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The adjuvant G3 promotes a Th1 
polarizing innate immune response in equine 
PBMC
Stina Hellman*  , Bernt Hjertner, Bror Morein and Caroline Fossum

Abstract 

The immunomodulatory effect of a new particulate adjuvant, G3, alone or in combination with agonists to TLR2/1 
or TLR5 was evaluated in cultures of equine PBMC. Exposure to the G3 adjuvant up-regulated genes encoding IFN-γ, 
IL-1β, IL-6, IL-8, IL-12p40 and IL-23p19 in the majority of the horses tested, indicating that the G3 adjuvant induced a 
pro-inflammatory and Th1 dominated profile. In accordance, genes encoding IL-13, IL-4, IL-10 and TGF-β remained 
unaffected and genes encoding IFN-α, IL-17A and TNF-α were only occasionally and weakly induced. The two TLR 
agonists Pam3CSK4 (TLR2/1) and FliC (TLR5) induced cytokine profiles characterized by a clear induction of IL-10 as 
well as up-regulation of the genes encoding IL-1β, IL-6 and IL-8. The presence of G3 modified this response, in particu-
lar by reducing the FliC and Pam3CSK4 induced production of IL-10. Furthermore, G3 acted in synergy with Pam3CSK4 
in enhancing the production of IFN-γ whereas G3 combined with FliC increased the gene expression of IL-8. Thus, the 
G3 adjuvant seems to have the capacity to promote a Th1 polarizing innate immune response in eqPBMC, both by 
favouring IFN-γ production and by reducing production of IL-10 induced by co-delivered molecules. These features 
make G3 an interesting candidate to further evaluate for its potential as an adjuvant in equine vaccines.
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Introduction
A variety of adjuvants including aluminium salts, emul-
sions, carbomers and immune stimulatory complexes 
(ISCOMs) are today used in animal vaccines [1]. Based 
on their physical form and mode of action, these adju-
vants have been categorized as particulate formulations, 
immunomodulatory molecules or a combination thereof. 
Particulate formulations primarily enhance uptake by 
antigen presenting cells [2, 3] but may also modulate 
innate immune responses [4–6]. This effect can be further 
improved by inclusion of other immunomodulatory mol-
ecules in the vaccine formula. Accordingly, compounds 
such as Toll-like receptor (TLR) agonists, polyphospha-
zenes and cytokines are currently under investigation as 
additives in vaccines [1, 7, 8]. The best-known example of 
such an adjuvant complex is AS04 based on aluminium 

salts combined with the TLR4 agonist monophosphoryl 
lipid A [9]. The strategy to combine adjuvant components 
in order to improve vaccine efficacy has also been exam-
ined for veterinary use, e.g. in vaccines for cattle, pigs and 
poultry [1].

In the present study, a novel adjuvant “G3” was evalu-
ated in cultures of equine peripheral blood mononuclear 
cells (eqPBMC). The G3 adjuvant is a 20 nm particle for-
mulated of cholesterol and QuilA components extracted 
from the tree Quillaja saponaria Molina that induce 
potent antibody and T cell responses to H1N1 influenza 
virus (Patent no. WO 2013/05/1994). Subsequent evalu-
ations [10] demonstrate that G3 with an incorporated 
diterpene enhances immune protection to H1N1 influ-
enza virus in mice challenged with a strain antigenically 
distinct from that used for immunisation. This protec-
tion was based on cytotoxic T lymphocytes targeting the 
nucleoprotein and polymerase A. A similar Th1 polari-
zation was indicated by induction of IFN-γ/IL-2 double 
producing cells as determined by FluoroSpot and pro-
duction of IgG2a in mice immunized with G3 adjuvanted 
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influenza antigens [11]. In vitro, G3 alone induced IFN-γ 
production as well as increased the expression of matu-
ration markers in cultures of human monocyte-derived 
dendritic cells [10].

The present study evaluated effects by G3 on eqPBMC 
stand alone or in combination with the TLR2/1 agonist 
Pam3CSK4 or the TLR5 agonist FliC. Both the recombi-
nant flagellin protein FliC and the synthetic triacylated 
lipoprotein Pam3CSK4 have been extensively studied in 
several species and successfully included in several vac-
cine constructs [reviewed in 12, 13], but only limited 
data are available on their effects in the horse [14–17]. 
We were therefore motivated to study cytokine profiles 
of eqPBMC cultured in the presence of these two com-
pounds stand alone or in combination with G3. As read 
out, transcription of cytokine genes was measured by 
qPCR and the production of IFN-γ and IL-10 was verified 
by ELISA.

Materials and methods
Isolation of eqPBMC
Healthy horses housed at the Department of Clinical 
Sciences, SLU, Uppsala, Sweden were used in the study. 
These horses (Swedish Warmblood, geldings and mares, 
age 9–14  years) are clinically examined including com-
plete blood counts, and vaccinated for tetanus and influ-
enza on a regular basis. The sampling was approved by 
the Ethical Committee for Animal Experiments in Upp-
sala. Blood was collected in heparinized tubes from the 
jugular vein. After 15–20  min sedimentation, blood 
plasma was collected and eqPBMC were isolated by cen-
trifugation on Ficoll Paque (Amersham Pharmacia Bio-
tech, Uppsala, Sweden). Cells were washed three times in 
PBS and suspended in growth medium, i.e. RPMI 1640 
medium (BioWhittaker, Cambrex Bioscience, Verviers, 
Belgium) supplemented with HEPES (20  mM), l-glu-
tamine (2  mM), penicillin (200  IU/mL), streptomycin 
(100  µg/mL), 2-mercaptoethanol (50  µM), and 5% fetal 
calf serum (Invitrogen, Life Technologies, Carlsbad, CA, 
USA).

Culture conditions for gene expression analysis
Between 5 and 10 × 106 eqPBMC in one mL medium 
were seeded in 6-well plates (Nunclon; Nunc, Roskilde, 
Denmark), incubated for 30  min at 37  °C in 7% CO2, 
whereafter one mL of the adjuvant “G3” (MoreinX AB, 
Uppsala, Sweden) at final concentrations 1, 3 or 5  µg/
mL was added to the cultures. PBMCs were also cultured 
in the presence of either FliC (0.1 µg/mL; VacciGrade™, 
InvivoGen, San Diego, CA, USA), Pam3CSK4 (0.5 µg/mL; 
InvivoGen) or G3 (3 µg/mL), or in combinations thereof. 
The combinations of G3 with FliC or Pam3CSK4 were 
pre-incubated for 15 min in growth medium before being 

added to the cultures. After 18 h, cells were harvested for 
gene transcription analysis. As controls, freshly isolated 
eqPBMC or eqPBMC cultured in plain growth medium 
for 18 h were used.

RNA extraction and cDNA synthesis
RNA extraction and cDNA synthesis were performed as 
previously described [18]. In brief, RNA was extracted by 
combining Trizol (Invitrogen, Carlsbad, CA, USA) with 
the column-based E.Z.N.A. total RNA kit (Omega Biotek, 
Norcross, GA, USA). RNA quantity and purity was esti-
mated by spectrophotometry (NanoDrop ND-1000, 
NanoDrop Technologies, Montchanin, DE, USA) and 
RNA quality index (RQI) was estimated to ≥ 9.8 using 
capillary gel electrophoresis (Experion RNA StdSense 
Analysis Kit, Bio-Rad Laboratories, Solna, Sweden). After 
treating 0.4–1 μg of RNA with RQ1 RNAse-free DNAse 
(Promega, Madison, WI, USA) cDNA was synthesized 
(GoScript Reverse transcription system; Promega) and 
diluted 5 × before storage at −20 °C.

qPCR
Published primer pairs for genes encoding equine IFN-
α, IFN-γ, IL-1β, IL-4, IL-6, IL-8, IL-10, IL-12p40, IL-13, 
IL-17A, IL-23p19, TGF-β, and TNF-α were used under 
conditions optimised in house (Additional file 1). Dupli-
cate reactions of 2 µL cDNA in 23 µL Quantitect SYBR 
Green PCR mix (Qiagen) were run in an IQ5 or a CFX96 
Touch PCR machine (Bio-Rad) with an initial cycle of 
95 °C for 15 min followed by 40 cycles of 95 °C for 15 s, 
the assay specific annealing temperature for 30  s and 
72 °C for 30 s. Five reference genes; β2M, HPRT, RPL32, 
SDHA and TFRC [18], were evaluated for their expres-
sion stability in eqPBMC stimulated or not with G3 using 
the geNorm software (qBasePLUS, Biogazelle). The genes 
were scored based on a gene stability parameter (M) 
and a coefficient of variation (CV), where M values < 0.5 
and CV values < 0.2 indicate high expression stability. 
The genes RPL32 (M = 0.339; CV = 0.128) and SDHA 
(M = 0.329; CV = 0.117) were accordingly selected for 
normalization prior to calibration of stimulated sam-
ples to their medium controls [19]. Genes reaching fold 
change (FC) values < 0.5 or > 2 were considered as differ-
entially expressed.

Culture conditions for analysis of IFN‑γ and IL‑10 
production
EqPBMC (4 × 105 in 100  µL medium) were incubated 
for 30  min in 96-well round bottom plates (Nunc) 
before addition of 100  µL growth medium contain-
ing G3 (final concentration: 3 or 5 µg/mL), FliC (0.1 µg/
mL), Pam3CSK4 (0.5  µg/mL) or G3 mixed with FliC 
or Pam3CSK4. As controls, eqPBMC were cultured 
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in plain growth medium or in the presence of phor-
bol 12-myristate 13-acetate (PMA; 0.05  µg/mL; Sigma-
Aldrich®) and Ionomycin (1  µg/mL; Sigma-Aldrich®). 
Cell supernatants were collected after 48 h and stored at 
−20 °C until analysed for the presence of IFN-γ or IL-10 
using commercial ELISA kits (Equine IFN-γ development 
kit, Mabtech, Nacka strand, Sweden; Equine IL-10 ELISA 
Kit, Thermo Scientific, Frederick, MD, USA) according to 
the manufacturer’s instructions.

Kinetic studies
EqPBMC (2.5–5 × 106 cells/mL) were seeded in 6-well 
plates and stimulated with G3 (5 µg/mL) and Pam3CSK4 
(0.5  µg/mL) added simultaneously or sequentially (6 or 
12 h apart). Cells were harvested 18 h after the first stim-
uli and analysed for IFN-γ mRNA expression. In addition, 
eqPBMC (4 × 106 cells/mL) were seeded in 96-well round 
bottom plates and stimulated with G3 and Pam3CSK4 
added simultaneously or sequentially after 2, 4, 6 or 8 h. 
In parallel, G3 or Pam3CSK4 were added alone after 0, 
2, 4, 6 and 8 h of culture. All supernatants were collected 
after a total culture time of 48  h and stored at −20  °C 
until analysed for the presence of IFN-γ.

Data analysis
Statistical analysis was performed using the software 
Prism 5.0 (Graphpad Software, Inc., CA, USA). Nor-
mal distribution of data was confirmed using the Kol-
mogorov–Smirnov test. Differences between treatments 
were determined using the repeated measures ANOVA 
followed by Tukey’s multiple comparison test where 
P-values < 0.05 were regarded as significant. When indi-
cated, variability of gene expression data is reported as 
mean ± SD.

Results
Transcriptional response to G3
EqPBMC collected from eight horses were cultured for 
18  h in the presence of G3 (1, 3 or 5  µg/mL) followed 
by expression analysis of 13 immune-related genes. In 
general, there was a variation in gene-expression levels 
between horses being especially evident at the concentra-
tion of 5 µg G3 per mL (Figure 1). At this concentration, 
the genes encoding IFN-γ, IL-1β, IL-6, IL-8, IL-12p40 and 
IL-23p19 were up-regulated in PBMC from six or more 
of the eight horses. Increased expression of the genes 
for IL-13 and IL-17A was observed in two (FC: 2.6 and 
3.1) and three horses (FC: 3.6, 4.3 and 4.9), respectively. 
Exposure to a lower concentration of G3 (3 µg/mL) up-
regulated the genes encoding IL-1β (in 7/8 horses), IL-6 
(in 4/8 horses) and IL-8 (in 7/8 horses) but with lower FC 
values. Only one horse displayed the highest expression 
at 3 µg G3 per mL for the genes encoding IFN-γ, IL-1β, 

IL-6, IL-8, IL-12p40 and IL-23p19. The genes encoding 
IFN-α, IL-4, IL-10, TGF-β and TNF-α were not differ-
entially expressed at any of the G3 concentrations tested 
(data not shown).

Transcriptional response to G3 and TLR agonists
To study the effect of G3 in combination with the other 
immunostimulatory molecules, eqPBMC were cul-
tured with G3 (3  µg/mL) alone or in combination with 
Pam3CSK4 or FliC (Figure 2). Alone, these TLR agonists 
up-regulated IL-1β, IL-6, IL-8 and IL-10. In addition, 
Pam3CSK4 up-regulated IFN-γ in PBMC from three out 
of seven horses (FC: 5.2, 5.5 and 5.5). As observed in the 
previous experiments, G3 alone induced expression of 
IL-1β, IL-6 and IL-8 in ≥ 8/12 horses and IFN-γ and IL-
12p40 in 6/12 horses, but not IL-10. Gene expression of 
IL-1β, IL-6 and IL-8 was further increased when G3 was 
combined with Pam3CSK4 or FliC (Figure 2), being most 
evident for the IL-8 expression induced by the combi-
nation of G3 with FliC (P < 0.01; Figure  3). None of the 
combinations affected the gene expression of IL-12p40 
or IL-23p19 (Figure  2) whereas the presence of G3 sig-
nificantly decreased the gene expression of IL-10 induced 
by Pam3CSK4 (P < 0.05; Figure  4A) or FliC (P < 0.001; 
Figure 4C).

G3 inhibits IL‑10 production
The inhibition of IL-10 gene transcription was also 
reflected at the protein level in eqPBMC after incubation 
for 48 h in the presence of G3 and Pam3CSK4 (Figure 4B) 
or FliC (Figure 4D). After subtraction of the spontaneous 
production of IL-10 recorded in control cultures (range 
0.7–1.2  ng IL-10/mL medium), the levels of IL-10 in 
supernatants from eqPBMC exposed to PMA/ionomy-
cin ranged from 8.6 to 12.2 ng/mL. FliC and Pam3CSK4 
alone induced concentrations between 0.6 and 1.3 and 
1.0–1.8  ng IL-10/mL, respectively, which were signifi-
cantly reduced (P < 0.001) by the presence of G3.

G3 combined with Pam3CSK4 enhance production of IFN‑γ
Dual exposure to G3 and Pam3CSK4 markedly increased 
the gene expression of IFN-γ. This effect was observed in 
PBMC from five out of seven horses, with 7–187 times 
higher IFN-γ gene expression compared to when exposed 
to G3 or Pam3CSK4 alone (Figure 5A). These effects were 
confirmed by the protein levels of IFN-γ recorded in cell 
culture supernatants (Figure  5B). After subtraction of 
the spontaneous IFN-γ production (range 0.7–42.8  ng 
IFN-γ/mL), eqPBMC stimulated with PMA and ionomy-
cin produced between 34 and 420 ng IFN-γ/mL whereas 
G3 alone induced 3–22 ng IFN-γ/mL. In accordance with 
the gene expression data, the IFN-γ production increased 
when G3 was combined with Pam3CSK4, ranging from 8 
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to 52 ng IFN-γ/mL (Figure 5B) but not when combined 
with FliC (Figures 5C and D).

Effects of order and time elapse between addition of G3 
and Pam3CSK4 on IFN‑γ production
To further elucidate the combined effect of G3 and 
Pam3CSK4 on the IFN-γ induction, consecutive order 
and time elapsing between additions of the two inducers 

were studied. In accordance with the previous data, 
simultaneous exposure to G3 and Pam3CSK4 increased 
the gene expression of IFN-γ nine to 71 times compared 
to that induced by G3 or Pam3CSK4 alone. To compen-
sate for the individual variation, FC values of sequentially 
stimulated eqPBMC were related to FC values recorded 
at simultaneous stimulation with G3 and Pam3CSK4 
which was set to 100%. The enhancing effect was retained 
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Figure 1  Relative expression of the genes encoding IFN-γ, IL-1β, IL-6, IL-8, IL-12p40 and IL-23p19 in eqPBMC. PBMC collected from eight 
horses were cultured in various concentrations of G3 (1, 3 or 5 µg/mL) or in plain growth medium for 18 h. The cytokine gene expression was 
normalized to the geometric mean for the reference genes (SDHA and RPL32) and calibrated to that in the medium control.
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Figure 2  Relative expression of cytokine genes in eqPBMC incubated in the presence of G3, FliC or Pam3CSK4, alone or in combination. 
The PBMC were collected from twelve horses and cultured in the presence of G3 (n = 12), FliC (n = 8), Pam3CSK4 (n = 7), G3 + FliC (n = 8) and 
G3 + Pam3CSK4 (n = 7). The horses (nos. 1–12) were sampled four at a time at three occasions (a, b and c). Results from each horse are shown as 
indicated in the footnote to the heat map (i, ii, and iii). The cytokine gene expression was normalized to the geometric mean for the reference 
genes (SDHA and RPL32) and calibrated to that in the medium control. Five shades of green colour represent up-regulation ranging between FC > 2 
(the brightest green) and FC > 32 (the darkest green). Grey and yellow colour represents no differential expression and down-regulation (FC < 0.5), 
respectively.
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when G3 and Pam3CSK4 were added within 6 h, regard-
less of the order of addition. However, the gene expres-
sion of IFN-γ was significantly decreased (P < 0.05) 
when G3 or Pam3CSK4 were added twelve hours apart 
(Figure 6A).

To study this effect in further detail at the protein 
level, IFN-γ induced by G3 and Pam3CSK4 added within 
closer intervals were at each occasion (2, 4, 6 and 8  h) 
compared to that in parallel cultures stimulated by G3 
or Pam3CSK4 alone (Figure  6B). In line with the tran-
script analysis, the order of addition was not pivotal for 
the IFN-γ increase and simultaneous addition of G3 and 
Pam3CSK4 generated significantly higher (P < 0.001) con-
centrations of IFN-γ compared to that induced by G3 or 
Pam3CSK4 alone. The enhancing effect remained when 
G3 and Pam3CSK4 were added up to 6 h apart (P < 0.05).

Discussion
The present study was conducted to explore the possi-
bility to modulate immune reactions using the G3 adju-
vant stand alone or in combination with Pam3CSK4 
or FliC. The magnitude of the responses to G3, FliC or 
Pam3CSK4 varied between PBMC collected from dif-
ferent horses. Therefore, the responses to the various 
cytokine inducers, or combinations of those, were com-
pared within each individual. Inter-individual variations 
in cytokine responses are found in most mammalian spe-
cies, including the horse [20–23], which can be explained 
by genetic as well as environmental factors. Despite 
these variations, distinct patterns of gene regulation was 
revealed at stimulation with G3 or any of the two TLR 
agonists. Thus, it can be assumed that the large variation 

recorded for the IFN-γ and IL-8 responses in the present 
study, reflects that of an out-bred population of vaccine 
recipients.

Both Pam3CSK4 and FliC tended to up-regulate the 
genes encoding IL-1β, IL-6, IL-8 and IL-10. Previous 
studies conducted in the horse using flagellin reveal an 
increased expression of the genes for IL-6 and IL-8 in pri-
mary cultures of equine keratinocytes [17] as well as for 
TNF-α and IL-10 in equine neutrophils [16]. Thus, flagel-
lin/FliC seems to induce similar cytokine responses in 
equine cells as in other species [24]. Likewise, Pam3CSK4 
induces equine monocytes to produce IL-1β, IL-6, IL-10 
and TNF-α [14] as it does in human and murine cells [25, 
26]. In the present study, Pam3CSK4 did not induce gene 
expression of TNF-α, possibly explained by a spontane-
ous increase in gene expression of TNF-α seen after 18 
h of incubation (data not shown) being congruent with 
a high spontaneous release of TNF-α found in superna-
tants of unstimulated eqPBMC [22]. Also, a spontaneous 
induction of IL-1β was recorded in the control cultures. 
However, the gene expression of IL-1β increased further 
by the presence of Pam3CSK4, in agreement with pre-
vious observations where stimulation with Pam3CSK4 
induced higher levels of IL-1β compared to TNF-α in cul-
tures of equine monocytes [14]. Furthermore, the expres-
sion of TNF-α is almost instant and was not detectable 
after 2 h culture of equine whole blood exposed to LPS 
[27]. Thus, it cannot be excluded that G3 induced a rapid 
transient production of TNF-α which was not detected 
in the present experimental set-up. Regardless, FliC 
and Pam3CSK4 are useful tools to delineate cytokine 
responses in cultures of eqPBMC.
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Figure 3  Relative expression of the gene encoding IL-8 in eqPBMC after 18 h of incubation in the presence of G3, FliC, Pam3CSK or 
combinations thereof. The cytokine gene expression was normalized to the geometric mean for the reference genes (SDHA and RPL32) and 
calibrated to that in the medium control. FC > 2 (indicated by dashed line) were considered as up-regulated. *P < 0.05, **P < 0.01.
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The increase of IL-8 and IFN-γ in response to G3 com-
bined with FliC or Pam3CSK4 was more than additive, 
indicating synergy. Stimulation of multiple pattern rec-
ognition receptors (PRRs) are considered important for 
tailoring the innate cytokine production [28]. Indeed, 
several studies report synergistic activation of innate and 
adaptive immune responses by combining multiple TLR 
agonists in a vaccine [7, 29–32]. Considering that most 
pathogens contain multiple PAMPs, activation of more 
than one receptor is probably important for the host to 
mount effective immune responses to infections. These 
results are in line with earlier studies [10] showing that 
G3 alone induced CD8+ T cells as well as antibodies 

specific for influenza virus antigens in mice, but protec-
tion against challenge with a heterologous influenza virus 
strain was only achieved when G3 was formulated with 
an additional immunostimulant, i.e., a steviol glycoside 
[33].

Several studies report preserved synergy effects by 
sequential stimulation of PRRs [34–36]. Therefore, the 
kinetics behind the synergy effects seen on IFN-γ pro-
duction was studied by adding G3 and Pam3CSK4 to 
eqPBMC in different order and at different time points. 
Enhanced production of IFN-γ was retained when G3 
and Pam3CSK4 were added within a 2–6 h time window, 
indicating that the synergy on IFN-γ production was due 
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Figure 4  Relative gene expression (A, C) and protein levels (B, D) of IL-10 in eqPBMC cultured for 18 or 48 h in the presence of G3, FliC, 
Pam3CSK4 or combinations thereof. The cytokine gene expression was normalized to the geometric mean for the reference genes (SDHA and 
RPL32) and calibrated to that in the medium control. The protein expression data are presented as the estimated IL-10 levels after subtraction of the 
spontaneous IL-10 production in parallel cultures. Experiments for gene expression and protein analyses were conducted independently. Closed 
and open symbols indicate 3 µg G3/mL and 5 µg G3/mL, respectively. *P < 0.05 and ***P < 0.001.
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to an indirect rather than a direct interaction between G3 
and Pam3CSK4. The synergy effect was also independent 
of the order of addition, suggesting that both inducers 
may have “priming” capacities [37]. The enhancement of 
IFN-γ production can possibly explain why the presence 
of G3 reduced the production of IL-10 induced by both 
TLR agonists. However, the modes of action behind syn-
ergistic and negative cross-talks between PRRs are largely 
unclear and is probably affected by a range of factors [38].

The immunomodulatory component of G3 is the 
saponin Quil A, here formulated into nanoparticles 
with cholesterol. A proposed mechanisms involved in 
the adjuvant activity of Quil A was recently reviewed 
[39], suggesting that T cells could be directly acti-
vated by saponin aldehyde side chains interacting with 

amino acid residues present in the TCRs. Another pos-
sible interaction is through sugar moieties binding to 
lectin receptors on immune cells [40, 41]. Thus, it is 
likely that G3 physically interacts with cellular recep-
tors and starts a signalling cascade that can be further 
modified by inclusion of other immunomodulatory 
compounds. Taken together, the adjuvant G3 seems to 
polarize the immune response by inducing a cytokine 
profile dominated by pro-inflammatory and Th1-asso-
ciated cytokines. This profiling is highly desired for 
vaccines against pathogens where immune protection 
largely depends on cell-mediated immunity. Therefore, 
these results make it interesting to further evaluate the 
potential of G3 as an adjuvant in equine vaccines.
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Figure 5  Relative gene expression (A, C) and protein levels (B, D) of IFN-γ in eqPBMC cultured for 18 or 48 h in the presence of G3, 
Pam3CSK4, FliC and combinations thereof. The cytokine gene expression was normalized to the geometric mean for the reference genes 
(SDHA and RPL32) and calibrated to that in the medium control. The protein expression data are presented as the estimated IFN-γ levels after 
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