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Fc‑engineered monoclonal antibodies 
to reduce off‑target liver uptake
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Abstract 

Background  Radiolabeled-antibodies usually display non-specific liver accumulation that may impair image 
analysis and antibody biodistribution. Here, we investigated whether Fc silencing influenced antibody biodistribu-
tion. We compared recombinant 89Zr-labeled antibodies (human IgG1 against different targets) with wild-type Fc 
and with mutated Fc (LALAPG triple mutation to prevent binding to Fc gamma receptors; FcγR). After antibody 
injection in mice harboring xenografts of different tumor cell lines or of immortalized human myoblasts, we analyzed 
antibody biodistribution by PET-CT and conventional biodistribution analysis.

Results  Accumulation in liver was strongly reduced and tumor-specific targeting was increased for the antibodies 
with mutated Fc compared with wild-type Fc.

Conclusion  Antibodies with reduced binding to FcγR display lower liver accumulation and better tumor-to-liver 
ratios. These findings need to be taken into account to improve antibody-based theragnostic approaches.
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Introduction
Off-target binding of drugs is a common problem in 
diagnostic and therapeutic settings. This is also the case 
for antibodies, although unlike other drugs, they bind 
to a specific target mainly due to the exquisite specific-
ity of their antigen-binding fragment. In oncology, this 
sought-after high specificity can induce off-tumour 
binding because, to date, most antibody targets are 

over-expressed in tumour tissue (on-target, on-tumour), 
but they can also be expressed at basal levels in healthy 
tissue (on-target, off-tumour). In addition, the crystal-
lizable (Fc) region of the antibody fragment can also 
induce off-target binding by interacting with Fc gamma 
receptors (FcγR), which are expressed in many tissues, 
in particular by liver Kupffer cells in addition to being 
expressed on the surface of cells of the immune system. 
To counteract this, certain antibodies are now selected 
with a lower specific affinity to reduce their off-target 
binding [1] or by re-engineering [2]. Concerning the 
Fc domain, mutations N297-A or -D, L234A/L235A 
(LALA), G236R/L328R (RR), S298G/T299A (GA) and 
S228P/L235E (IgG4-PE) significantly reduce binding to 
Fc gamma receptors (FcγRI and FcγRIIA) [3–5], and the 
triple mutation L234A/L235A/P329G (LALAPG) sig-
nificantly reduces binding to all FcgRs [5]. Several studies 
have shown that the introduction of the N297A or S228/
L235E mutations has no impact on the tumour localiza-
tion of several antibodies but does allow a longer half-
life for antibodies carrying these mutations via reduced 
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catabolism by the liver [6–8]. In this study, we compared 
the biodistribution of 89Zr-labelled antibodies carry-
ing the LALAPG triple mutation (Fc-LALAPG) with the 
same antibodies carrying a wild-type Fc, as these triple 
mutations are even more potent than N297D mutation 
in abolishing FcγR binding and some clinical trials using 
mAbs incorporating these triple mutations are in pro-
gress [5].

Materials and methods
Recombinant antibody production
D4a mAb (patent number WO2016091891A1) is spe-
cific to human AXL tyrosine kinase receptor since it does 
not bind to mouse Axl and other human receptors of the 
same family, TYRO3 or MER tyrosine kinase receptors. 
13R4a mAb is specific of E. coli beta-galactosidase spe-
cific and this antibody is used as an isotype irrelevant 
control [9]. Interestingly, the synthetic library is build 
using 13R4a clone as template, meaning that there are 
only few differences between D4a and 13R4a exclusively 
located in the 6 CDR loops. These two mAbs have been 
isolated in the laboratory from a human synthetic library 
of scFv using phage display [10]. ScFv were reformatted 
as full human IgG1 with wild type (WT) Fc by cloning 
variable heavy and light chain in an expression plasmid. 
The L234A/L235A/P329G mutations were introduced 
in coding plasmid by targeted PCR-mutagenesis and 
validated by sequencing. 13R4a and D4a antibodies with 
wild type Fc and with the L234A/L235A/P329G muta-
tion (LALAPG Fc) were produced in HEK293T cells by 
transient transfection with polyethylenimine. Antibodies 
were purified from supernatant using Protein-A agarose 
beads and dialyzed against PBS. Purity was verified on 
SDS-PAGE. Antibody binding was validated in  vitro by 
enzyme linked immunosorbent assay and by fluorescent-
activated cell sorting in different cell lines.

Radioimmunoconjugation
Antibodies (human IgG format) were functionalized with 
pSCN-Bn-deferoxamine in a non-site-specific manner 
before radiolabeling with 89Zr. Briefly, the antibody buffer 
was exchanged to chelexed PBS using Amicon® Ultra 
Centrifugal filters (30  kDa cut-off). pH was adjusted 
to 8.5–9.0 using 0.2  M chelexed Na2CO3, and a 15-fold 
excess of pSCN-Bn-deferoxamine was added to the solu-
tion (1.6–2.1 mg/mL, 500 µL). After incubation at 37 °C 
with gentle shaking for 60 min, excess pSCN-Bn-deferox-
amine was removed using Amicon® Ultra Centrifugal fil-
ters as before. [89Zr] Zr-oxalate (Perkin Elmer) (30 MBq) 
was neutralized to pH 6.9–7.2 with 1 M chelexed Na2CO3 
before addition of the deferoxamine-immunoconjugates 

and incubation at room temperature with gentle shaking 
for 1 h. Purity and radiolabeling efficiencies were deter-
mined using instant thin-layer chromatography with 
0.1 M sodium citrate (pH 5.0) as mobile phase. Radiolabe-
ling yield and radiochemical purity were routinely > 99%. 
No purification step was performed. Radioimmunocon-
jugates had a specific activity of 200 MBq/mg and were 
formulated in 0.9% NaCl for in vivo use. Analysis of the 
immunoconjugate was performed by Maldi-tof (Rapiflex, 
Bruker) to determine the number of DFO conjugated to 
mAbs. The number of DFO molecules is determined by 
dividing the difference in the m/s ratio of the peak of the 
whole antibody conjugated with DFO and unconjugated 
with the molecular weight of DFO (752 Da) (Additional 
file  1: Figure S1). Binding affinity of D4a mAbs conju-
gated with DFO was performed by flow cytometry using 
AXL expressing cell line. A binding affinity experiment 
was presented in Additional file 1: Figure S2.

Cell lines and mice
The AXL-expressing [11, 12] human MDA-MB-231 (tri-
ple negative breast cancer) and CFPAC-1 (pancreatic 
cancer) cell lines were from American Type Culture Col-
lection. Immortalized human myoblasts (provided by 
Vincent Mouly, UMR-S 974) express low AXL level and 
were used to mimic healthy human tissues. Cancer cells 
were cultured in Dulbecco’s Modified Eagle’s Medium 
(DMEM) with 10% Fetal Bovine Serum (FBS, Eurobio), 
and myoblasts in skeletal muscle cell growth medium 
(C-23060, Promocell) with 20% FBS at 37  °C and 5% 
CO2. All animal experiments were performed in com-
pliance with the European directive (2010/63/EU) and 
the INSERM standards for experimental animal stud-
ies (agreement E34-172-27). They were approved by the 
Institut de Recherche en Cancérologie de Montpellier 
(IRCM/INSERM U1194) and the Languedoc Roussillon 
region (CEEA LR France No. 36) ethics committees. Cells 
(5.106) in Matrigel (Corning) were injected subcutane-
ously in 6-week-old female athymic nude mice (Crl: Nu 
(NCr)-Foxn1nu, Charles River).

Imaging
Four weeks after cell xenografts, [89Zr] Zr-deferoxamine-
labeled antibodies (50  µg, 200  MBq/mg) were injected 
in the tail vein and in vivo images were acquired with a 
Mediso NanoScan PET82S/CT80 system at 48, 72, and 
96 h post-injection. Anesthesia was induced with 4% iso-
flurane in air followed by maintenance with 2% isoflurane 
in air. Images were acquired with Nuclide and processed 
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with Interview™ FusionTM. Volumes of interests were 
manually drawn on fused PET-CT images using 3D 
Slicer. Results are expressed as percentage of the injected 
activity per cm3 (%IA/cm3).

Conventional biodistribution analysis
Biodistribution was assessed at 96 h post-injection after 
the last imaging time-point. After euthanasia, tumor, 
myoblast xenografts, and liver were excised, weighted, 
and activity counted with a gamma-counter (Hidex 
AMG) together with standards of the injected radiola-
beled antibodies. Results were expressed as percentage of 
the injected activity per gram of tissue (%IA/g).

Results
Imaging
First, we studied the biodistribution of the 13R4a IgG 
against bacterial ß-galactosidase that is not expressed 
in mice to avoid the effect of the targeted antigen. To 
respect the 3R rules, we used mice previously xeno-
grafted with immortalized myoblasts (left flank). At 48, 
72 and 96  h after injection of 89Zr-radiolabeled 13R4a 

antibodies with wild-type Fc or LALAPG Fc, PET images 
showed a strong accumulation of 13R4a with wild-type 
Fc in liver (Fig.  1A, up) and a weak accumulation of 
13R4a with LALAPG Fc (Fig.  1A, down). We observed 
accumulation in joints (shoulder and knee) particularly of 
the wild-type antibody, possibly explained by the natural 
tropism of zirconium 89 for bones and joints [13]. Quan-
tification of liver uptake confirmed a decrease in liver 
accumulation by threefold at 48  h (5.4 vs 16.2%IA/cm3) 
and by twofold at 96  h (5.1 vs 13.1%IA/cm3) of 13R4a-
LALAPG Fc compared with 13R4a-wild-type Fc (Fig. 1B). 
As 13R4a does not recognize any target in mice, we then 
used D4a, an antibody against human (but not mouse) 
AXL, and three human cell lines with different AXL 
expression: immortalized myoblasts (low AXL expres-
sion) and MDA-MB-231 and CFPAC cancer cells (high 
AXL expression). We injected 89Zr-radiolabeled D4a 
with wild-type Fc in mice xenografted with myoblasts 
(left flank) and with CFPAC-1 cells (right flank) and 89Zr-
radiolabeled D4a with LALAPG Fc in mice xenografted 
with myoblasts (left flank) and MDA-MB-231 cells (right 
flank). We could not quantify antibody accumulation in 
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Fig. 1  Liver accumulation of a bacterial anti-beta galactosidase IgG is reduced by the LALAPG triple mutation. A Maximal Intensity Projection 
(MIP) PET images of mice subcutaneously xenografted with myoblasts (left flank) at 48, 72 and 96 h after the injection of 89Zr-radioimmunolabeled 
13R4a with LALAPG Fc or with WT Fc (n = 2 mice per group). The low and high values correspond to 1 and 5% IA/cm3 respectively and are indicated 
by a low and high line on the scale. B Quantitative PET analysis (PET based) of antibody accumulation in liver at different times post-injection (48 h, 
72 h and 96 h) expressed in %IA/cm3
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myoblast xenografts due to spatial resolution and xeno-
graft size limitations. Like with 13R4a, D4a with wild-
type Fc strongly accumulated in liver at 48, 72 and 96 h 
post injection (Fig. 2A, up), but not D4a with LALAPG 
Fc (Fig. 2A, down). Quantification at 96 h confirmed the 
significantly lower liver retention of D4a with LALAPG 
Fc than with wild-type Fc (2.1 ± 0.2 vs 8.7 ± 1.1%IA/cm3; 
p < 0.001) (Fig.  2B). Our findings demonstrate that the 
LALAPG mutation in the Fc region reduced drastically 
the liver retention of two antibodies (D4a and 13R4a).

Biodistribution analysis
The biodistribution study showed a reduced (by four-
fold) liver accumulation of 89Zr-radiolabeled D4a with 
LALAPG Fc compared with wild-type Fc at 96 h (3.1 ± 0.2 
vs 10.0 ± 0.8%IA/g; p < 0.001) (Fig.  2C). Accumulation 
in CFPAC-1 and MDA-MB-231 tumors was modest for 
both D4a with wild type and with LALAPG Fc (6.3 ± 2.8 
and 6.0 ± 1.0%IA/g). However, the tumor-to-liver ratio for 
D4a with LALAPG Fc was 1.9 (vs 0.6) thanks to the very 
low liver accumulation.

Discussion
We demonstrated that the LALAPG triple mutation 
in the Fc region strongly reduces accumulation in liver 
of 89Zr-radiolabeled antibodies. Liver accumulation of 
metal-radiolabeled antibodies is frequently observed 
in diagnostic and therapeutic settings [14, 15]. A previ-
ous biodistribution study showed that an afucosylated 
IgG promotes higher liver accumulation mediated by 
FcγR binding [7]. Reducing this binding, without affect-
ing the antibody half-life, could decrease liver accumu-
lation. Therefore, we used antibodies harboring a triple 
Fc mutation (LALAPG) that negatively affects binding 
to all murine FcγR [16]. Dekkers et  al. demonstrated 
a similar binding profile of human IgG1 and mouse 
IgG2a to mouse FcγR [17]. The very low liver accumula-
tion of human IgG1 with LALAPG Fc in our study can 
be explained by reduced interactions with mouse FcγR 
on hepatocytes and resident macrophages [6, 18]. This 
lower liver accumulation should allow antibody redistri-
bution and favor their accumulation in tissues/tumors 
that express the targeted antigen. Another study showed 
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Fig. 2  Anti-AXL D4a IgG with LALAPG Fc displays lower liver retention than the IgG with WT Fc. A Maximal Intensity Projection PET images 
of mice subcutaneously xenografted with myoblasts (left flank) and tumor cells (right flank; CFPAC-1 cells for the IgG with WT Fc and MDA-MB-231 
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mice per group). The low and high values correspond to 1 and 5% AI/g respectively and are indicated by a low and high line on the scale. B 
Quantitative PET analysis of anti-AXL IgG in liver at 48 h, 72 h and 96 h post-injection, expressed in %IA/cm3. C Conventional biodistribution 
analysis of the anti-AXL IgG in liver and tumors (CFPAC-1 cells for the IgG with WT Fc and MDA-MB-231 cells for the IgG with LALAPG Fc) at 96 h 
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that the N297A mutation in the Fc region of avelumab 
hampers FcγR binding and improves its plasma half-life 
in monkeys [19]. Moreover, deglycosylation (to impair 
FcγRI binding) of an immunoconjugate reduced the off-
target uptake and increased the tumor uptake [8].

The LALAPG Fc mutation could be used to optimize 
therapy or diagnosis by reducing liver off-target uptake. 
For imaging purposes, decreasing the unspecific liver 
uptake is especially valuable to reinforce the contrast of 
liver tumors/metastases. With therapeutic (alpha, beta 
particles) emitters, reducing liver off-target accumulation 
would diminish unspecific liver irradiation. We need now 
to confirm the hypothesis that reducing off-target liver 
accumulation improves the antibody biodistribution, 
resulting in higher tumor uptake.

Conclusion
We reduced non-specific liver accumulation by using 
antibodies harboring the LALAPG mutation in the Fc 
region. This could be a strategy to optimize the targeting 
specificity of radioimmunoconjugates used for diagnostic 
and therapeutic purposes.
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Additional file 1. Figure S1: Example of mass-analysis of mAbs conju-
gated with DFO. Analysis of the immunoconjugate was performed by 
Maldi-tof (Rapiflex, Bruker) to determine the number of DFO conjugated 
to mAbs. Peaks of the entire antibody are indicated by an arrow. Figure 
S2: Binding of D4a WT Fc and D4a LALAPG Fc after DFO conjugation on 
cancer cells by flow cytometry. Anti-AXL antibody D4a with WT Fc and 
with LALAPG mutations were used at 5 μg/ml to stain AXL positive cell 
line for 1h at 4°c in PBS-BSA buffer. After 3 wash, a secondary fluorescent 
labeled anti-hFc mAbs labeled was used to reveal binding of D4a mAbs at 
the cell surface of the cell.
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