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Abstract 

Background  Routine prostate-specific membrane antigen (PSMA) positron emission tomography (PET) performed 
for primary staging or restaging of prostate cancer patients is usually done as a single static image acquisition 60 min 
after tracer administration. In this study, we employ dynamic whole-body (D-WB) PET imaging to compare the phar-
macokinetics of [68Ga]Ga-PSMA-11 and [18F]PSMA-1007 in various tissues and lesions, and to assess whether Patlak 
parametric images are quantitative and improve lesion detection and image readability.

Methods  Twenty male patients with prostate cancer were examined using a D-WB PSMA PET protocol. Ten patients 
were scanned with [68Ga]Ga-PSMA-11 and ten with [18F]PSMA-1007. Kinetic analyses were made using time-activity 
curves (TACs) extracted from organs (liver, spleen, bone, and muscle) and lesions. For each patient, three images were 
produced: SUV + Patlak parametric images (Ki and DV). All images were reviewed visually to compare lesion detection, 
image readability was quantified using target-to-background ratios (TBR), and Ki and DV values were compared.

Results  The two PSMA tracers exhibited markedly different pharmacokinetics in organs: reversible for [68Ga]Ga-
PSMA-11 and irreversible for [18F]PSMA-1007. For both tracers, lesions kinetics were best described by an irreversible 
model. All parametric images were of good visual quality using both radiotracers. In general, Ki images were char-
acterized by reduced vascular signal and increased lesion TBR compared with SUV images. No additional malignant 
lesions were identified on the parametric images.

Conclusion  D-WB PET/CT is feasible for both PSMA tracers allowing for direct reconstruction of parametric Ki images. 
The use of multiparametric PSMA images increased TBR but did not lead to the detection of more lesions. For quan-
titative whole-body Ki imaging, [18F]PSMA-1007 should be preferred over [68Ga]Ga-PSMA-11 due to its irreversible 
kinetics in organs and lesions.
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Introduction
Prostate cancer (PCa) is one of the most frequently 
occurring cancers in the male population [1] and is now 
the second most common cause of death from malig-
nancy in this group [2]. Positron emission tomogra-
phy (PET) is an integral part of PCa management, with 
prostate-specific membrane antigen (PSMA)-targeted 
tracers used for primary staging and also in the evalu-
ation of biochemical relapse, assisting in therapy plan-
ning and disease management [3, 4].

PSMA is a cellular transmembrane surface protein 
that is overexpressed in PCa. Unfortunately, PSMA 
is not prostate-specific [5] and also binds to cells in 
other tissues as well as to the neovasculature in other 
malignancies [6]. Several PSMA radiotracers have been 
produced [7]. Labelled predominantly with 68Galium 
(68Ga) and 18Fluoride (18F), these radiotracers have 
been made commercially available and disseminated 
in clinical trials and daily clinical practice. The use of 
68Ga radiolabelled compounds is widely implemented. 
However, production of 68Ga-radiotracers requires an 
on-site 68Ga generator, and 68Ga radiotracers have a rel-
atively shorter half-life and longer positron range than 
18F labelled tracers, resulting in images with lower spa-
tial resolution.

Conventional static PSMA PET imaging is usually 
performed 60  min after tracer administration, although 
modified protocols with scanning at different time points 
have been suggested to improve image quality [8, 9]. 
However, most previous studies have been limited by 
the single timepoint evaluation of conventional PET, and 
only few comprehensive studies of PSMA pharmacoki-
netics have been attempted. These have mostly applied a 
dynamic protocol on conventional field of view cameras 
constrained to two bed positions over the pelvis [10–15], 
with only one truly “whole-body” dynamic acquisition 
study performed on a total-body PET/CT scanner [16]. 
Using dynamic PET with [68Ga]Ga-PSMA-11 has shown 
to increase identification rates of both primary PCa and 
local recurrence [12, 17], suggesting that dynamic whole-
body (D-WB) PSMA PET imaging could outperform 
static PSMA PET.

For the analysis of PSMA kinetics, a two-tissue com-
partment model can be applied to describe the tracer 
exchanges between plasma and tissue. In this case, the 
first compartment (unbound compartment) represents 
the free unbound tracer in interstitial fluid, while the 
second compartment (bound compartment) represents 
tracer bound to the PSMA receptors, with the transport 
rate k3 correlating with tracer binding and internaliza-
tion, and k4 with the dissociation of the tracer from the 
receptor and externalization. For PCa lesions, the k4 ≈ 0, 
as the binding is predominantly irreversible [11].

Previously, dynamic PET acquisition was limited to a 
single field of view and technically difficult to perform 
due to the necessity of acquiring arterial blood samples to 
accurately determine the input function. Given the dis-
seminated nature of malignancies such as PCa and the 
volume of patients referred for pre-therapy PET, dynamic 
PET has not been implemented in routine oncological 
work-up. However, this may be about to change.

Recently introduced methodology [18, 19] allows for 
D-WB PET acquisitions in conventional PET scanners, by 
applying the linear Patlak model [20, 21] to a multi-pass 
continuous WB dynamic PET acquisition. This imaging 
protocol provides not only the conventional standard-
ized uptake value (SUV) images, but also multiparamet-
ric images based on Patlak kinetic modelling [22]. These 
images are the Ki images (representing the effective 
tracer binding by the PSMA receptors) and DV images 
(representing the distribution volume of non-trapped 
tracer in the reversible compartments and the fractional 
blood volume). These advances have prompted renewed 
interest and research in the use of dynamic PET for onco-
logical imaging as reviewed elsewhere [23, 24]. While the 
multiparametric D-WB protocol has been successfully 
applied for 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) 
[25–27], it has until now only to a lesser degree been 
explored for other tracers.

At our department, we recently transitioned from 
a 68Ga labelled tracer ([68Ga]Ga-PSMA-11) to an 18F 
labelled tracer ([18F]PSMA-1007) for routine clinical 
PSMA PET allowing for a comparison of the two radi-
otracers. With this study, we therefore aimed to evalu-
ate the tissue pharmacokinetics of these two tracers, the 
image quality and clinical impact of multiparametric 
D-WB PSMA PET imaging, and the quantitative accu-
racy of the resulting parametric values.

Materials and methods
Patient population
This study was a retrospective analysis of data. Partici-
pants were recruited from all patients referred for PSMA 
PET/CT as part of their clinical evaluation if they were 
deemed fit to lie still for 70  min during scanning. The 
study was approved by the local ethics committee in the 
Central Denmark Region (1-10-72-188-19).

D-WB PSMA data were obtained from 20 male 
patients with known prostate cancer. Ten patients were 
scanned with [68Ga]Ga-PSMA-11 and ten patients with 
[18F]PSMA-1007.

Data acquisition and image reconstruction
The study participants were scanned on a Siemens Bio-
graph Vision 600 PET/CT scanner (Siemens Health-
ineers, Knoxville, USA) with a 26.2-cm axial field of 
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view. A fully automated multiparametric PET/CT 
acquisition protocol (Multiparametric PET Suite AI, 
Siemens Healthineers, Knoxville, USA) was used.

[68Ga]Ga-PSMA-11 cohort (N = 10): These subjects 
were scanned with a 76-min multiparametric PET 
acquisition protocol, started at the time of an injection 
of [68Ga]Ga-PSMA-11 (2  MBq/kg). The PET protocol 
consisted of 1) a 6-min dynamic scan with the bed fixed 
at the chest region, and 2) a 70-min dynamic WB PET 
scan consisting of seven continuous 10-min WB passes.

[18F]PSMA-1007 cohort (N = 10): A 70-min multipar-
ametric PET acquisition protocol was started at the 
time of an injection of [18F]PSMA-1007 (2  MBq/kg). 
The PET protocol consisted of 1) a 6-min dynamic scan 
with the bed fixed at the chest region, and 2) a 64-min 
dynamic WB PET scan consisting of 16 continuous 
bed motion passes: 7 × 2-min WB passes followed by 
9 × 5-min WB passes.

The dynamic image acquisition protocols were there-
fore not entirely identical. In practice, this meant that 
40–70 min direct parametric reconstructions for [68Ga]
Ga-PSMA-11 were performed on 3 10-min images, 
while for [18F]PSMA-1007 they were calculated from 
6 5-min images. However, since all multiparamet-
ric images were based on 30-min D-WB PET data, we 
expect this variation of the frame length to have a mini-
mal impact on image quality and noise of the multipar-
ametric images (Ki and DV) [18].

For both tracers, multiparametric images (Ki and 
DV) were reconstructed using the data from 40-to-
70-min post-injection and the image-derived input 
function (IDIF). This reconstruction protocol was per-
formed using the direct Patlak reconstruction in the 
Multiparametric PET Suite AI software from Siemens 
Healthineers. A standard-of-care static SUV image was 
reconstructed using data from 60-to-70-min post injec-
tion. The PET reconstruction parameters for D-WB: 
For the 10-min SUV image, we used TrueX + time-of-
flight, four iterations, five subsets, 440 × 440 matrix, 
2-mm Gaussian filter, and relative scatter correction 
(reconstruction time 2.5 min). Parametric images of Ki 
and DV were generated using the direct Patlak recon-
struction method with non-negativity constraints 
using list-mode data from multiple passes (40–70 min), 
TrueX + time-of-flight, eight iterations, five subsets, 
30 nested loops, 440 × 440 matrix, 2-mm Gaussian fil-
ter, and relative scatter correction (reconstruction time 
13.5  min). For image-based kinetic analyses, we also 
made a 0–6-min dynamic series of the chest region 
(12 × 5 s, 6 × 10 s, 8 × 30 s; reconstruction time 5 min), 
and a 6–70-min dynamic WB series (16 passes, recon-
struction time 23 min), using the same reconstruction 
parameters as the static SUV image. This results in 

complete 0–70-min dynamic PET data coverage of the 
chest region.

After image acquisition, the automated multiparamet-
ric scan protocol automatically identified the aorta on 
the low-dose WB CT scan a technology from Siemens 
Healthineers known as automated learning and parsing 
of human anatomy (ALPHA) [28] and placed a cylin-
dric volume of interest (VOI) (1.6 mm3) on the descend-
ing aorta to extract the IDIF from the full dynamic PET 
series of the chest region. Such an IDIF is robust and can 
be used to replace an arterial blood input function for 
precise quantitative Patlak modelling [29].

Image analysis and VOI delineation
Multiparametric images were visually evaluated by two 
nuclear medicine physicians using Hermes Gold Client 
v.2.5.0 (Hermes Medical Solutions AB, Stockholm, Swe-
den). VOI delineation of the multiparametric images was 
performed using PMOD® 4.0 (PMOD Technologies Ltd, 
Zürich, Switzerland). Semiquantitative values of SUVmax 
and SUVmean were obtained from the conventional 
PET reconstructions, whereas Ki and DV values were 
extracted from the multiparametric images.

For each patient, VOIs were analysed from areas of tis-
sue without evidence of pathology. Specifically, we per-
formed delineation of an area of the liver, spleen, parotid 
gland, lacrimal gland, healthy bone, muscle, benign gan-
glia (with active PSMA signal) in the pelvis and thorax, 
and bladder. Areas with pathologically increased uptake 
of PSMA were identified and delineated using an iso-
contouring method of 55% of SUVmax in the VOI [30]. 
Thus, we outlined the primary tumour in the prostate, as 
well as lymph node and bone lesions. In patients with an 
uncountable number of active lesions, for example in dis-
seminated skeletal disease, up to ten individual foci were 
chosen for delineation. Background regions were deline-
ated in the vicinity of these target lesions, corresponding 
to an elongated ROI drawn in adjoining tissue in at least 
three consecutive slices. The individual methodology 
used to delineate these areas can be found in Additional 
file  1: Table  S1, and an example of a lesion and back-
ground delineation can be found in Additional file 1: Fig. 
S1.

We used target-to-background ratio (TBR) as an objec-
tive metric for quantitative assessment of ‘lesion detect-
ability’. Detectable lesions require a TBR > 1, and a higher 
TBR indicates better lesion detectability.

Comparison of multiparametric and image‑based Ki 
and DV values
The estimates of kinetic parameters obtained through 
indirect image-based analysis can differ from those 
obtained by direct reconstruction of parametric images, 
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with the latter exhibiting more favourable bias and noise 
characteristics, as demonstrated in reference [31]. The 
noise and bias in Ki images are influenced by factors such 
as the specific implementation of the optimization algo-
rithm, the mathematical formulation of the Patlak model, 
and the utilization of non-negativity constraints [32, 33]. 
We therefore compared the kinetic parametric estimates 
using the two methods. The image-based parameters 
were calculated by linear Patlak analysis in PMOD® 4.0, 
using the general kinetic modelling tool (PKIN) with the 
lumped constant set to 1 and discarding fits with negative 
values. The direct reconstructed values were obtained 
using the Multiparametric PET Suite AI from Siemens 
Healthineers.

Kinetic analysis
70-min dynamic scan data from the fixed bed at the chest 
region was analysed using a two-tissue compartment 
model (2CM) and the 70-min IDIF using PMODs PKIN 
module. More specifically we analysed VOIs in the liver, 
spleen, healthy bone (thoracal vertebra), muscle (para-
vertebral) and any of the previously delineated PSMA 
avid lesions that were included in this limited scan field-
of-view. Parameter estimates for a reversible (k4 > 0) and 
irreversible (k4 = 0) 2CM were obtained and compared 
with the parameters from the irreversible Patlak model 
[20] and the reversible Logan Model [34]. Akaike infor-
mation criterion (AIC) [35] was used to select the CM 
that best fitted each tissue and for each tracer.

Statistical analysis
Statistical analyses were performed using GraphPad 
Prism 9.2.0. Statistical tests were used for group compari-
sons (paired/unpaired) and to assess whether data were 
normally distributed. Welch’s T test was performed for 
normal distributed data (liver, spleen, bone, and benign 
ganglia), while the Mann–Whitney test was performed 
for non-normal distributed data (prostate lesions, lymph 
node lesions, bone lesions, parotid gland, lacrimal gland, 
and muscle).

Pearson’s correlation analysis was performed for the 
relation between Ki and SUV values. P values of < 0.05 
were considered significant. Continuous group data are 
presented as mean ± SD or median (range) as appropri-
ate. Time-series are presented as mean ± SEM.

Results
Time‑activity curves
The whole-body dynamic series contained TACs of 
the analysed organs as well of the pathological findings 
as presented in Fig.  1. Lesions displayed continuously 
increasing PSMA activity over time, independent of the 
tracer used. However, there was a difference in tracer 

behaviour when analysing the healthy organ areas. While 
gradual increase (for parotid or lachrymal glands) or 
decrease (for bone and muscle) was observed for both 
tracers, the kinetics of hepato-splenic activity appeared 
to differ between tracers. Where [68Ga]Ga-PSMA-11 
showed decreasing activity in the liver and spleen, a grad-
ually increasing PSMA activity over time was seen with 
[18F]PSMA-1007.

Full kinetic analysis using 2CM
The two PSMA tracers exhibited significantly different 
pharmacokinetics in normal organs (liver, spleen, bone, 
and muscle) as measured by AIC values. For [68Ga]Ga-
PSMA-11, the normal organ TACs were best fitted using 
the reversible 2CM. For [18F]PSMA-1007, the normal 
organ TACs were best fitted using the irreversible 2CM 
except for muscle that were best fitted using a reversible 
model. For both tracers, the lesions were best fitted using 
the irreversible 2CM. The AIC values are shown in Addi-
tional file 1: Fig. S2.

The multiparametric images are based on the Patlak 
model that assumes irreversible kinetics. For normal 
organs, Fig. 2 shows the correlation between values from 
the parametric Ki images as function of the Ki values from 
full kinetic analyses using the reversible and irreversible 
2CM, respectively. For [18F]PSMA-1007, there was excel-
lent correlations, whereas for [68Ga]Ga-PSMA-11, the 
correlation was poor, and the multiparametric Ki values 
were strongly biased. However, for [68Ga]Ga-PSMA-11, 
we found good correlation between the total distribution 
volume calculated using Logan analysis and full kinetic 
modelling using the reversible 2CM (Additional file  1: 
Fig. S3A, B) as expected for organs with reversible kinet-
ics. For lesions, the correlations between the Ki estimates 
were excellent for both tracers as seen in Fig. 2 and Addi-
tional file 1: Fig. S3C.

Comparison of multiparametric and image‑based Ki values
For both [68Ga]Ga-PSMA-11 and [18F]PSMA-1007, we 
found excellent correlation (r2 = 0.99, p < 0.0001) between 
Ki values extracted from the multiparametric images 
(direct reconstruction) versus image-based calculations 
performed in PMOD’s PKIN module (Additional file  1: 
Fig. S4).

Visual analysis of images
The clinical indications and characteristics of the study 
subjects are shown in Table 1.

All D-WB PET images were of good visual quality as 
shown in the examples below (Fig. 3).

In general, PSMA Ki images were characterized by 
reduced signal in vascularized tissues (liver, mediasti-
num, spleen, and large vessels). The DV images were 
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characterized by high signal intensity in the vascular-
ized organs and also by the presence of signal from both 
benign and malignant lesions. The vascular [18F]PSMA-
1007 signal displayed on DV images appears to be more 
intense than that of [68Ga]Ga-PSMA-11.

The [68Ga]Ga-PSMA-11 cohort consisted of nine pri-
mary staging and one relapse evaluations. Malignant 
disease was found in 9/10 scans. One primary stag-
ing patient had localized prostatic disease, while seven 
patients had disease dissemination to lymph nodes and/

Fig. 1  Representation of time activity curves for SUVmean values. In blue are the TACs for [68Ga]Ga-PSMA-11, in red the curves for [18F]PSMA-1007. 
On the left column, the plots for healthy organs: Above: liver and spleen; middle: parotid gland and lacrimal gland; below: bone and muscle. On the 
right column: Above: prostate lesions; middle: lymph node lesions; below: skeletal lesions
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or bone. The relapse study patient showed disseminated 
lymph node disease. A total of 274 VOIs were deline-
ated (including healthy organs, targets, benign ganglia, 
and background areas).

The [18F]PSMA-1007 cohort consisted of six primary 
staging evaluations, two disease progression studies, 
and two relapse evaluations. Malignant disease was 
found in 9/10 scans. In the staging and progression 
scans, one patient presented with localized prostatic 
disease, and the rest with disseminated disease. One 
patient with suspected disease relapse showed no signs 
of active disease, whereas the other had bone metasta-
ses. A total of 210 VOIs were delineated.

In all 20 patients, visual lesion detection in terms of 
the number of identified lesions was almost identical 
between SUV and parametric images, with a few nota-
ble exceptions. In two patients, SUV images revealed 
PSMA avid foci in soft tissue of the shoulder region, 
as shown in Additional file  1: Fig. S5. These foci were 
absent from the Ki images and visible on the DV images 
indicating (correctly) that the SUV image PSMA avidity 
was due to free tracer.

One patient was diagnosed with a hepatocelular car-
cinoma of the liver. As seen in Additional file  1: Fig. 
S6, although the Ki images reduced liver background 

Fig. 2  Correlation between values from the parametric Ki images as function of the Ki values from full kinetic analyses using the reversible 2CM 
(left) and irreversible 2CM (right). In blue are the data for [68Ga]Ga-PSMA-11, in red [18F]PSMA-1007. For the analysed organs (A and B), excellent 
correlation is seen for [18F]PSMA-1007, whereas for [68Ga]Ga-PSMA-11, the correlation was poor, and the multiparametric Ki values were strongly 
biased. For lymph node and bone lesions (C and D), excellent correlation is seen for both tracers
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activity and thus improved TBR, the liver lesion was in 
fact more easily identified on SUV and DV images.

Quantitative analysis of lesion detectability
As expected, [18F]PSMA-1007 prostate and bladder 
TBR was better than [68Ga]Ga-PSMA-11 (Additional 
file 1: Fig. S7). In addition, the observed lesion TBR was 
superior in the Ki images as indicated by the location of 
135/145 lesions above the line of identity (Fig. 4). In ten 
lesions, TBR SUVmean > TBR Kimean, all of which were 
[68Ga]Ga-PSMA-11 PET/CT scans (eight lymph nodes, 
one bone lesion, one prostate lesion).

The SUVmean in the liver, bone and muscle was signifi-
cantly different (p < 0.05) between [68Ga]Ga-PSMA-11 
and [18F]PSMA-1007. For the parametric images, Kimean 
values differed significantly between the two tracers in 
the liver, muscle, parotid and lacrimal glands. We saw no 
significant difference in the distribution of SUVmean activ-
ity between tracers in the primary tumour of the prostate, 
in lymph nodes or in the physiologic uptake in ganglia. 
However, the skeletal lesions showed significantly lower 
activity with [18F]-PSMA-1007. Kimean values were sig-
nificantly greater using [68Ga]Ga-PSMA-11 than [18F]
PSMA-1007 for nodal and bone lesions but not in the 
prostate or in benign ganglia (Fig. 5; data for benign gan-
glia is show in Additional file 1: Fig. S8, data for SUVmax is 
shown in Additional file 1: Fig. S9).

An excellent correlation between quantitative (Kimean) 
and semi-quantitative (SUVmean) measurements of 
lesion metabolism were seen for both tracers (Fig.  6), 
slightly higher for [18F]PSMA-1007 ([68Ga]Ga-PSMA-11: 
r2 = 0.93; [18F]PSMA-1007: r2 = 0.98).

Discussion
PSMA multiparametric PET images for both radiotrac-
ers were of good visual quality as reflected by the excel-
lent TBR and overall image appearance. In general, lesion 
TACs were roughly similar between the two radiotracers, 
whereas organ TACs differed noticeably due to the dif-
ferent modes of excretion. Finally, the parametric values 
derived from the image-based kinetic analyses compared 
well with the parametric images using direct reconstruc-
tion allowing for simple acquisition of whole body PSMA 
kinetics.

Multiparametric Ki imaging assumes an irreversible 
kinetic model in organs and lesions. Tissues with revers-
ible uptake will have underestimated Ki depending on the 
degree of reversibility that may differ between tissues. 
We found that the multiparametric Ki values for lesions 
strongly correlated with Ki values obtained from full 
2CM analysis for both tracers, whereas the multipara-
metric Ki values for normal organs, such as liver, spleen, 
and bone, were quantitative only for [18F]PSMA-1007. 
Overall, these results indicate that [18F]PSMA-1007 is 
better suited for quantitative multiparametric Ki imaging 

Table 1  Characteristics of the study population

Patient no Age Indication Previous treatment or other notes PSA (µg/L) Gleason Tracer Dose (MBq)

1 70 Primary staging 6.4 7 [68Ga]Ga-PSMA-11 151

2 53 Primary staging 7.2 7 [68Ga]Ga-PSMA-11 151

3 68 Primary staging 30 7 [68Ga]Ga-PSMA-11 163

4 67 Relapse Prostatectomy and LN extraction 4 8 [68Ga]Ga-PSMA-11 198

5 78 Primary staging 11 7 [68Ga]Ga-PSMA-11 182

6 63 Primary staging Increased prostate size, negative previous biopsies 35 NA [68Ga]Ga-PSMA-11 135

7 60 Primary staging 47 8 [68Ga]Ga-PSMA-11 177

8 71 Primary staging 95 9 [68Ga]Ga-PSMA-11 175

9 57 Primary staging 160 7 [68Ga]Ga-PSMA-11 204

10 69 Primary staging 14.6 7 [68Ga]Ga-PSMA-11 194

11 75 Progression Medical castration 707.7 7 [18F]PSMA-1007 151

12 73 Relapse Prostatectomy 0.2 8 [18F]PSMA-1007 201

13 66 Progression Active surveillance 9.6 6 [18F]PSMA-1007 181

14 63 Primary staging 32.5 8 [18F]PSMA-1007 209

15 64 Relapse Prostatectomy + RT 0.2 7 [18F]PSMA-1007 197

16 71 Primary staging Increased prostate size, negative previous biopsies 14 NA [18F]PSMA-1007 240

17 65 Primary staging 72.4 8 [18F]PSMA-1007 236

18 78 Primary staging 31.6 7 [18F]PSMA-1007 205

19 68 Primary staging 5.1 9 [18F]PSMA-1007 205

20 71 Primary staging 5.9 7 [18F]PSMA-1007 164
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than [68Ga]Ga-PSMA-11 as more organs exhibit irre-
versible kinetics. The observed difference can perhaps be 
attributed to the different binding potentials of the two 
tracers [36, 37]. Muscle tissue kinetics were best ana-
lysed by reversible 2CM for both tracers, probably due 
to the low muscular PSMA activity [5]. For [18F]PSMA-
1007, Ki values were quantitative both in healthy bone 
and bone lesions, which could allow for quantification 

of disease progression. This may be of clinical interest 
since the threshold for pathology on static SUV images 
has been hard to establish due to the varying “normal” 
PSMA uptake in bones. Thus, we recommend using [18F]
PSMA-1007 for quantitative multiparametric Ki imaging 
in order to obtain images with unbiased quantifications 
of background organs and tissues, whereas both tracers 
can be used for lesion detection.

Fig. 3  Examples of D-WB PET/CT scans performed in patients referred for primary staging of prostate cancer. SUV images are reconstructed using 
D-WB data from 60 to 70 min, whereas the parametric images of Ki and DV are reconstructed using D-WB data from 40 to 70 min. Above: the 
example of a D-WB PET/CT scan performed with [68Ga]Ga-PSMA-11 displaying only primary disease (arrow). Below: one of the patients scanned 
with [18F]PSMA-1007 showing primary disease in the prostate (thick arrow), dissemination to pelvic lymph nodes, as well as multiple small skeletal 
lesions in the ribs and left humerus (probably unspecific/benign) (thin arrows)
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The main advantage of PSMA D-WB multiparametric 
images over static SUV images is that the former allow 
for differentiation between free unbound tracer (back-
ground) and tracer bound to the PSMA receptors. Ki 
images are therefore characterized by improved target-
to-background ratio, which in theory could improve 
lesion identification. However, even though tumour-to-
background ratios were in general more favourable on 
our Ki images, we identified no additional pathologic 
lesions in this patient cohort. This result is similar to 
that of previous larger studies [11, 14] and attests to the 
known robustness of conventional SUV imaging.

[18F]PSMA-1007 is often preferred by clinical depart-
ments due to its supposedly superior properties evaluat-
ing pathology in the pelvis, and the absence of reliance on 
an onsite gallium-68 generator. However, in our hands, 
both PSMA tracers identified primary prostatic disease 
with ease, regardless of whether images were static SUV 
or parametric Ki images. However, the improvement in 
regional TBR contrast associated with [18F]PSMA-1007 
is likely to be more clinically relevant in relapse evalua-
tion studies, of which we only had three in our cohort. 
Furthermore, it is recommended to administer furo-
semide shortly before or after administration of [68Ga]
Ga-PSMA-11 [38], thus diminishing the high residual 
activity in the bladder [39]. Our protocol lacks such 
intervention, as it would reduce patient compliance 
with the prolonged scan time. Finally, this disadvantage 

associated with [68Ga]Ga-PSMA-11 scanning can also be 
circumvented using D-WB imaging which provides bet-
ter TBR (in this case PCa to bladder) of the early dynamic 
images [12, 15, 40]. Whether this potentially translates to 
improved detection of recurrent disease by D-WB [68Ga]
Ga-PSMA-11 remains to be clarified in a larger study.

Both radiotracers readily identified lymph node 
metastases, although with higher Ki values in the [68Ga]
Ga-PSMA-11 images. Likewise, skeletal lesion [68Ga]
Ga-PSMA-11 activity was greater in static SUV images 
and calculated Ki values were higher in the parametric 
images. Coupled with the generally higher background 
signal in the bone observed in [18F]PSMA-1007 PET 
images, these findings seem to suggest that [68Ga]Ga-
PSMA-11 PET should outperform [18F]PSMA-1007 PET 
in both lymph node and bone lesion detection. However, 
previous head-to-head studies based on static images 
have shown more bone lesions detected using static [18F]
PSMA-1007 PET than [68Ga]Ga-PSMA-11. This is now 
a known disadvantage of [18F]PSMA-1007, as up to half 
of these additional bone ‘lesions’ have turned out to be 
benign [41, 42], and consequently, no difference in radi-
otracer sensitivity to detect malignant skeletal lesions 
have been reported [43, 44]. Although histological verifi-
cation was not available in all lesions in the current study, 
it is evident to us that some of the delineated bone lesions 
with [18F]PSMA-1007, particularly those in the ribs and 
with low SUV values, likely also represent unspecific 
benign lesions [41, 42]. The presence of such unspecific 
bone lesions can contribute to the difference in distri-
bution of SUV signal observed in Fig.  5, as the [68Ga]
Ga-PSMA-11 cohort included a larger amount of likely 
bone metastases. The bone lesions were also visible on 
parametric PSMA PET using both radiotracers, which is 
unsurprising even though these lesions are probably visu-
alized due to a non-PSMA-related uptake mechanism 
[45].

Consequently, parametric images cannot be used to 
differentiate these unspecific bone lesions from malig-
nant disease, regardless of radiotracer used or scan pro-
tocol employed.

Whereas sensitivity to detect lesions was not improved 
by the parametric imaging, specificity appears to be 
slightly better. In our cohort of 20 patients, we observed 
two cases of ‘false-positive’ findings in soft-tissue lesions 
on the SUV images that showed no tracer uptake on the 
parametric reconstructions, as previously reported for 
[18F]FDG [25]. However, it is relevant to note that the 
presence of isolated soft-tissue or lymph node metasta-
sis in the upper extremities is highly unlikely in prostate 
cancer.

Some limitations to the study must be acknowledged. 
First, the patient cohort is rather small, and for ethical 

Fig. 4  Distribution of analysed VOIs showing a clear predominance 
of lesions favouring the tumour-to-background ratio in the 
parametric images. Main plot with distribution of all VOIs, insert 
with zoom on area 25 × 25 TBR. The triangle (△) symbol represents 
prostate lesions, circle (○) symbol represents lymph node lesions, 
square (□) symbol represents bone lesions
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reasons, patients were not subjected to repeat stud-
ies using the two different radiotracers. A direct com-
parison of findings in each study was therefore not 
possible. Studying the same patients with both tracers 
would have been optimal to minimize inter-individual 
variation in tumour biology, dissemination patterns 
and length of disease. Second, only a small fraction of 
patients in our cohort were scanned for disease relapse 
evaluation, which in theory should be the most promis-
ing referral indication, since putative lesions are located 
in the pelvic area with high background on [68Ga]

Ga-PSMA-11 PET. However, suspected disease relapse 
only represents a fraction of PSMA PET referrals at 
our department. Third, we lack histological confirma-
tion of our findings. However high correlation between 
imaging and histopathologic findings has been previ-
ously demonstrated for PSMA tracers [46, 47]. Finally, 
although all multiparametric images were based on 
30-min D-WB PET data, the dynamic image acquisition 
protocols were not entirely identical. In a more elegant 
study setup, we would have preferred identical D-WB 
PET acquisition protocols.

Fig. 5  Distribution of analysed volumes of interest A in healthy organs; B for malignant lesions in the prostate, lymph nodes and skeletal structures. 
Represented are SUVmean (on the left) and Kimean (on the right) for both tracers. [68Ga]Ga-PSMA-11 in represented in blue, [18F]PSMA-1007 in red
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In conclusion, it is possible to perform D-WB PSMA 
PET scans that generate lesion and tissue Ki values in 
a clinical setting by using a multiparametric acquisi-
tion protocol on standard FOV PET scanners. Both 
[68Ga]Ga-PSMA-11 and [18F]PSMA-1007 can be used 
for lesion detection, with parametric PSMA Ki images 
showing superior lesion TBR. However, in our small 
cohort, Ki images did not uncover any additional 
lesions. For quantitative whole-body Ki imaging, [18F]
PSMA-1007 is the preferred choice due to its predomi-
nantly irreversible kinetics in organs and lesions, lead-
ing to unbiased quantitative values.
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