA) was used 
to measure the concentration of DNA. The V4 region 
of the 16SrRNA gene was amplified using primers 515F 
(5′-GTG​CCA​GCMGCC​GCG​GTAA-3′) and 806R (5′-
GGA​CTA​CHVGGG​TWT​CTAAT-3′) (Zeng et al. 2017). 
Total reaction volume of 20 μL comprised 2 μL 2.5 mM 
dNTPs, 4  μL 5×FastPfu buffer (TransGen Biotech, 

Beijing, China), 0.4 μL FastPfu Polymerase, 0.8 μL of each 
primer, 1 μL DNA template, and 11 μL ddH2O. The PCR 
program included a 3-min incubation at 95 °C, followed 
by 27 cycles of denaturation at 95 °C for 30 s, and anneal-
ing and extension at 55 °C for 30 s and at 72 °C for 45 s. 
All samples examined in this study provided complete 
DNA samples, as agarose gels clearly showed the ampli-
fied products. After PCR amplification, amplicons were 
extracted from 1.2 agarose gels and purified using San-
Prep DNA Gel Extraction Kit (Sangon Biotech, China). 
Purified amplicons were operated using paired-end 
sequencing by Illumina MiSeq. The instructions of the 
platform and the manufacturer were from a commercial 
service provider (BGI, Shenzhen, China). Sequences with 
an average phred score lower than 30, ambiguous bases, 
homopolymer runs exceeding 6 bp, primer mismatches, 
or sequence lengths shorter than 100 bp were removed. 
All the procedures except DNA extraction were con-
ducted by the BGI Company.

Bioinformatics analysis
The bioinformatics analysis will be carried out based 
on the sequencing data. The raw data were analyzed by 
QIIME (http://qiime​.org/) (Caporaso et  al. 2010) and 
FLASH (v1.2.11) (Magoc and Salzberg 2011), and were 
filtered to eliminate adapters and low-quality reads to 
obtain clean reads, and then overlapped paired-end reads 
were merged to create tags. The tags were clustered into 
operational taxonomic units (OTUs) with sequence simi-
larity of 97% using USEARCH (v7.0.1090) (Edgar 2013). 
Representative OTU sequences were taxonomically 
classified by Ribosomal Database Project (RDP) Clas-
sifier trained on Greengene (V201305) reference data-
base (DeSantis et  al. 2006). Finally, alpha diversity was 
analyzed based on OTUs. Principal component analysis 
(PCA) plots of the dissimilarity metrics were also visu-
alized using the R (v3.0.3). All the raw sequences were 
submitted to the NCBI Sequence Read Archive with an 
Accession Number of SAMN10234820-SAMN10234874.

Statistical analysis
The growth performance, observed OTUs, and alpha 
diversity were statistically analyzed by repeated-measure 
one-way ANOVA using SPSS 17.0 (SPPS Inc., Chicago, 
IL, USA). Duncan’s multiple-range test and multivariate 
analysis of variance performed in the case of Mauchly’s 
test of Sphericity showed P > 0.05 and P < 0.05, respec-
tively. The relative abundance at phylum and genus lev-
els was statistically analyzed through non-parametric 
Kruskal–Wallis tests. The relationships between mor-
tality diarrhea rate and diet were statistically analyzed 
through Chi squared test. Variations between differ-
ent methods were considered statistically remarkable at 

Table 1  Composition and  nutrient levels of  the  basal diet 
(g/kg, as-fed basis)

a  Premix provided for 1 kg of complete diet: vitamin A, 11,750 IU; vitamin D3, 
1500 IU; vitamin E, 50 IU; vitamin K, 1.75 mg; vitamin B1 1 mg; vitamin B2, 10 mg; 
vitamin B6, 1 mg; vitamin B12 27.5 mg; niacin, 38 mg; calcium pantothenate, 
35.75 mg; choline chloride 750 mg; biotin 100 μg; folic acid 0.5 mg; Cu as copper 
sulfate, 125 mg; I as kalium jodatum, 0.75 mg; Fe as iron sulfate, 152.5 mg; Mn as 
manganese oxide, 35 mg; Mg as magnesium sulfate, 125 mg; Zn as zinc sulfate, 
137.5 mg
b  Calculated values
c  Crude protein
d  Crude fiber

Ingredients Content

Corn 576.7

Soybean oil 20

Extruded full-fat soybean 60

Soybean meal 172.5

Spray-dried plasma protein 60

Whey powder dried 80

Salt 1.4

CaHPO4 16

Lys 3.9

Met 2.5

Thr 2

Premixa 5

Chemical compositionb

Digestible energy, kcal/kg 3508

CPc, % 20.3

CFd, % 2.3

Crude ash, % 4.5

Ca, % 0.7

Total P, % 0.7

Salt, % 0.5

Total Lys, % 1.4

http://qiime.org/
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P ≤ 0.05, with the trends toward significance indicated by 
0.05 < P < 0.10.

Results
Growth performance
As shown in Table  2, compared with the Diet 1 and 
Diet 3 groups, the final body weight in the Diet 2 group 
increased (P = 0.05) by 4.13% and 3.51%, respectively, 
and the average daily gain in the Diet 2 group increased 
(P ˂  0.05) by 14.26% and 11.82%, respectively. Descend-
ing trends (P = 0.08) were observed in mortality rate in 
Group 3 and 4 compared with that in Group 1.

Diversity of fecal bacterial communities
Quality control, and chimera removal, 5,769,672 high-
quality sequences were obtained from all fecal samples 
after filtering (Table  3), with an average of 1,442,418 
sequences per group and 80,134 per sample. In total, 
1852 OTUs were generated. The fecal bacterial commu-
nity on day 14 in Diet 3 group had fewer OTUs (P ˂  0.05) 
than those in the other groups (Fig. 1C).

As indicated in Table 4, increases in the Sobs, Chao1, 
ACE, and Shannon index values and a decrease in the 
Simpson index value were observed at intervals from day 
1 to 14. On day 14, the Sobs, Chao1, ACE, and Shannon 
index values in Diet 2 group were higher than those in 
the other groups (Fig.  2A–D). The Diet 3 group exhib-
ited lower (P < 0.05) values of the Sobs, Chao1, and ACE 
indexes than the Diet 1 and Diet 2 groups (Fig.  2A–C). 
No difference of alpha diversity was found between Diet 
1 and Diet 2 groups (P > 0.05). The PCA showed that the 
samples were clustered together on several experimen-
tal days (Fig. 3). The rarefaction curve of all samples has 
reached a stable value (Additional file 1: Figure S1).  

Fecal bacterial community structure
At phylum level, the abundance of seven phyla was 
≥ 0.5%: Bacteroidetes, Euryarchaeota, Firmicutes, Fuso-
bacteria, Proteobacteria, Spirochaetes, and Synergistetes. 
Among them, Bacteroidetes, Firmicutes, Spirochaetes, 
and Proteobacteria were the dominant phyla, accounting 
for more than 95% of the total fecal bacterial community 
(Fig.  4). The abundance of Bacteroidetes was increased 
whereas that of Proteobacteria was decreased from day 
1 to 7 and remained stable from day 7 to 14 (Fig. 4). On 
day 1, the abundance of Bacteroidetes, Euryarchaeota, 
Spirochaetes, and Planctomycetes were higher in the 
Diet 1 group than in Diet 2 group (Fig.  4), and Diet 3 
group exhibited higher (P < 0.05) abundances of Spiro-
chaetes and Fibrobacteres than the other groups (Fig. 5a, 
b); on days 7 and 14, the abundance of Proteobacteria 
was higher in the Diet 3 group than in the other groups 
(Fig. 5c), and the abundance of Firmicutes was higher in 
the Diet 2 group than in the Diet 1 group (Fig. 4). Lower 

Table 2  Growth performance of weaned piglets with different diet treatments

Diet 1: containing 75 mg/kg aureomycin; Diet 2: containing 50 mg/kg aureomycin; Diet 3: containing 50 mg/kg aureomycin and 9 × 105 CFU/g E. faecium; Diet 4: 
containing 50 mg/kg aureomycin and 1.2 × 106 CFU/g E. faecium
a,b  Means with different superscripts in a row differ (P < 0.05)

Items Groups SEM P-value

Diet 1 Diet 2 Diet 3 Diet 4

Initial body weight (kg) 7.03 7.03 7.03 7.02 0.01 0.84

Final body weight (kg) 9.91b 10.32a 9.97b 10.07ab 0.06 0.05

Average daily feed intake (g)

 Days 1–7 145.29 157.57 137.86 151.29 3.73 0.29

 Days 8–14 303.57 352.71 321.00 325.29 6.72 0.07

 Days 1–14 230.57 262.57 236.57 245.00 4.74 0.08

Average daily gain (g) 205.69b 235.02a 210.18b 218.08ab 4.13 0.05

Body gain:feed intake (g/g) 0.89 0.90 0.89 0.89 0.01 0.99

Diarrhea rate (%) 1.26 1.85 1.37 1.13 0.18 0.50

Mortality rate (%) 8.79 3.30 2.20 2.20 6.884 0.08

Table 3  Raw reads and clean reads among groups

1 day, 7 days, and 14 days represent experimental day 1, 7, and 14, respectively. 
Diet 1: containing 75 mg/kg aureomycin; Diet 2: containing 50 mg/kg 
aureomycin; Diet 3: containing 50 mg/kg aureomycin and 9 × 105 CFU/g E. 
faecium; Diet 4: containing 50 mg/kg aureomycin and 1.2 × 106 CFU/g E. faecium

Items Diet 1 Diet 2 Diet 3 Diet 4

Raw reads (days)

1 631,816 597,925 506,037 609,058

7 719,889 634,337 596,745 711,415

14 650,988 656,718 571,675 659,874

Clean reads (days)

1 457,540 456,588 381,826 472,528

7 527,826 503,924 478,440 565,064

14 487,285 489,377 423,904 525,370
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abundance of actinobacteria was observed (P < 0.05) in 
Diet 3 group when compared to Diet 4 group on day 14 
(Fig. 5d).

Bacterial genera that rank the top 50 are shown in 
Fig. 6. A higher abundance of Actinobacillus, Bacteroides, 
Butyricimonas, Bilophila, Escherichia, Fusobacterium, 
Odoribacter, and Pyramidobacter and a lower abundance 
of Anaeroplasma, Anaerovibrio, Bulleidia, Butyricicoc-
cus, Coprococcus, Fibrobacter, Lachnospira, Oribacte-
rium, Roseburia, Succinivibrio, and YRC22 were found on 
day 1 than those on day 7 and 14. Diet 2 group exhibits 
the highest abundance of Lactobacillus and Treponema, 
and the lowest abundance of Prevotella (Fig.  6). On 
day 7, the highest (P < 0.05) abundance of Anaerovibrio 
and Phascolarctobacterium was observed in the Diet 4 
group (Fig. 7a). On day 14, the abundance of 02d06 was 
decreased (P < 0.05) in the Diet 3 group (Fig. 7b), whereas 
that of Anaerovibrio (Fig. 7b) was increased (P < 0.05).

Discussion
Antibiotics used as growth promoters in feed may bring 
negative side effects (Chee-Sanford et al. 2001). Therefore, 
the development of alternatives to antibiotics and a reduc-
tion in the use of antibiotics in animal feed are urgently 
needed. The probiotic bacteria E. faecium provides vari-
ous benefits of health to piglets (Bednorz et  al. 2013; 
Klingspor et al. 2013; Siepert et al. 2014). In the present 
study, weaned piglets were selected as models to evalu-
ate the effects of a diet with reduced levels of antibiotics 
and E. faecium supplementation for a 14-day intervention 
period. Significant increases in both final body weight 
and average daily gain were observed in the Diet 2 group, 
which indicates that growth performance in weaned pig-
lets fed with a diet with reduced levels of antibiotics was 

Fig. 1  Comparison of the OTUs of the four groups on different experimental days. The number of observed OTUs in fecal samples collected at 
experimental day 1 (A), day 7 (B), and day 14 (C) sharing the sequence similarity of ≥ 97% is shown. a,bSmall letter superscript represents significant 
difference (P < 0.05). Data were statistically analyzed by repeated-measures one-way ANOVA, followed by Duncan’s multiple-range test

Table 4  Alpha diversity indices of  fecal bacterial 
communities in weaned piglets at different days

1  Diet 1: containing 75 mg/kg aureomycin; Diet 2: containing 50 mg/kg 
aureomycin; Diet 3: containing 50 mg/kg aureomycin and 9 × 105 CFU/g E. 
faecium; Diet 4: containing 50 mg/kg aureomycin and 1.2 × 106 CFU/g E. faecium. 
1 days, 7 days, and 14 days represent experimental day 1, 7, and 14, respectively
a,b  Means with different superscripts in a row differ (P < 0.05)

Items1 Days SEM P-value

1 7 14

Sobs

 Diet 1 493.2b 632.5a 655.8a 27.70 0.02

 Diet 2 498.7b 595.2a 674.3a 24.04 < 0.01

 Diet 3 425.5b 578.2a 577.7a 25.88 0.01

 Diet 4 539.6 631.2 664.0 22.54 0.06

Chao1

 Diet 1 613.3 739.8 777.2 30.75 0.07

 Diet 2 599.8b 686.6ab 786.6a 27.06 < 0.01

 Diet 3 509.2b 667.2a 687.7a 26.86 < 0.01

 Diet 4 660.0 743.8 760.4 23.33 0.17

Ace

 Diet 1 594.1b 735.0a 761.7a 30.20 0.04

 Diet 2 600.8b 692.7ab 775.0a 26.30 0.02

 Diet 3 511.4b 669.8a 672.5a 26.71 < 0.01

 Diet 4 650.5 734.7 757.3 23.35 0.14

Shannon

 Diet 1 3.81b 4.33a 4.37a 0.10 0.02

 Diet 2 3.89b 3.95b 4.53a 0.11 0.02

 Diet 3 3.81 4.04 4.15 0.11 0. 45

 Diet 4 4.04 4.21 4.37 0.10 0.42

Simpson

 Diet 1 0.06 0.03 0.04 0.01 0.08

 Diet 2 0.06 0.08 0.03 0.02 0.18

 Diet 3 0.06 0.07 0.06 0.02 0.89

 Diet 4 0.05 0.05 0.04 0.01 0.94
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promoted. This is a novel finding, demonstrating that 
diets with decreasing aureomycin levels ranging from 75 
to 50 mg/kg alone had a positive effect on the growth of 
weaned piglet. However, previous studies showed that 
dietary supplementation with antibiotics had no effects 
on final body weight or average daily gain of piglets 

(Puiman et al. 2013; Yu et al. 2017). In addition, the results 
of the present study on the effects of dietary antibiotic 
supplementation are not consistent with those of Wang 
et al. (2013). Wang et al. claimed that dietary supplemen-
tation with 150  mg/kg aureomycin increased the final 
body weight and weight gain of piglets, and suggested 
that growth performance in weaned piglets is associated 
with the dosage of aureomycin used in feed. Interestingly, 
final body weight and average daily gain of weaned piglets 
did not change in the Diet 4 group, but were lower in the 
Diet 3 group than in the Diet 2 group; This does not agree 
with the findings of Mallo et al. (2010), who proposed that 
addition of E. faecium to the diet promoted the growth 
and the feed conversion of weaned piglets. Similar results 
were also found in the treatment of weaned piglets with E. 
faecium (Hu et al. 2015). The discrepancy between these 
previous studies and the present study could be explained 
by the differences in the dosages of E. faecium used in the 
diet. Here, the dosages of E. faecium in the Diet 3 and 4 
groups were 9 × 105 CFU/g and 1.2 × 106 CFU/g, respec-
tively, whereas those of Mallo et al. (2010) and Hu et al. 
(2015) were 106 CFU/g and 2.5 × 106 CFU/g, respectively. 
Although no statistically remarkable differences were 
observed among these groups, the mortality of weaned 
piglets in the Diet 4 group decreased by 74.9% when com-
pared with those in the Diet 1 group. Overall, these results 
indicate that a diet with reduced antibiotic levels and E. 

Fig. 2  Alpha diversity indices of fecal bacterial communities of weaned piglets on day 14 in different groups. A–E Observed species, chao 1, ace, 
simpson, and shannon, respectively. a,bSmall letter superscript represents significant difference (P < 0.05). Data were statistically analyzed by one-way 
ANOVA, followed by Duncan’s multiple-range test

Fig. 3  Scatterplot from PCA of OTUs in each fecal sample. A, B, C and 
D mean fecal samples in diet 1, 2, 3, and 4 group, respectively. T1, T2, 
and T3 represent fecal samples collected on day 1, day 7, and day 14, 
respectively
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faecium supplementation (Diet 4 group) did not affect the 
growth of piglets.

The gut microbiota play an important role in the 
metabolism of hosts (Lippert et al. 2017). In the present 
study, reduced levels of antibiotics and E. faecium sup-
plementation induced changes in the fecal microbiota 
of weaned piglets. The values of the Sobs, Chao1, ACE, 
and Shannon indexes in the four diet treatment groups 
were increased, whereas those of the Simpson index were 
decreased from day 1 to 14. This proves that the spe-
cies richness of the community was increased over the 
course of the experiment. These results agree with those 
of Frese et  al. (2015). In addition, the number of OTUs 
was significantly reduced in the Diet 3 group on day 14, 
as were the Sobs, Chao1, and ACE indexes, demonstrat-
ing that dietary supplementation with 50  mg/kg aureo-
mycin and 9 × 105 CFU/g E. faecium decreased microbial 
diversity and richness. Microbiota with more diversity 
have been shown to maintain a more stable ecology and 
to be favorable for the overall health of animals (Hooper 
and Macpherson 2010; Hildebrand et  al. 2013). Moreo-
ver, the microbial richness of heavier piglets is signifi-
cantly higher than that of lighter piglets (Han et al. 2017), 
which indicates that microbial richness is associated with 

the changes in body weight. Therefore, the decreases in 
the microbial diversity and richness may contribute to 
explain the lower body weight and average daily gain 
of weaned piglets in the Diet 3 group. A previous study 
reported that the alpha diversity was significantly influ-
enced by antibiotic intervention (Tulstrup et  al. 2015). 
However, no changes were found in alpha diversity 
induced by dietary supplementation with antibiotics in 
the present study, which is in concord with the results of 
previous studies (Zhang et al. 2016; Li et al. 2017). This 
discrepancy could be explained by the differences in the 
diets and animal models used (Zhao et al. 2015). Tulstrup 
et  al. (2015) used Wistar rats as models which received 
a daily dosage of 0.5  mL of antibiotic solution contain-
ing 60  mg/mL amoxicillin, 8  mg/mL cefotaxime, 8  mg/
mL vancomycin and 8 mg/mL metronidazole treatment, 
whereas piglets are used as models fed with a diet sup-
plemented with 75 mg/kg or 50 mg/kg aureomycin in the 
present study.

To further illuminate whether changes in the com-
position of the microbiota were associated with dietary 
treatment, the distributions of the bacterial commu-
nity structure at phylum and genus levels were inves-
tigated. Bacteroidetes, Firmicutes, Spirochaetes, and 

Fig. 4  Distribution of bacterial community structure at phylum level in different phases. The relative abundances lower than 0.01% are not shown. 
1 day, 7 days, and 14 days represent experimental day 1, 7, and 14, respectively. The relative abundance at phylum level was statistically analyzed 
through non-parametric Kruskal–Wallis tests
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Proteobacteria were the dominant phyla, which is iden-
tical to the conclusions of previous studies (Kong et  al. 
2016; Yan et al. 2016; Zhang et al. 2016; Mu et al. 2017). 
In addition, the abundance of Bacteroidetes and Spi-
rochaetes was increased whereas that of Proteobacte-
ria was decreased from day 1 to 7, and the abundance 
of these phyla kept stable from day 7 to 14. A previous 
study demonstrated that the abundance of Bacteroi-
detes is associated with protein digestibility (Blackburn 
and Hobson 1962), and the abundance of Spirochaetes is 
positively correlated with apparent hemicellulose digest-
ibility in piglets (Niu et al. 2015). These results revealed 
that Bacteroidetes and Spirochaetes might be involved 
in the digestion of protein and carbohydrate. Another 
important finding is that the Diet 3 group exhibited the 
lowest abundance of Fusobacteria, Lentisphaerae, and 
Planctomycetes on day 1 and the lowest abundance of 
Actinobacteria on day 14. These findings are similar to 

the statement that the abundance of Fusobacteria and 
Lentisphaerae in piglets feces decreased from age 28 to 
150  days (Niu et  al. 2015). Actinobacteria are consid-
ered to be extremely important to the health of animals 
because of their important roles in the production of 
antibiotics, antivirals, and enzymes (Newman and Cragg 
2007; Tan and Liu 2017). Notably, these results indicate 
that in Diet 3 Group, the induced body weight loss of 
weaned piglets was associated with the decreased abun-
dance of bacteria that have a positive effect on the health 
of hosts. Li et al. (2017) signified that dietary supplemen-
tation with 75  mg/kg aureomycin decreased the abun-
dance of Proteobacteria, whereas no difference in the 
abundance of Proteobacteria was observed between the 
Diet 2 and Diet 1 groups in this study.

At genus level, it’s found that taxa belonging to Firmi-
cutes, including Anaerovibrio, Coprococcus, Oscillospira, 
Phascolarctobacterium, and 02d06 exhibited marked 

Fig. 5  The bacterial abundance of phyla significantly differs in different phases. Only the data whose differences with P-values lower than 0.05 are 
shown. Day 1 (a, b), day 7 (c), and day 14 (d) represent experimental day 1, 7, and 14, respectively. *P < 0.05, **P < 0.01
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differences in abundance among the four groups. Fir-
micutes play an important role in starch and fiber deg-
radation (Kim et  al. 2011), and increased abundance 
of Firmicutes is associated with obesity and the energy 

intake of hosts from food in humans (Turnbaugh et  al. 
2006; Schwiertz et al. 2010). In addition, it is shown that 
elevated human body weight is associated with a gut 
microbiota composition characterized by elevated levels 

1d 7d 14d

Acidaminococcus
Streptococcus
Anaerofilum
Campylobacter
Paludibacter
Peptococcus
Mogibacterium
Megasphaera
Butyricimonas
Escherichia
Bilophila
Fusobacterium
Actinobacillus
Cloacibacillus
Odoribacter
Pyramidobacter
Fibrobacter
Oribacterium
Anaeroplasma
Lachnospira
Bulleidia
YRC22
Elusimicrobium
Akkermansia
Comamonas
Succiniclasticum
RFN20
Sphaerochaeta
Sutterella
Eubacterium
Dorea
02d06
Methanobrevibacterium
p-75-a5
Bacteroides
Others (<0.5%)
Desulfovibrio
vadinCA11
Blautia
Lactobacillus
Faecalibacterium
CF231
Treponema
Ruminococcus
Phascolarctobacterium
Parebacteroides
Roseburia
Coprococcus
Butyricicoccus
Succinivibrio
Anaerovibrio
Oscillospira
Prevotefla
Unclassified

Fig. 6  Genus-level taxonomic composition of the bacterial communities of feces in weaned pigs in different phases. The feces with the highest and 
lowest bacterial levels are shown in green and red respectively. Bacterial genera that rank the top 50 are listed. 1 day, 7 days, and 14 days represent 
experimental day 1, 7, and 14, respectively
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of Firmicutes (Riva et  al. 2017). Here, the abundance of 
Firmicutes was higher in the Diet 2 group than in the Diet 
1 group on day 14. Conclusively, the results and findings 
of the present study suggest that the decrease in growth 
performance induced by treatment with antibiotics and 
9 × 105 CFU/g E. faecium was associated with changes in 
the gut microbiota.

In conclusion, the results of the present study indicate 
that growth performance in weaned piglets in Diet 4 
group was not different from Diet 1 group and 2, whereas 
growth was reduced in Diet 3 group when compared 
with Diet 2 group. Taken together, it is concluded that 
dietary supplementation with 1.2 × 106 CFU/g E. faecium 
instead of partly aureomycin does not affect growth per-
formance, but alters gut microbiota diversity of weaned 
piglets.

Additional file

Additional file 1: Figure S1. Sample-based rarefaction analysis.
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