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Abstract 

Bovine necro-haemorrhagic enteritis is an economically important disease caused by Clostridium perfringens type A 
strains. The disease mainly affects calves under intensive rearing conditions and is characterized by sudden death 
associated with small intestinal haemorrhage, necrosis and mucosal neutrophil infiltration. The common assumption 
that, when causing intestinal disease, C. perfringens relies upon specific, plasmid-encoded toxins, was recently chal-
lenged by the finding that alpha toxin, which is produced by all C. perfringens strains, is essential for necro-haemor-
rhagic enteritis. In addition to alpha toxin, other C. perfringens toxins and/or enzymes might contribute to the patho-
genesis of necro-haemorrhagic enteritis. These additional virulence factors might contribute to breakdown of the 
protective mucus layer during initial stage of pathogenesis, after which alpha toxin, either or not in synergy with other 
toxins such as perfringolysin O, can act on the mucosal tissue. Furthermore, alpha toxin alone does not cause intesti-
nal necrosis, indicating that other virulence factors might be needed to cause the extensive tissue necrosis observed 
in necro-haemorrhagic enteritis. This review summarizes recent research that has increased our understanding of the 
pathogenesis of bovine necro-haemorrhagic enteritis and provides information that is indispensable for the develop-
ment of novel control strategies, including vaccines.
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1  Introduction
Bovine necro-haemorrhagic enteritis caused by Clostrid-
ium perfringens is an important cause of sudden death 
with necro-haemorrhagic lesions in the small intestine. 
The disease typically affects calves in good to excel‑
lent body condition that are fed large amounts of milk 
or milk replacer, often without premonitory signs of ill‑
ness. Although morbidity is rather low, mortality is close 
to 100%, making it an economically important disease 
[1]. Despite the economic importance of the disease, 
until recently little was known about the pathogenesis 
of bovine necro-haemorrhagic enteritis. In the last few 
years, a series of papers have been published providing 
new insights in C. perfringens-associated bovine necro-
haemorrhagic enteritis. Here, we review the knowledge 
on bovine necro-haemorrhagic enteritis, present a hypo‑
thetical model on the pathogenesis and discuss the cur‑
rent problems in vaccination.

2 � Aetiology
Clostridium perfringens ranks amongst the most wide‑
spread bacteria, with an ubiquitous environmental 
distribution in soil, sewage, food, faeces, and the nor‑
mal intestinal microbiota of humans and animals. This 
Gram-positive, anaerobic spore former is, however, also 
one of the most common pathogens, causing a spectrum 
of important human and animal diseases, ranging from 
myonecrotic to enteric infections [2, 3]. The virulence 
of C. perfringens is mediated by its intimidating arse‑
nal of toxins and degradative enzymes. As a species, C. 
perfringens produces at least 16 toxins and extracellular 
enzymes [3–5]. However, no single strain produces this 
entire toxin panoply, resulting in considerable varia‑
tion in the repertoire of toxins and degradative enzymes 
produced by different strains of this bacterium. These 
strain-to-strain differences in toxin production per‑
mits the classification of C. perfringens isolates into five 
toxinotypes (A, B, C, D and E), based on the presence of 
genes encoding four so-called major toxins: alpha, beta, 
epsilon and iota toxin [3]. Besides expressing one or more 
of the typing toxins, C. perfringens strains can produce 
additional toxins, including, but not limited to, entero‑
toxin and necrotic enteritis B-like toxin (NetB), which are 
also very important during certain diseases, for example 
human food poisoning or necrotic enteritis in broiler 
chickens [5, 6].

C. perfringens type A strains are the suspected aetiolog‑
ical agent of multiple bovine alimentary tract disorders. 
From these diseases, clostridial abomasitis and necro-
haemorrhagic enteritis show remarkable similarities in 
aetiology, clinical symptoms, histological findings and 
predisposing factors. Even now, it is not clear whether 
they are truly different diseases or whether they should 

be considered as clinical or pathological variants of the 
same disease. For the completeness of this review, both 
diseases are included.

There is recent evidence clearly demonstrating that 
bovine necro-haemorrhagic enteritis is caused by C. per-
fringens type A strains. Indeed, the intestinal disease was 
reproduced by inoculation of bovine intestinal ligated 
loops with type A strains isolated from necro-haemor‑
rhagic enteritis cases [7–9]. Furthermore, the causative 
role of C. perfringens type A in clostridial abomasitis was 
confirmed when intraruminal administration of C. per-
fringens type A to neonatal calves induced clinical signs 
similar to naturally acquired disease [10]. Almost exclu‑
sively toxinotype A strains are isolated from animals 
diagnosed with either necro-haemorrhagic enteritis 
[11–14] or clostridial abomasitis [10, 15, 16]. However, 
the involvement of this toxinotype and its toxin(s) was 
and still is heavily debated. As type A strains can be 
present in the normal intestinal microbiota, isolation of 
this toxinotype is not diagnostic for disease. Also detec‑
tion of its major toxin, alpha toxin, has little diagnostic 
value, as it can be present in the faeces of healthy animals 
[17]. Therefore, diagnosis of enteric type A disease is not 
straightforward. Furthermore, also other toxinotypes can 
cause disease in cattle. C. perfringens type C can cause 
sudden death in neonatal calves less than 10 days of age 
[18]. The intestinal lesions are similar to those described 
for type A, with severe necrosis and haemorrhages in 
the small intestine and neutrophil infiltration [19, 20]. C. 
perfringens type B and E only sporadically cause disease. 
Only one report describing C. perfringens type B-asso‑
ciated disease in cattle was found. This report provides 
only limited information, but bloody diarrhoea, haem‑
orrhagic enteritis and haemorrhages in all vital organs 
were described [21]. C. perfringens type E is considered 
an infrequent cause of haemorrhagic enteritis and sud‑
den death in neonatal calves [22], however, one report 
also describes type E enterotoxaemia in adult cows [23]. 
Much research is focussed on the pathology caused by C. 
perfringens type D strains. Although C. perfringens type 
A and type D strains cause completely different patholo‑
gies, they both are commonly described as enterotoxae‑
mia, making the nomenclature confusing [7, 9, 12, 21, 22, 
24]. The term “enterotoxaemia” is widely applied to vari‑
ous diseases caused by C. perfringens, but it is appropriate 
only for diseases in which the major signs are caused by 
systemic actions of the toxins [25]. Indeed, type D enter‑
otoxaemia is characterised by neurological signs without 
the presence of major intestinal lesions [26]. This is in 
contrast to the disease caused by type A strains, which 
is characterised by intestinal necrosis and haemorrhages, 
with neurological effects only sporadically being reported 
[27]. Therefore, we prefer to describe this syndrome as 
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bovine necro-haemorrhagic enteritis, thereby making a 
clear distinction between the pathologies caused by C. 
perfringens type A or D, and clearly describing the lesions 
caused by the pathogen.

3 � Epidemiology
3.1 � Prevalence
Clostridial infection of the gastro-intestinal tract of cattle 
is a common problem all around the world [15, 16, 28–
30]. C. perfringens type A disease usually presents as indi‑
vidual sporadic cases. In young calves, C. perfringens type 
A disease mostly is characterized by abomasitis, often 
with lesions also in the upper part of the small intestine 
[16, 31]. In older calves, C. perfringens type A causes 
necro-haemorrhagic enteritis. This disease can occur 
in cattle of all ages, but mainly affects suckling and veal 
calves in good to excellent body condition of up to four 
[1, 12, 29] and eight months of age [9, 32] respectively. 
Although the disease is apparently widespread and the 
overall prevalence is unknown, there are differences in 
incidence between different breeds and production sys‑
tems. Accurate data on the prevalence are only available 
for the disease in Belgium, where a mortality rate of 4.7% 
(accounting for approximately 50% of total mortality) has 
been reported in suckling calves [29]. The majority of the 
affected animals (89%) are of the double muscled Belgian 
Blue beef cattle breed, suggesting a possible genetic influ‑
ence for the susceptibility to necro-haemorrhagic enteri‑
tis. However, dairy breed calves are separated from the 
cow as soon as possible after birth and are typically not 
raised as suckling calves. Hence, as the majority of the 
affected animals are suckling calves, dietary influences 
can also be responsible for the difference in disease sus‑
ceptibility. Also in veal calves, predominantly beef cattle 
breeds are affected, accounting for 20% of total mortali‑
ties on average, compared to 4% in dairy and mixed breed 
veal calves [1, 32]. In addition to a possible breed influ‑
ence, dietary differences between veal production sys‑
tems are suspected to have a great effect as an eliciting 
factor [1, 32]. Whereas dairy breed veal calves receive 
milk powders with very little animal protein, beef cat‑
tle breeds receive a high amount of skimmed milk pow‑
der. An important risk period for bovine enterotoxaemia 
is situated at the end of the production cycle, where 
calves are fed high amounts of highly concentrated milk 
proteins [32]. Whereas dairy or traditional beef calves 
receive on average a maximum of 6 litres milk replacer 
per day at a concentration of 125  g/L, beef cattle breed 
veal calves receive at the end of fattening as much as 16 L 
daily, at a concentration ranging from 150 to 190 g/L. The 
predisposition of these calves may thus be linked to their 
higher feed, protein and energy intake.

3.2 � Predisposing factors
3.2.1 � Nutrition
Since C. perfringens lacks many genes necessary for amino 
acid biosynthesis, it cannot grow in an environment 
where a specific amino acid supply is limited [33]. High 
dietary levels of digestible carbohydrates that exceed the 
digestion and absorption capacity of the intestinal mucosa 
can be utilized by C. perfringens to proliferate [34]. 
Indeed, previous studies have suggested that protein- and 
energy-rich diets predispose for this disease [1]. Dietary 
issues such as changes in feed composition, feed quantity, 
bringing animals to pasture or moving to a different pas‑
ture are often noted 24–36 h prior to death due to necro-
haemorrhagic enteritis [29]. Also the ad libitum provision 
of concentrate feed to suckling calves predisposes for 
necro-haemorrhagic enteritis. The predisposition of both 
spring grass and feed concentrates might be attributed to 
the high protein concentration and low amount of fibres, 
which may alter the microbiota composition and favour 
clostridial overgrowth. By contrast, high fibre diets are 
often believed to protect from gastro-intestinal disease. 
Indeed, the reduction of the amount of concentrates 
provided to suckling calves and addition of dietary fibres 
reduced the incidence of necro-haemorrhagic enteritis 
[29]. In addition to feed concentrates and pasture, also 
cow’s milk or milk replacer in the diet seems to predispose 
for C. perfringens-associated enteric diseases. Indeed, 
necro-haemorrhagic enteritis is more frequently observed 
in veal calves and suckler calves, and also neonatal calves 
are prone to abomasitis [1, 16, 27, 32]. A common die‑
tary factor in these populations is the high proportion 
of cow’s milk or milk replacer in the diet. The whey pre‑
sent in cow’s milk or milk replacer contains high quality, 
readily available amino-acids, potentially predisposing 
for clostridial overgrowth. We showed that milk replacer 
has an important predisposing effect in a ligated loop 
model for necro-haemorrhagic enteritis [35]. Further‑
more, within the Belgian Blue breed, milk-fed veal calves 
produce less antibodies against C. perfringens alpha toxin 
than beef calves [36]. This suggests that calves fed cow’s 
milk or milk replacer might have less contact with alpha 
toxin, leading to the absence of active immunity, and thus 
potentially leaving the calves unprotected against necro-
haemorrhagic enteritis. Indeed, when C. perfringens is 
cultured in the presence of milk replacer, the alpha toxin 
activity of the supernatant decreases in a dose-dependent 
manner, compared to a negative control cultured with‑
out milk replacer [36, Supplemental file 1]. The observa‑
tion that contact with milk decreases toxin expression 
seems in contradiction to the observation that high milk 
diets predispose for necro-haemorrhagic enteritis. How‑
ever, the effect of milk on the C. perfringens production of 
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mucinases, sialidases or other colonizing factors has not 
been investigated and might be of importance. Further‑
more, the presence of crude proteins in the diet increases 
the mucin concentration in the small intestine [37]. This 
might favour colonization of the small intestinal mucus 
layer by C. perfringens and subsequent localized toxin 
production. Up till now the molecular mechanism behind 
the onset of necro-haemorrhagic enteritis is unknown. 
Furthermore, the role of feed in the pathogenesis of 
necro-haemorrhagic enteritis cannot be attributed to one 
specific factor, but to a very complex interaction of influ‑
ences from a broad variety of fed components and their 
effect on and interaction with bacterial factors.

3.2.2 � Stress and intestinal homeostasis
Stressful environmental conditions, such as regrouping, 
transport, handling and medical treatments have been 
mentioned as risk factors for necro-haemorrhagic enteri‑
tis [1]. A post-stress modification of the intestinal micro‑
biota by induction of a paralytic ileus is a well-known 
phenomenon [38–40]. This can lead to unadapted diges‑
tive processes, and consequently a higher availability of 
these nutrients for bacterial growth [41]. The finding of 
Manteca et  al. that ganglia are degenerated in necro-
haemorrhagic enteritis suggests a direct effect on intes‑
tinal motility, additional to the general paralytic effect 
of enteritis, leading to a vicious circle. The consequent 
intestinal stasis diminishes the flushing of bacteria and 
toxins, and can contribute to bacterial overgrowth and 
colonization of the intestinal mucus layer [29, 42].

4 � Clinical signs and lesions
4.1 � Clinical signs
One of the hallmarks of bovine necro-haemorrhagic 
enteritis and clostridial abomasitis is the speed of disease 
progression. In most cases, apparently healthy animals 

with an excellent body conformation are found dead. 
When premonitory signs prior to death are noticed by 
the farmer, death due to necro-haemorrhagic enteritis 
occurs within 5 h [9, 29]. In those cases, signs of cardio‑
vascular shock, including a lateral recumbent position 
and cold extremities, are commonly observed. Less 
frequently, colic and respiratory distress are present, 
whereas nervous symptoms, distended abdomen and 
diarrhoea are rather rare [1, 9, 29]. Premonitory dis‑
ease signs for clostridial abomasitis are less extensively 
described, but include colic and haemorrhagic diarrhoea 
[16, 43, 44].

4.2 � Macroscopic lesions
Post-mortem a remarkable and rapid meteorism (bloat‑
ing, tympanites…) of the abdomen and rapid putre‑
faction with foul smell is typical. On necropsy, cases of 
necro-haemorrhagic enteritis are characterized by diffuse 
or localized small intestinal haemorrhage with abundant 
liquid haemorrhagic contents (Figure  1) [1, 9, 29]. The 
haemorrhagic nature of the intestinal content is limited 
to the diseased intestinal segment, suggesting a para‑
lytic ileus. The affected region can range from 10 cm to 
the entire length of the small intestine and is most often 
located in the jejunum [9, 29]. However, also the ileum 
and less frequently the caecum, colon or abomasum can 
be affected [29]. There is also gas accumulation and in 
the majority of the cases the mesenteric lymph nodes 
are enlarged. Less frequently, lesions in other inter‑
nal organs, such as petechiae or congestion, which are 
typical for shock, are observed [1, 29]. In young calves 
lesions are mainly situated in the abomasum, whereby 
this syndrome is referred to as clostridial abomasitis. 
The lesions mainly comprise acute emphysematous and 
necrotizing haemorrhagic inflammation of the abomasal 
mucosa, with marked oedema in the lamina propria and 

Figure 1  Post-mortem, macroscopic presentation of a case of bovine necro-haemorrhagic enteritis. A Acute death in a Belgian Blue 
calf with a distended abdomen and marked meteorism. B Severely dilated and congested small intestine of a case of bovine necro-haemorrhagic 
enteritis. When opening it is filled with blood.
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submucosa. Similar lesions are frequently present in the 
rumen, reticulum and duodenum [10, 16, 43, 44].

4.3 � Microscopic lesions
Microscopic examination of necro-haemorrhagic enteri‑
tis cases reveals intestinal haemorrhages and cell necro‑
sis extending from the tip of the villi to the base of the 
crypts, as well as infiltration of neutrophils and lympho‑
cytes [1, 38]. In the intestinal lumen, clusters of C. per-
fringens bacteria can be found, localized in the necrotic 
areas. However, they are typically not found in the 
mucosa of the intestinal wall [12]. Lesions typical for tox‑
aemia are not consistently present in internal organs [12, 
38]. We recently gained more insight into the sequence of 
histopathological events during lesion development using 
a calf intestinal loop model of necro-haemorrhagic enter‑
itis (Figure 2) [35]. In early stages, only congestion of the 
capillaries and epithelial sloughing are observed, with 
strings of viable epithelium present in the lumen. One 
can argue that the observed detachment of epithelial cells 
is a result of post-mortem autolysis. However, control 

samples showed no sloughed epithelium, indicating the 
pathological nature of this event, which is in accordance 
with early lesions observed in C. perfringens-induced 
necrotic enteritis in broilers [45]. When the disease pro‑
gresses, oedema of the mucosa, infiltration of inflamma‑
tory cells, villus blunting and haemorrhages occur, with 
necrosis only observed in advanced stages of disease. 
When severe necrosis is present, the necrotic tips of the 
villi are clearly separated from the underlying viable tis‑
sue. These observations indicate that the villi initially are 
damaged at the basement membrane and lateral domain 
of the enterocytes, followed by extensive damage to the 
lamina propria.

In contrast to necro-haemorrhagic enteritis, descrip‑
tions of microscopic changes in clostridial abomasitis are 
scanty. For clostridial abomasitis, mucosal haemorrhages, 
necrosis and variable degrees of inflammatory cell infil‑
tration in the abomasum, with marked oedema in the 
lamina propria and submucosa are generally reported 
[16, 43, 44]. Experimental reproduction of disease has 
confirmed these histopathologic observations [10].

Figure 2  Histological damage in the bovine small intestine treated with a C. perfringens necro-haemorrhagic enteritis isolate over 
time. Ligated small intestinal loops were inoculated with sterile bacterial culture medium (A) or BCP62, a C. perfringens type A strain isolated from a 
case of bovine necro-haemorrhagic enteritis (B–D) [28]. Intestinal loops were injected with 30 min intervals, resulting in loops with different incuba-
tion times at time of sampling. Loops incubated with sterile bacterial culture medium for 5 h showed normal intestinal villi with a well-preserved 
epithelium and lamina propria (A). Histological damage, consisting of epithelial sloughing, is observed within 30 min after injection of C. perfringens 
(B). Complete loss of the epithelium and congestion of the capillaries was noted after 3 h incubation with C. perfringens (C). After 5 h, more severe 
haemorrhages and necrosis of the tips of the villi are observed (D).
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5 � Virulence factors involved in disease
Although the role of other toxinotypes of C. perfrin-
gens in diseases originating in the intestine is well docu‑
mented, the involvement of C. perfringens type A strains 
is rather controversial and often questioned. For many 
years, the involvement of C. perfringens type A strains in 
intestinal disorders was commonly accepted [3, 46–48]. 
More recently, the opinion in the scientific literature has 
shifted towards underrating the role of type A strains 
in enteric disease, leading to the postulation that type 
A strains are only important for myonecrotic infections 
(gas gangrene) and that enteric diseases in various ani‑
mal species are generally caused by type B–E or type A 
subtypes, producing specific toxins such as enterotoxin 
and NetB [49, 50]. In analogy with the recent discovery 
of subtypes of type A strains that produce newly identi‑
fied toxins which are (potentially) involved in intestinal 
diseases in pigs, poultry and horses, it was suspected 
that a disease- and/or species-specific toxin was essential 
for the pathogenesis of C. perfringens type A-associated 
enteric disease in cattle as well.

5.1 � Beta2 toxin, a prime suspect of enteric diseases?
Beta2 toxin is a pore-forming toxin that is associated 
with enteritis in neonatal pigs [51, 52] and gentamicin-
associated diarrhoea in horses [53–55]. Beta2 toxin 
positive C. perfringens strains are widespread and can 
be isolated from various wild and domestic animals and 
humans, but also from food, soil and sludge [56–59]. C. 
perfringens type A strains harbouring the beta2 toxin 
gene have been isolated from diseased as well as healthy 
cattle of different ages [8, 59, 60]. However, there seem 
to be geographical differences in the reported number of 
beta2 toxin positive isolates and up to now no unequivo‑
cal correlation between the isolation of beta2 toxin posi‑
tive strains and gastro-intestinal disease in either calves 
or adult cattle could be demonstrated [7, 27, 44, 59]. A 
possible role of beta2 toxin in bovine enterotoxaemia was 
suggested in 2002 when Manteca et al. induced necrotic 
lesions with a beta2 toxin producing type A strain in 
a ligated loop experiment [7]. However, this was only 
tested in one intestinal loop in one calf, and the strain 
also produced large amounts of alpha toxin. In addi‑
tion, no isogenic beta2 toxin-deficient strain was used 
as a control. Therefore, effects of other factors cannot 
be excluded. More recently, Morris et  al. and Valgaeren 
et al. were able to induce necrotic lesions in an intestinal 
loop model by inoculation of type A strains not produc‑
ing the beta2 toxin [8, 35]. Taking these results together 
with the observation that there is no correlation between 
the isolation of beta2 toxin positive strains and the occur‑
rence of disease [59], beta2 toxin seems not essential 
for the development of C. perfringens type A-associated 

gastro-intestinal diseases in cattle. However, a synergism 
between beta2 toxin and other toxins is plausible and 
should be further investigated [7, 60]. The actual role of 
beta2 toxin in other enteric diseases is also not clear and 
recent papers suggest a limited role of beta2 toxin in dis‑
ease [61] and that beta2 toxin positive C. perfringens type 
A strains merely reflect the normal intestinal microbiota 
[62].

5.2 � Alpha toxin, a critical role in pathogenesis?
Alpha toxin is a phospholipase C enzyme, which is pref‑
erentially active towards phosphatidylcholine and sphin‑
gomyelin, two major components of the outer leaflet of 
eukaryotic cell membranes [63]. This toxin is produced 
by all C. perfringens strains, although type A strains 
usually produce higher amounts than other toxino‑
types. Alpha toxin is the major toxin produced by type 
A strains, but its role in intestinal diseases is controver‑
sial and heavily debated. Indeed, for over 30 years it was 
believed that alpha toxin was the key virulence factor 
in necrotic enteritis caused by C.  perfringens in broiler 
chickens, until it was shown that a novel toxin, NetB, was 
crucial for disease [5, 64]. This is in contrast to the situa‑
tion in cattle where incubation of numerous strains from 
different origin and toxinotypes in bovine ligated intes‑
tinal loops induced similar necro-haemorrhagic lesions, 
suggesting that common virulence factors rather than 
disease-specific toxins are essential [35]. Furthermore, 
analysis of the complete genome sequence of a bovine 
clostridial abomasitis isolate failed to reveal novel toxin 
genes [65]. Therefore a possible role of commonly pro‑
duced toxins and/or virulence factors was suggested [35, 
65]. Indeed, the importance of alpha toxin in the patho‑
genesis of bovine necro-haemorrhagic enteritis was 
demonstrated in a calf intestinal loop model, by using 
different approaches. First, an alpha toxin-mutant strain 
was attenuated in its lesion-inducing potential in the 
intestinal loop model, whereas complementation of alpha 
toxin restored its ability to cause necro-haemorrhagic 
lesions [66, 67]. Next, when antisera containing antibod‑
ies against native alpha toxin were co-injected with C. 
perfringens in bovine intestinal loops, the lesion-induc‑
ing potential of C.  perfringens was reduced [66]. Fur‑
thermore, when pure alpha toxin was injected in bovine 
intestinal loops, it caused epithelial cell detachment, vil‑
lus tip blunting, erosion, mild inflammation and haemor‑
rhages of the lamina propria, all events that are seen in 
natural cases of necro-haemorrhagic enteritis [68].

In addition to a confirmed involvement of alpha toxin 
in bovine necro-haemorrhagic enteritis, this toxin might 
also play a role in enteric diseases in other animals, 
including humans [64, 69–75]. When combining the 
research data on alpha toxin in enteric diseases conducted 
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in different animal species, a pathological mechanism of 
alpha toxin in C. perfringens type A-associated enteric 
disorders can be proposed. Histopathologically all these 
intestinal disorders are characterized by damage to the 
tips of the villi or epithelial cell detachment, congestion 
of the capillaries, mucosal oedema and necrosis. In most 
cases, also haemorrhages and mucosal inflammation with 
concomitant influx of inflammatory cells is reported [1, 
76–79]. For some of these pathological findings, there is 
indirect evidence that alpha toxin is responsible. In small 
intestine explants of rabbits incubated with alpha toxin, 
this toxin causes detachment of the epithelial cells at the 
tip of the villi [80]. Epithelial sloughing was also observed 
when alpha toxin was inoculated in bovine intestinal 
loops [68]. Alpha toxin is able to upregulate the matrix 
metalloproteinase (MMP) expression of the host as seen 
in vitro. This increased host MMP activity may be related 
to derangement of normal epithelial growth and increased 
degradation of subepithelial matrix, possibly explaining 
the observed epithelial detachment [81]. Additionally, 
alpha toxin induces the production of tumor necrosis 
factor-alpha (TNF-α) by mononuclear cells, which may 
contribute to epithelial sloughing. It has been shown that 
intraperitoneal or systemic administration of TNF-α to 
mice or intraduodenal TNF-α injection in rats induces 
pathological intestinal cell shedding and that dysregulated 
TNF-α production is highly important in driving epithe‑
lial damage as shown in mice [82, 83]. Another character‑
istic of C. perfringens type A-associated intestinal diseases 
that can be a result of the alpha toxin activity is the 
influx of inflammatory cells. Neutrophilic inflammation 
of the small intestine has been observed after intragas‑
tric administration of alpha toxin to neonatal piglets and 
after alpha toxin injection in small intestinal loops of rats, 
sheep and calves [68, 84, 85]. This trafficking of inflam‑
matory cells to the infected tissues seems contradictory 
to the observations in gas gangrene, where the leukocytes 
are trapped inside the blood vessels. However, this differ‑
ence may be related to the concentration of alpha toxin in 
the tissue. In gas gangrene, alpha toxin is produced in the 
tissue, leading to high toxin concentrations at the site of 
infection. This is in contrast to intestinal infections, where 
alpha toxin is produced by C. perfringens in the intes‑
tinal lumen and enters the mucosa through a currently 
unknown mechanism. Little is known about the permea‑
bility of the intestinal mucosa to alpha toxin, but it is likely 
that lower concentrations will be present in the intestinal 
mucosa than in the infected muscle tissue during gas gan‑
grene [2]. Alpha toxin is well known to cause upregulation 
of adhesion molecules and IL-8 expression in endothelial 
cells and leukocytes [86, 87]. When present in excessively 
high concentrations as observed in mouse models of gas 
gangrene, these intercellular mediators alter the processes 

of leukocyte adherence and extravasation, resulting in 
impaired movement of inflammatory cells to the infected 
tissue [88]. However, physiological levels of upregulation 
lead to trafficking of neutrophils into the tissue space, as 
observed in intestinal C. perfringens type A infections. 
Furthermore, Otamiri et  al. have shown that this neu‑
trophil influx was caused by alpha toxin-induced activa‑
tion of endogenous phospholipase A2 in the rat intestinal 
mucosa [85]. Activation of endogenous phospholipase A2 
can result in the generation of highly pro-inflammatory 
lysophosphatidic acid which can damage the mucosa. 
The mucosal damage can be aggravated by oxidants, pro‑
teolytic enzymes and cytotoxic proteins originating from 
the infiltrated neutrophils, and may be associated with 
increased mucosal permeability. Indeed, an alpha toxin-
triggered increase in intestinal permeability was shown 
in rats, rabbits, sheep and chickens [75, 80, 84, 85]. Addi‑
tionally, alpha toxin induces the production of platelet-
activating factor (PAF) and TNF–α by endothelial and 
mononuclear cells respectively, which likely contribute to 
the increased vascular permeability and oedema during 
C. perfringens infections [89, 90]. This increased vascu‑
lar permeability may explain the haemorrhages observed 
after C. perfringens type A infections in some species. 
Indeed, haemorrhages of the lamina propria were repro‑
duced after alpha toxin inoculation in ligated loops of the 
bovine small intestine [68]. Furthermore, the lethal effect 
of intra venous administration of alpha toxin to mice is 
closely related to the release of TNF-α from mononu‑
clear cells into the bloodstream [91]. It should be noted 
that, although alpha toxin is described as a necrotizing 
toxin, no intestinal necrosis could be observed in any of 
the experimental models mentioned before. However, 
a mutant strain devoid of alpha toxin is attenuated in its 
lesion-inducing potential when injected in bovine intesti‑
nal loops [66, 67]. Together, these findings strongly sug‑
gest that alpha toxin is essential, but a synergism with 
other factors is needed to cause the fulminant necrosis 
seen in natural cases of necro-haemorrhagic enteritis [66, 
68]. Up till now, the nature of the additional virulence 
factors is unknown, but there is some indirect evidence 
pointing towards certain toxins and enzymes.

5.3 � Perfringolysin O
Perfringolysin O is a cholesterol-dependent cytolysin 
which is produced by nearly all C. perfringens strains 
[92, 93]. This toxin is not considered essential for disease 
development, but seems to have an important accessory 
role in some diseases. Indeed, in a mouse model for gas 
gangrene it was found that perfringolysin O affects the 
host inflammatory response and is, at least partially, 
involved in tissue destruction. However, these effects 
were less pronounced than those elicited by alpha toxin 
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and a synergistic effect between both toxins has been 
shown [89, 94, 95]. The role of perfringolysin O in C. 
perfringens type A-associated intestinal diseases in cat‑
tle is not yet fully understood. In a recent study antisera 
from calves immunized with a mixture of C. perfringens 
toxins were able to protect against intestinal necrosis 
when co-injected with C. perfringens in bovine intestinal 
loops [96]. Antibodies towards alpha toxin and perfrin‑
golysin O were identified as the most abundant antibod‑
ies in the protective immune sera, suggesting a possible 
role of both toxins in intestinal lesion development [96]. 
Verherstraeten et al. recently demonstrated a synergistic 
cytotoxic effect between alpha toxin and perfringolysin 
O to bovine endothelial cells. However, a perfringolysin 
O-deficient strain was still able to cause necrosis in calf 
ligated intestinal loops [67]. It should be noted that this 
does not exclude a possible accessory role of perfrin‑
golysin O in intestinal disease. Based on the knowledge 
obtained from gas gangrene, the effect of perfringolysin 
O is expected to be more subtle and further research 
should be focused on the host inflammatory response 
and more specific the neutrophil and macrophage influx 
into the lesions.

5.4 � A role for proteolytic or carbohydrate‑active enzymes?
In addition to alpha toxin and perfringolysin O it can‑
not be excluded that the protection afforded by antisera 
derived from calves vaccinated with a mixture of C. per-
fringens toxins in bovine intestinal loops is due to other 
immunogenic proteins [96]. These additional virulence 
factors do not necessarily have to be toxins, but can 
equally well be proteins that confer a specific advantage 
to C. perfringens during intestinal colonization and/or 
infection.

5.4.1 � Sialidases
C. perfringens needs to breach through the protective 
intestinal mucus layer before alpha toxin, either or not in 
synergy with other toxins, can act on the bovine intesti‑
nal tissue. The large, complex structure of mucins makes 
them targets for many proteases, glycosidases and sul‑
phatases. Enzymatic digestion of the mucus layer pro‑
vides access to readily available sources of carbon and 
enables bacteria to reach the epithelial surface. C. per-
fringens can produce many glycosidases which have a 
range of catalytic specificities that reflect their capacity 
to breakdown a diversity of host glycans [97–100]. Many 
of the studies concerning mucin-degrading enzymes 
were carried out specifically on sialidases. These enzymes 
cleave terminal sialic acids from sugar chains of glyco‑
proteins, glycolipids, oligosaccharides, gangliosides and 
other sialoglycoconjugates. Sialic acids are especially 
abundant in the intestinal tract, where they are major 

constituents of mucins. In C. perfringens three sialidase 
enzymes have been reported, the large exo-sialidases 
NanI and NanJ, and a smaller intracellular NanH enzyme. 
Genome sequencing showed that the majority of strains 
carry all three sialidase-encoding genes [101]. The siali‑
dases release sialic acid from higher order gangliosides 
and glycoproteins, probably for subsequent transport 
into the bacterial cell [102]. Furthermore, the release of 
sialic acid is an initial step in the sequential degradation 
of mucins, since the terminal location of sialic acid resi‑
dues in the mucin oligosaccharide chains may prevent 
the action of other glycosidases [103]. In contrast with 
gut commensals, which appear to use sialidases primar‑
ily for nutrient acquisition, some pathogens, such as C. 
perfringens, also use sialidases to decrypt adhesins or 
toxin-binding sites [103]. Indeed, in studies on gas gan‑
grene a synergy between alpha toxin and the NanI siali‑
dase was observed [104, 105]. In these experiments alpha 
toxin had greater pathological effects on cultured cells 
that had been pretreated with NanI. Intramuscular injec‑
tion of both alpha toxin and NanI in mice confirmed this 
synergy in  vivo [104]. This enhancement of alpha toxin 
activity by NanI is dependent on the presence of gangli‑
osides on the surface of the cell. Cleavage of sialic acid 
from these gangliosides, which protrude from the cell 
surface, most likely allows better interaction of alpha 
toxin with its substrates at the cellular surface [104, 105]. 
However, the use of either a nanI-mutant or nanJ-mutant 
strain showed that large sialidases are not essential for 
virulence in a mouse model for gas gangrene [105]. This, 
however, does not exclude the possibility that sialidases 
are involved in the pathogenesis of gas gangrene, because 
subtle effects that might be mediated by the sialidases are 
masked in this model [49, 105]. In addition to a possible 
role in gas gangrene, the large sialidases may also be of 
importance during intestinal infections. Recent research 
suggests that NanI sialidase may contribute to intesti‑
nal attachment and colonization. This conclusion was 
based on the observation that NanI sialidase promotes 
the adherence of a C.  perfringens type A, type C and 
type D strains to enterocyte host cells in vitro [106, 107]. 
Furthermore, pre-treatment of sensitive cells with NanI 
sialidase enhanced the subsequent binding and cyto‑
toxic effects of epsilon toxin, suggesting that the large 
sialidases of C.  perfringens can act in synergy with this 
toxin during type D enterotoxaemia [106]. However, no 
difference in in vitro mucin-degrading activities between 
C. perfringens strains originating either from bovine 
necro-haemorrhagic enteritis cases, from healthy cattle 
isolates or from other animal species could be demon‑
strated [108]. This, however, does not exclude a possible 
role of mucin-degrading enzymes in intestinal patho‑
genesis as the production of virulence factors in  vitro 
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does not necessarily reflect the in  vivo situation, where 
contact with host tissue might alter the C. perfringens 
toxin production. Next, not only enzymatic differences 
but also functional differences such as enhanced sub‑
strate binding or reduced sensitivity to intestinal proteo‑
lytic inactivation might confer selective advantage to the 
producing strain. The exact role of sialidases and other 
mucin-degrading enzymes in C. perfringens type A-asso‑
ciated intestinal diseases has not been explored. Because 
it seems very likely that colonization and degradation of 
the small intestinal mucus layer are a prerequisite for the 
onset of necro-haemorrhagic enteritis, the glycosidases 
employed by C. perfringens to cope with the mucosal sur‑
face are probably of great importance and future research 
should focus on upregulation of these enzymes after 
contact with host tissue, the role of mucin-degrading 
enzymes in intestinal colonization and enzyme stability 
in the intestinal tract.

5.4.2 � Hyaluronidases
Hyaluronan can form highly viscous solutions and is a 
major constituent of the extracellular matrix, especially 
in soft connective tissue [109]. The viscous consistency 
usually provides resistance to penetration of infectious 
agents and their extracellular products. Hyaluronidases 
are produced by a number of bacteria that cause infec‑
tions at mucosal surfaces [110]. Hyaluronidase-mediated 
degradation of hyaluronan decreases the viscosity, which 
results in increased permeability of the connective tis‑
sues and potentially increased spread of microorgan‑
isms and toxins through the connective tissues [110, 
111]. Alternatively, hyaluronidase may degrade hya‑
luronan cell coatings, thereby allowing direct contact 
between the pathogens and the host cell surfaces. Fur‑
thermore, the end products of hyaluronidase degradation 
are disaccharides which can be used as nutrients by the 
pathogen [110]. In C.  perfringens 5 hyaluronidase genes 
are described (nagH, nagI, nagJ, nagK and nagL), which 
encode secreted enzymes [33]. Not much research has 
been done on the C. perfringens hyaluronidases. The best 
studied enzyme is mu toxin or NagH [112, 113]. By itself, 
mu toxin is a non-lethal toxin but it is thought to con‑
tribute to the pathogenesis of C.  perfringens infections 
through the degradation of mucins and connective tis‑
sue [114]. Furthermore it facilitates the spread of alpha 
toxin, thereby potentiating its activity [112]. Because the 
C.  perfringens hyaluronidases are not as well studied as 
the other C. perfringens toxins, no experimental evidence 
exists about the actual role of these enzymes in either gas 
gangrene or intestinal infections. Future research should 
elucidate whether contact with host cells causes upregu‑
lated hyaluronidase expression, and if bovine disease iso‑
lates show enhanced hyaluronidase activity or resistance 

to intestinal degradation as compared to other C. perfrin-
gens strains.

5.4.3 � Collagenases
Collagen is widely distributed throughout the body and 
is an integral component of the connective tissues and 
the basal membranes. Collagen disruption by bacte‑
rial collagenases may result in the loss of tissue integrity 
and subsequent tissue necrosis [115]. C. perfringens can 
produce various collagenolytic enzymes with molecu‑
lar masses ranging from  ≈80 to  ≈120  kDa [116, 117]. 
Historically, research was focused on the 80  kDa colla‑
genase, which was designated as kappa toxin [116, 118, 
119]. This 80  kDa collagenase was lethal for mice after 
intravenous injection. Furthermore, it has haemorrhagic 
and dermonecrotic activities and it can cause extensive 
connective tissue destruction, suggesting a potential role 
in the pathogenesis of gas gangrene [119]. However, a 
positive correlation was not always found between the 
virulence of C. perfringens and the ability to produce col‑
lagenase, and anti-collagenase was not effective in pre‑
venting experimental gas gangrene in guinea pigs, nor 
did it enhance the protective properties of anti-alpha 
toxin [120]. From 1994 onwards, research has switched 
from the 80 to the 120  kDa collagenase and the term 
kappa toxin is used to describe the 120 kDa protein [116, 
121, 122]. It is suggested that the 80 kDa collagenase can 
be generated from the 120  kDa protein, but no experi‑
mental evidence exists to support this hypothesis [123, 
124]. As described above, collagenases could play a role 
in clostridial virulence in terms of spreading toxins and 
bacterial cells to host tissue, and in tissue necrosis. The 
use of a colA-mutant C.  perfringens strain revealed that 
its 120 kDa gene product is not essential for disease in 
a mouse model for gas gangrene [124]. However, stud‑
ies using this model are limited given that the mouse gas 
gangrene model does not enable conclusions to be drawn 
about the early stages of the infection [49]. The role of 
C. perfringens collagenases in intestinal diseases is not 
yet explored. However, these enzymes are likely involved 
in multiple stages of necro-haemorrhagic enteritis: its 
action on the basal membrane might induce epithelial 
sloughing, whereas in later stage of disease, breakdown of 
the connective tissue might lead to massive tissue necro‑
sis and the haemorrhagic nature of the 80 kDa enzyme 
might contribute to the observed haemorrhages.

6 � Pathogenesis: a hypothetical model
A hypothesis on the key events in C. perfringens type 
A-induced intestinal necrosis is summarized in Fig‑
ure  3. Bovine necro-haemorrhagic enteritis is a disease 
in which a concerted action of C. perfringens enzymes 
and toxins induces epithelial and vascular permeability. 
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Subsequently the induced host responses and the action 
of bacterial components in the mucosa trigger intestinal 
inflammation, necrosis and haemorrhages. As C. perfrin-
gens type A strains are ubiquitous in the environment 

and are members of the normal intestinal microbiota, 
it is generally accepted that predisposing factors are 
required for C. perfringens to cause disease. Amongst 
the predisposing factors a high protein diet and stressful 

Figure 3  Hypothesis on key events in C. perfringens type A-induced intestinal necrosis. Key risk factors for the onset of disease are an 
intestinal environment that favours growth of C. perfringens and/or induces initial epithelial damage. 1 Disease starts with rapid, presumably mucus-
associated, proliferation of C. perfringens. Production of a variety of mucin-degrading enzymes leads to breakdown of the protective mucus layer 
and sialidases remove sialic acid residues from the cells, making the epithelial cells easier to reach and unmasking potential binding sites for other 
C. perfringens toxins and enzymes. Furthermore, free sialic acid and mucin fragments provide a source of carbon and nitrogen, favouring further 
clostridial growth and toxin production. 2 C. perfringens produces a variety of toxins and enzymes. Alpha toxin and perfringolysin O stimulate 
endothelial cells for the production of IL-8, adhesion molecules (by alpha toxin) and ICAM-1 and PAF (by perfringolysin O), leading to trafficking of 
neutrophils into the tissue space. Furthermore alpha toxin induces TNF-α production by monocytes and may have an effect on host MMPs. 3 The 
earliest histopathological changes observed are epithelial sloughing and capillary congestion evolving to haemorrhages. Interestingly, the epithelial 
lining appears intact at this stage. Alpha toxin induces epithelial sloughing, probably through TNF-α and through host MMP activity on the basal 
membrane. Furthermore TNF-α and PAF likely contribute to the increased vascular permeability. C. perfringens collagenase has haemorrhagic activi-
ties and may be involved in the breakdown of the basal membrane and further connective tissue destruction. This mucosal damage is a result from 
various factors, including alpha toxin-induced activation of endogenous PLA2 and neutrophil-derived oxidants, proteolytic enzymes and cytotoxic 
proteins. 4 All these events eventually lead to fulminant intestinal necrosis and allow absorption of inflammatory cytokines (such as TNF-α) and 
toxins from the intestinal lumen into the systemic circulation, leading to shock and rapid death. Dashed arrow: hypothetical activities. Full arrow: 
proven intestinal activities.
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conditions are of major importance, but the exact mecha‑
nism behind this predisposition is still unclear. The most 
common hypothesis for the onset of C. perfringens-asso‑
ciated enteric diseases is the development of an intesti‑
nal environment that favours the growth of C. perfringens 
and triggers toxin production. However, when samples 
are taken shortly after death, no differences in intestinal 
C. perfringens counts were observed in calves who died 
from necro-haemorrhagic enteritis as compared to con‑
trol calves [9, 27]. There is increasing evidence that C. 
perfringens toxin production is upregulated upon sens‑
ing of host tissue, a process that is probably regulated by 
quorum sensing mechanisms [125–127]. Together, this 
suggests that elevated numbers of C. perfringens in the 
intestinal lumen are no prerequisite for disease develop‑
ment and that overgrowth in proximity to the intestinal 
epithelium might be of greater importance. Certain feed 
components can alter intestinal mucus secretion and 
increase the intestinal mucosal permeability [37, 128, 
129]. Furthermore, the predisposing effect of stressful 
conditions might be attributed to an increased intestinal 
permeability, and an impaired intestinal peristalsis which 
cancels the beneficial flushing effect of intestinal transit 
and therefore may contribute to bacterial overgrowth 
and mucus colonization [12, 39, 40, 42]. The increased 
mucosal permeability may facilitate toxin penetration 
into the intestinal mucosa, which is needed to reach their 
target cells. C. perfringens itself also produces various 
mucin-degrading enzymes, which may lead to break‑
down of the protective mucus layer and concomitant 
disturbance of the gut barrier. C. perfringens sialidases 
might remove sialic acid residues from the cells, making 
the epithelial cells easier to reach and unmasking poten‑
tial binding sites for other toxins and enzymes [103, 104, 
106, 107]. Furthermore, the free sialic acid and mucin 
fragments provide an energy source for C. perfringens 
growth and further toxin production. The earliest histo‑
pathological changes are shedding of epithelial cells into 
the intestinal lumen and congestion of the capillaries. 
Interestingly, the epithelial cells are detached in seem‑
ingly intact strings, suggesting that the first pathologic 
events are located at the basal membrane. Alpha toxin 
induces epithelial sloughing, probably through TNF-α 
and through host MMP activity on the basal membrane. 
Indeed, elevated host collagenase activities were previ‑
ously observed in intestinal tissue of broilers [45] and 
calves (unpublished data) challenged with C. perfrin-
gens type A strains. Additionally also C. perfringens col‑
lagenases may be involved in breakdown of the basal 
membrane. When the epithelial barrier is breached, the 
various C. perfringens toxins and enzymes can penetrate 
the mucosa and reach their respective targets. C. perfrin-
gens hyaluronidase activity might increase the mucosal 

permeability and facilitate the spread of toxins through 
the connective tissue [111, 114]. Alpha toxin stimulates 
endothelial cells for the production of the neutrophil che‑
moattractant, interleukin-8 (IL-8), and two vasoactive 
lipids, PAF and prostacyclin. Furthermore, alpha toxin 
also induces the upregulation of adhesion molecules, 
both in endothelial cells and neutrophils [86, 87]. Per‑
fringolysin O enhances the expression of pro-adhesive 
molecules on leukocytes, as well as ICAM-1 (intracellular 
adhesion molecule 1) and PAF on endothelial cells [87, 
130, 131]. Together, these effects elicited by both alpha 
toxin and perfringolysin O contribute to the observed 
trafficking of neutrophils into the tissue space. Further‑
more TNF-α and PAF likely contribute to the increased 
vascular permeability. C. perfringens collagenase has 
haemorrhagic activities and may also be involved in fur‑
ther destruction of the connective tissue. Thus mucosal 
damage results from the combined action of various 
factors, including the alpha toxin-induced activation of 
endogenous phospholipase A2 (PLA2), activity of C. per-
fringens hyaluronidase and other toxins and enzymes, 
and neutrophil-derived reactive oxygen species, proteo‑
lytic enzymes and cytotoxic proteins. All these events 
eventually lead to fulminant intestinal necrosis and allow 
the diffusion of inflammatory cytokines (such as TNF-α) 
and toxins (e.g. LPS from Gram negative bacteria) from 
the intestine into the systemic circulation, leading to 
shock and rapid death. A systemic effect of alpha toxin 
in bovine intestinal diseases was never demonstrated and 
would not be considered great because alpha toxin is rap‑
idly metabolised and eliminated from the blood stream 
[132].

7 � Diagnosis
Despite the advances in the understanding of C. perfrin-
gens type A-associated enteric diseases, bovine necro-
haemorrhagic enteritis remains a substantial diagnostic 
challenge. Overall, diagnosis of bovine necro-haemor‑
rhagic enteritis cannot be confirmed by a specific test. 
The confirmation of a clinical suspicion of enterotoxae‑
mia often remains difficult, and in atypical clinical pres‑
entations the diagnosis is often questionable. Therefore, 
multiple diagnostic techniques, including necropsy, his‑
tology of the intestine and bacteriology (including cul‑
tures for other causes of enteritis) should be combined 
and samples should be taken from the cadaver as soon 
as possible, ideally within 15  min, to optimize chances 
for a correct diagnosis. Diagnosis of C. perfringens type 
A enteric diseases is complicated by the fact that type A 
strains are found in the gastrointestinal tract of healthy 
animals. Therefore, isolation of C. perfringens type A or 
detection of its major toxin, alpha toxin, from faeces or 
gastrointestinal content has little if any diagnostic value. 
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Furthermore, C. perfringens strains isolated from necro-
haemorrhagic enteritis cases cannot be differentiated 
from other C. perfringens type A strains in  vitro with 
regard to their alpha toxin, perfringolysin O or proteo‑
lytic activities [108]. Enumeration of C. perfringens in the 
content of affected intestinal segments was historically 
recommended to confirm a clinical suspicion of necro-
haemorrhagic enteritis. This practice was based on the 
presumption that clostridial enteric diseases are caused 
by a massive multiplication of C. perfringens in the gut, 
which was strengthened by a study suggesting higher C. 
perfringens load in intestinal content from calves that 
died from necro-haemorrhagic enteritis [133]. However, 
this study was biased by a large age difference between 
the control samples and the necro-haemorrhagic enteritis 
samples. This age difference will unavoidably imply die‑
tary differences, which are known to influence the micro‑
biota composition, questioning whether the observed 
differences in C. perfringens enumeration are really indic‑
ative for necro-haemorrhagic enteritis. Furthermore, C. 
perfringens multiplies in high numbers in the intestine 
as part of the post-mortem putrefaction process. More 
recently, enumeration of C. perfringens in necro-haem‑
orrhagic enteritis samples and appropriate control sam‑
ples revealed no differences in intestinal C. perfringens 
counts, even when samples were taken within 3  h after 
death, suggesting that C. perfringens enumeration in the 
intestinal content is not a valid diagnostic tool [9].

8 � Vaccination
Clostridial diseases are often rapidly fatal. Therefore 
vaccination is usually the only achievable intervention. 
Most available clostridial vaccines are combination vac‑
cines against several clostridial species, often including 
toxoids derived from multiple toxinotypes of C. perfrin-
gens. Amongst the C. perfringens toxinotypes, type C and 
type D toxoids are almost always included in clostridial 
vaccines, whereas the other C.  perfringens toxinotype 
toxoids are not always all included. In addition, toxoids 
from several other clostridial species are usually present 
in the vaccines: Clostridium chauvoei, Clostridium novyi, 
Clostridium sordellii, Clostridium septicum and Clostrid-
ium tetani. A few vaccines also include other bacteria 
such as Mannheimia haemolytica or enterotoxigenic 
Escherichia coli [1]. These toxoid-vaccines are made 
from culture supernatants which are inactivated, mostly 
using formaldehyde, and are subsequently subjected to 
an ultrafiltration purification process, which removes the 
bacterial cells and concentrates the desired antigens.

Until the recent demonstration of the essential role of 
alpha toxin in necro-haemorrhagic enteritis, not much 
attention was paid to alpha toxin in enteric diseases 
and its subsequent importance in vaccine composition. 

However, it is well known that the protective antigenicity 
of alpha toxin is easily destroyed by formaldehyde inac‑
tivation [134–138], possibly explaining why the current 
clostridial vaccines are unable to protect against bovine 
necro-haemorrhagic enteritis [29, 96]. Additional indirect 
evidence pointing towards the importance of alpha toxin 
as a vaccine antigen is the observation that calves in veal 
production systems do not develop an active immunity 
towards alpha toxin, when maternal immunity declines. 
This absence of antibody production after decay of mater‑
nal antibodies might explain why calves in veal production 
systems are at higher risk to develop necro-haemorrhagic 
enteritis than calves raised for beef production, in which 
a fluent transition from passive maternal to active immu‑
nity is observed [32, 36]. The C-terminal domain of alpha 
toxin is a promising candidate for future vaccine develop‑
ment [66]. Indeed, the C-terminal fragment of alpha toxin 
is able to mount an immune response in calves and the 
resulting antisera show some protective properties against 
both C. perfringens-induced cytotoxicity and intestinal 
necrosis [66, 139].

Nevertheless, even if alpha toxin is indispensable 
to cause necro-haemorrhagic lesions, the presence of 
alpha toxin alone seems insufficient to cause the ful‑
minant necrosis seen in natural cases [66, 68]. Further‑
more, when comparing antisera from calves immunized 
with alpha toxin alone versus antisera from calves vac‑
cinated against a mixture of native C.  perfringens tox‑
ins, the latter had a stronger ability to protect against 
C.  perfringens-induced necrosis when co-injected with 
C. perfringens in bovine intestinal loops [66, 96]. There‑
fore other virulence factors are likely involved as well 
in the pathogenesis and might be needed as vaccine 
components to provide full protection against bovine 
necro-haemorrhagic enteritis. Up till now the nature 
of the additional antigens which are needed to provide 
this protection is not clear. One possible candidate to 
include in future vaccines is perfringolysin O. Indeed, 
antibodies against both alpha toxin and perfringolysin O 
were detected in calf antisera that were able to protect 
against C. perfringens challenges in the intestinal loop 
model [96]. Furthermore, vaccination of calves with the 
non-toxic, perfringolysin O derivative PFOL491D either 
or not in combination with the non-toxic, C-terminal 
domain of alpha toxin, resulted in antibodies that were 
able to protect against the activities of the respective 
toxins in  vitro [140]. More research is needed to elu‑
cidate whether addition of perfringolysin O as a vac‑
cine antigen can increase the protective potential of 
the alpha toxin antisera against C. perfringens-induced 
intestinal lesions. Furthermore, it should be explored 
whether antibodies against other C. perfringens toxins or 
enzymes can also provide additional protection.
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9 � Conclusions
The identification of alpha toxin as a key virulence fac‑
tor in bovine necro-haemorrhagic enteritis provides 
some important novel insights. First, it clearly shows that 
the current view on C. perfringens-associated enteric 
diseases, which focusses mainly on plasmid-borne, dis‑
ease-specific toxins is too strict and that alpha toxin can 
be important in enteric diseases. It is likely that even in 
diseases where other disease-specific toxins (e.g. NetB) 
are necessary to cause disease, alpha toxin might still be 
important in the pathogenesis. Second, the finding that 
alpha toxin is essential for necro-haemorrhagic enteritis 
has some major implications for vaccination strategies. 
The conformational epitopes of alpha toxin are impor‑
tant to induce a protective immune response and these 
epitopes are easily destroyed by formaldehyde. This adds 
to the understanding why current clostridial vaccines, 
which are based on formaldehyde inactivated toxins, 
don’t seem to provide protection against C. perfringens 
type A-associated intestinal diseases in calves. In order to 
protect animals against C. perfringens type A-associated 
enteric disorders, novel vaccines are needed. Alpha toxin 
will probably be a key component in these vaccines and 
the non-toxic C-terminal domain of alpha toxin may be 
a good candidate for further vaccine development. In 
addition, the ideal vaccine formulation should also con‑
tain other, yet unidentified, factors needed to provide 
full protection. These factors may be accessory toxins 
or enzymes involved in lesion induction, or factors that 
make the strains more adapted to the host environment. 
Next to vaccine formulation, also vaccination strategy 
may be important. Maternal immunization can be use‑
ful to protect young animals against clostridial aboma‑
sitis. An important risk period for the development of 
necro-haemorrhagic enteritis is situated near the end of 
the fattening period. In these older calves, maternal anti‑
bodies have declined and active immunization might be 
needed. Another important question is whether systemic 
immunity is sufficient to protect against C. perfringens 
type A-associated enteric diseases. Since C.  perfrin-
gens is an enteric pathogen and given the local activity 
of its toxins, we could speculate that mucosal IgA plays 
a more important role than serum IgG in the protection 
against bovine necro-haemorrhagic enteritis. In cattle, 
no reports are found describing the mucosal IgA expres‑
sion in the intestine during C. perfringens infection. Also 
for other species, the literature concerning this topic is 
scant. In humans, a correlation between the serum levels 
of IgA to alpha toxin and the faecal C. perfringens counts 
has been documented, but the relevance of this obser‑
vation to provide protection against disease is not yet 
clear [141]. In chickens, it has been shown that systemic 
antibodies are able to reach the mucosal surface under 

inflammatory or necrotic conditions [137]. Further‑
more, experimental animal work on intestinal C. difficile 
infections has shown that protection can be mediated 
through simple exudation of serum antitoxin IgG across 
the inflamed intestinal epithelium [142]. These observa‑
tions point towards a serum IgG response as major influ‑
encer of protective immunity, but more research in cattle 
is needed to support this hypothesis. The ideal situation 
probably combines both systemic IgG as well as mucosal 
IgA immunity. This has been achieved using Bacillus 
subtilis spores as vaccine delivery agent. This organism 
is able to colonise the gut without causing disease. Oral 
immunization of mice with B.  subtilis spores displaying 
the C-terminal fragment of alpha toxin on the spore sur‑
face, resulted in increased serum IgG levels and secre‑
tory IgA detected in saliva, faeces or lung wash samples 
[143]. In addition to the use of B. subtilis spores, also the 
use of other intestinal organisms as antigen carriers can 
be explored, such as, amongst others, the use of Eimeria 
[144] or Salmonella [145]. Next, it should be investigated 
whether immunity against alpha toxin alone is sufficient 
when both systemic IgG as well as mucosal IgA immunity 
is obtained.

A major problem hindering vaccine development is 
the lack of an in  vivo model. Despite multiple attempts 
by different research groups to reproduce bovine necro-
haemorrhagic enteritis in  vivo, the intestinal loop 
model remains the system closest to an intact animal 
that is able to reproduce the lesions consistently [8, 35, 
68, 132]. Because of the lack of an in  vivo model, most 
research groups mainly focus on the development of an 
immune response as a readout for vaccine development 
[139]. However, antibody titres measured by ELISA are 
not a guarantee for protection and functional studies 
are more likely to predict the protective capacity of the 
elicited antibodies [96]. Indeed, screening of antibodies 
against the C. perfringens-induced cytotoxicity to bovine 
endothelial cells in  vitro seems to give largely similar 
results as the protective effect of these antibodies against 
C. perfringens-induced intestinal lesions in bovine intes‑
tinal ligated loops [66, 96]. As the susceptibility to differ‑
ent C. perfringens toxins varies between host species and 
tissues, results from one species cannot be extrapolated 
to other hosts [68, 132, 146]. While awaiting develop‑
ment of new vaccines, close monitoring and control of 
predisposing factors remains the best means to prevent 
necro-haemorrhagic enteritis.
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