ORIGINAL RESEARCH **Open Access** # Evaluation of ¹⁸F-AIF-NOTA-octreotide for imaging neuroendocrine neoplasms: comparison with ⁶⁸Ga-DOTATATE PET/CT Jiale Hou^{1†}, Tingting Long^{1†}, Zhiyou He¹, Ming Zhou¹, Nengan Yang¹, Dengming Chen¹, Shan Zeng² and Shuo Hu^{1,3,4*} ● ## **Abstract** **Objective:** To evaluate the diagnostic efficacy of ¹⁸F-AIF-NOTA-octreotide (¹⁸F-OC) PET/CT compared with that of ⁶⁸Ga-DOTATATE PET/CT. **Materials and methods:** Twenty patients (mean age: 52.65 years, range: 24–70 years) with biopsy-proven neuroendocrine neoplasms (NENs) were enrolled in this prospective study. We compared the biodistribution profiles in normal organs based on the maximum standard uptake value (SUV_{max}) and mean standard uptake value (SUV_{mean}), and uptake in NEN lesions by measuring the SUV_{max} on ¹⁸F-OC and ⁶⁸Ga-DOTATATE PET/CT images. The tumor-to-liver ratio (TLR) and tumor-to-spleen ratio were calculated by dividing the SUV_{max} of different tumor lesions by the SUV_{mean} of the liver and spleen, respectively. The Wilcoxon signed-rank test was used to compare nonparametric data. Data were expressed as the median (interquartile range). **Results:** In most organs, there were no significant differences in the biodistribution of 68 Ga-DOTATATE and 18 F-OC. 18 F-OC had significantly lower uptake in the salivary glands and liver than 68 Ga-DOTATATE. 18 F-OC detected more lesions than 68 Ga-DOTATATE. The uptake of 18 F-OC in the tumors was higher in most patients, but the difference was not statistically significant relative to that of 68 Ga-DOTATATE. However, the TLRs of 18 F-OC were higher in most patients, including for lesions in the liver (p = 0.02) and lymph nodes (p = 0.02). **Conclusion:** Relative to ⁶⁸Ga-DOTATATE, ¹⁸F-OC possesses favorable characteristics with similar image quality and satisfactory NEN lesion detection rates, especially in the liver due to its low background uptake. ¹⁸F-OC therefore offers a promising clinical alternative for ⁶⁸Ga-DOTATATE. ## Introduction Neuroendocrine neoplasms (NENs) are a relatively rare and highly heterogeneous tumor derived from neuroendocrine cells. The incidence and prevalence of NENs have increased steadily over the past 40 years, with increasing awareness and emergence of better diagnostic tools [1]. This has been accompanied by a concomitant increase in the rate of NEN distant metastases, which negatively affects NEN treatment and survival [2]. Thus, effective NEN monitoring using sensitive imaging approaches is needed to detect progression and adapt treatment strategies. NENs commonly express somatostatin receptors (SSTRs), making them amenable to molecular imaging with radionuclide-coupled somatostatin analogs as a diagnostic tool [3]. Currently, ⁶⁸Ga-labeled somatostatin analogs (SSAs) for positron emission tomography/computed tomography (PET/CT) have been used in routine Full list of author information is available at the end of the article ^{*}Correspondence: hushuo2018@163.com $^{^{\}rm t}{\rm Jiale\,Hou\,and\,Tingting\,Long}$ are contributed equally to this work ¹ Department of Nuclear Medicine, XiangYa Hospital, Central South University, No. 87 XiangYa Road, ChangSha, Hunan Province, People's Republic of China Hou et al. EJNMMI Res (2021) 11:55 Page 2 of 9 clinical practice [4, 5]. Relative to single-photon emission computed tomography (SPECT), PET has a higher spatial resolution, shorter imaging times, lower radiation exposure, and better lesion detection [6, 7]. Thus, PET scanning using ⁶⁸Ga-labeled SSAs is critical for tumor detection rate, staging and restaging and post-therapy follow-up [4]. However, the use of ⁶⁸Ga-labeled PET is limited by the high cost of ⁶⁸Ge/⁶⁸Ga generators [8] and the relatively short half-life of ⁶⁸Ga (68 min). ¹⁸F-labeled (¹⁸F half-life: 106.9 min) SSAs have high tumor-to-background ratio (TBR) for NEN lesions; thus, these probes may be used as an alternative in NEN imaging and also allow for longer transport times [9, 10]. In recent years, there has been increased research on ¹⁸F-labeled agents [10–12]. ¹⁸F-AlF-NOTA-octreotide (¹⁸F-OC) exhibits satisfactory biodistribution and dosimetry profiles with a high NEN lesion detection rate [13]. A comparison of the imaging parameters of ¹⁸F-OC and ⁶⁸Ga-DOTATATE for NENs in a small number of patients found that ¹⁸F-OC has excellent dynamics and imaging characteristics [14]. Here, we assessed the clinical applicability and efficacy of ¹⁸F-OC relative to those of ⁶⁸Ga-DOTATATE in a larger group of patients. ## **Methods** ### Patients and study design The research was approved by the institutional ethics review committee of Xiangya Hospital, Central South University for research purposes only (No. 20181001). All study participants gave written informed consent before the start of the study. Patients with clinically confirmed NENs were prospectively recruited into the study. Participants received an intravenous injection of ¹⁸F-OC and ⁶⁸Ga-DOTATATE for PET/CT within 8 days (range: 1–8 days), except patients No. 1 (interval time: approximately 147 days without any treatment) and No. 15 (interval time: approximately 279 days without peptide receptor-radionuclide therapy (PRRT)). ## ⁶⁸Ga-DOTATATE and ¹⁸F-OC preparation ⁶⁸Ga-DOTATATE was synthesized using the acetone method on a fully automated Modular Lab system (Eckert & Ziegler, Germany), and quality control was performed as previously described [15]. The radiochemical purity of ⁶⁸Ga-DOTATATE was > 90%. ¹⁸F-OC was produced as previously described [16] and under good manufacturing practice guidelines. ## PET/CT image acquisition The study was carried out with a General Electric PET/CT scanner (Discovery 690 Elite, General Electric Health care, Waukesha, Wis). ¹⁸F-OC PET/CT imaging was performed 60 min after the radiotracer was intravenously (IV) injected at a dose of 3.7–4.44 MBq (0.1–0.12 mCi) per kilogram of body weight. $^{68}\text{Ga-DOTATATE}$ imaging was performed 50 min after an injection with a total activity of 194.4 ± 37.9 MBq. First, a low-dose CT scan (120 kV; automatic mAs; pitch, 1:1; slice thickness, 3.75 mm; matrix, 512×512) was performed from the head to mid-thigh for anatomical localization and attenuation correction. Next, PET scanning was performed, with 2 min per bed position. Finally, images were reconstructed using the 3-dimensional ordered-subsets expectation maximization algorithm with 2 iterations and 23 subsets. ### Image analysis Regions of interest (ROIs) were drawn on fused PET/CT images on a dedicated nuclear medicine AW 4.6 workstation (General Electric Healthcare) to obtain standardized uptake values (SUVs). ¹⁸F-OC and ⁶⁸Ga-DOTATATE images were independently assessed by 2 experienced nuclear medicine physicians who were blinded to the patients and their medical information. The ROIs for measuring the maximum standard uptake value (SUV_{max}) and mean standard uptake value (SUV_{mean}) in normal organs and tissues and the ROIs for measuring the SUV_{max} of NEN lesions were drawn on serial images. The mean SUV_{max} and SUV_{mean} in the reference organs were evaluated by placing 3 consecutive ROIs (including the area with the highest uptake and that on the upper and lower slices based on visual assessment) inside the organ of interest, including pituitary, cerebral cortex, adrenal gland, uncinate process of the pancreas (PU), pancreas (except the PU), stomach, spleen, thyroid, salivary glands, liver, bone, renal parenchyma, small intestine, uterus (female), prostate (male), colon, lung, fat, myocardium, muscle, bladder wall, and blood pool, on both scans. Candidate lesions with activities greater than the physiologic uptake in the involved organs were considered lesions. These lesions were divided into 5 regions or groups: primary tumor, liver metastases, bone metastases, lymph node metastases, and metastases in other organs (lung, muscle, stomach, rectum, peritoneum, soft tissue, and thyroid). For patients with multiple lesions, at most 5 lesions with the highest uptake per organ were included in the uptake analysis. The tumor-to-liver ratio (TLR) and tumor-to-spleen ratio (TSR) were calculated by dividing the SUV_{max} of different tumor lesions by the SUV_{mean} of the liver and spleen in each patients, respectively. All ratios on corresponding ¹⁸F-OC and ⁶⁸Ga-DOTATATE scans were computed from the same layer on the 2 scans. All discrepant lesions between the images of the 2 radiotracers were identified by other imaging or patient follow-up (computed tomography (CT), magnetic Hou et al. EJNMMI Res (2021) 11:55 Page 3 of 9 resonance imaging (MRI), and PET/CT) and then classified as true- or false-positive findings. #### Statistical analysis Data analysis was performed using GraphPad Prism 6 (Version 6.01, 2012). Data are expressed as the median (interquartile range). Nonparametric data were compared using the Wilcoxon signed-rank test. P < 0.05 indicates statistical significance. ### Results Twenty patients were prospectively enrolled in the study, and their clinical characteristics are summarized in Table 1. No patients received PRRT treatment between ⁶⁸Ga-DOTATATE and ¹⁸F-OC PET/CT scans. Both radiotracers were tolerated well by all patients, and no adverse events were reported. The physiological uptake of ⁶⁸Ga-DOTATATE and ¹⁸F-OC is shown in Fig. 1. ⁶⁸Ga-DOTATATE and ¹⁸F-OC PET/CT scans were compared at the lesion and region levels and based on SUV. ## Biodistribution of ⁶⁸Ga-DOTATATE and ¹⁸F-OC Similar to that of 68 Ga-DOTATATE, the highest SUV $_{\rm max}$ values for 18 F-OC were recorded in the spleen, adrenal gland, renal parenchyma, pituitary gland, liver, and PU. Lower ${\rm SUV}_{\rm max}$ and ${\rm SUV}_{\rm mean}$ values were observed in the salivary glands, myocardium, bone, lung muscle, fat, and cerebral cortex. In most organs, the biodistribution of $^{68}{\rm Ga\text{-}DOTATATE}$ was not significantly different from that of $^{18}{\rm F\text{-}OC}$. Relative to $^{68}{\rm Ga\text{-}DOTATATE}$, $^{18}{\rm F\text{-}OC}$ had significantly lower uptake in organs such as the salivary glands, liver, pancreas, bone, renal parenchyma, and prostate (Fig. 1). # Comparison of tumor detection rates between ⁶⁸Ga-DOTATATE and ¹⁸F-OC PET/CT This study included 20 NEN patients. Examinations using $^{68}\text{Ga-DOTATATE}$ and $^{18}\text{F-OC}$ PET/CT revealed that 19 patients had lesions and 1 patient had no lesions. Follow-up examination confirmed lesions in the 19 patients and that patient No. 1 had no lesions. Table 2 shows the discordant lesions examined by $^{68}\text{Ga-DOTATATE}$ and $^{18}\text{F-OC}$ PET/CT. In the region-based comparison, 9 patients had primary tumors on both ¹⁸F-OC and ⁶⁸Ga-DOTATATE images. In addition, there were 4 patients staged with unknown primary lesions. Sixteen patients had metastases on ⁶⁸Ga-DOTATATE PET/CT, and 17 patients had metastases on ¹⁸F-OC PET/CT. ¹⁸F-OC demonstrated a higher ability to detect liver lesions (Fig. 2). In 11 patients Table 1 Patient clinical characteristics | Patient (No) | Age (y) | Gender | Primary tumor | Biopsy site | Tumor grade | Ki67 value | Indication
of imagine | Primary
tumor
resected | Time
between
scans
(days) | |--------------|---------|--------|-----------------|------------------|-------------|------------|--------------------------|------------------------------|------------------------------------| | 1 | 55 | М | Throat | Throat | 1 | 2 | Restage | Yes | 147 | | 2 | 52 | М | lleocecus | lleocecus | 2 | NA | Restage | Yes | 2 | | 3 | 63 | М | Rectum | Rectum | 2 | 3 | Restage | Yes | 5 | | 4 | 42 | F | Rectum | Rectum | 1 | 1 | Stage | No | 2 | | 5 | 24 | F | Pancreas | Liver | 3 | 40 | Restage | No | 4 | | 6 | 65 | М | Stomach | Stomach | 3 | 70 | Stage | No | 4 | | 7 | 57 | М | Pancreas | Pancreas | 1 | 1 | Stage | No | 2 | | 8 | 29 | F | Unknown | liver | 2 | 8 | Stage | No | 1 | | 9 | 48 | F | Rectum | Rectum | 2 | NA | Restage | Yes | 5 | | 10 | 70 | F | Small intestine | Small intestine | 1 | NA | Restage | Yes | 8 | | 11 | 67 | М | Pancreas | Liver | 2 | NA | Stage | No | 7 | | 12 | 68 | М | Pancreas | Liver | 1 | < 2 | Stage | No | 5 | | 13 | 59 | М | Unknown | Liver | 1 | 1 | Stage | No | 1 | | 14 | 60 | F | Pancreas | Pancreas | 1 | 1 | Stage | No | 1 | | 15 | 46 | F | Unknown | Liver and Celiac | 1 | 1 | Stage | No | 279 | | 16 | 56 | F | Pancreas | Pancreas | Insulinoma | | Stage | No | 1 | | 17 | 57 | М | Unknown | Neck | 2 | 15 | Stage | No | 1 | | 18 | 50 | М | Pancreas | Pancreas | 2 | 10 | Stage | No | 1 | | 19 | 49 | М | Rectum | Rectum | 2 | 5 | Restage | Yes | 2 | | 20 | 47 | F | Paraganglioma | Retroperitoneum | NA | NA | Stage | No | 1 | NA not applicable Hou et al. EJNMMI Res (2021) 11:55 Page 4 of 9 **Fig. 1** Uptake of 68 Ga-DOTATATE and 18 F-OC in normal organs was calculated in patients based on the mean SUV_{max} (**a**) and SUV_{mean} (**b**). Significant differences between 68 Ga-DOTATATE and 18 F-OC are indicated. **: p = <0.01, *: p = <0.05 with liver metastases, 100% (11/11) and 90.9% (10/11) of patients showed liver metastases on $^{18}\text{F-OC}$ and $^{68}\text{Ga-DOTATATE}$ scans, respectively. $^{18}\text{F-OC}$ also detected peritoneal lesions more effectively than $^{68}\text{Ga-DOTA-TATE}$ in 1 patient (No. 9). In the lesion-based examination, 68 Ga-DOTATATE and 18 F-OC PET/CT detected 152 and 177 focal lesions, respectively (p = 0.54). A total of 149 tumor lesions (9 in the primary sites, 93 in the liver, 20 in the lymph node, 8 in the bone, and 19 in other sites) were concordantly detected on both ¹⁸F-OC and ⁶⁸Ga-DOTATATE PET/CT scans. An additional 30 lesions were detected by one of the scans only (Table 2). Both ¹⁸F-OC and ⁶⁸Ga-DOTATATE had lesions that could not be detected by another imaging agent (Fig. 3). ¹⁸F-OC detected 28 lesions (23 in the liver, 2 in the lymph node, and 3 in the | Patient | Primary tumor | | Liver metastases | | Bone metastases | | Lymph node metastases | astases | Other sites metastases | stases | Total lesions | | |---------|---------------------------|----------|---------------------------|--------|---------------------------|--------------------|---------------------------|--------------------|------------------------|--------------------|----------------------|--------------------| | | ⁶⁸ Ga-DOTATATE | 18F-0C | ⁶⁸ Ga-DOTATATE | 18F-0C | ⁶⁸ Ga-DOTATATE | ¹⁸ F-0C | ⁶⁸ Ga-DOTATATE | ¹⁸ F-0C | 68Ga-DOTATATE | ¹⁸ F-0C | 68Ga-DOTATATE | ¹⁸ F-0C | | 8 | ı | ı | 0 | - | ı | 1 | ı | 1 | ı | ı | 0 | - | | 4 | _ | — | ı | 1 | 1 | ı | - | 2 | _ | — | ĸ | 4 | | 2 | ı | ı | ı | 1 | 5 | 2 | ĸ | 2 | ı | ı | ∞ | 7 | | 6 | ı | I | _ | - | 8 | Ω | _ | _ | 7 | 10 | 12 | 15 | | 10 | ı | ı | | 2 | 1 | ı | 3 | 8 | 1 | ı | 4 | 2 | | 13 | ı | ı | 6 | 12 | 1 | ı | ĸ | ε | ı | ı | 12 | 15 | | 4 | _ | — | 6 | 19 | 1 | ı | 2 | 2 | 1 | ı | 12 | 22 | | 18 | _ | - | 10 | 18 | 1 | ı | ı | ı | 1 | I | 11 | 19 | | 19 | ı | ı | ı | 1 | ı | ı | _ | 2 | ı | ı | - | 2 | | 20 | ı | ı | 1 | 1 | 1 | ı | ı | ı | 4 | κ | 4 | 3 | Hou et al. EJNMMI Res (2021) 11:55 Page 6 of 9 **Fig. 2** More liver lesions were detected by ¹⁸F-OC (**d-f**) than by ⁶⁸Ga-DOTATATE (**a-c**). Maximum intensity projection image (**a, f**) shows more liver metastases present in a 50-year-old patient with a grade II primary pancreatic neuroendocrine tumor. Although transaxial fused PET/CT (**b, d**) and PET images (**c, e**) acquired with ⁶⁸Ga-DOTATATE and ¹⁸F-OC show an equal number of liver lesions in this slice, the lower background level of ¹⁸F-OC uptake by normal liver (**d-f**) better delineates liver lesions by making the lesions appear to have more obvious uptake and sharper edges relative to background levels of ⁶⁸Ga-DOTATATE uptake (**a-c**) peritoneum) not visualized with ⁶⁸Ga-DOTATATE. ⁶⁸Ga-DOTATATE identified 1 lymph node lesion and 1 retroperitoneal lesion not seen with ¹⁸F-OC. ¹⁸F-OC detected significantly more liver lesions (116 vs. 93, p < 0.01). There was a difference of 10 liver metastases detected by the 2 radiotracers in patient No. 14 (Fig. 2), which **Fig. 3** Both ¹⁸F-OC and ⁶⁸Ga-DOTATATE had lesions that could not be detected by another imaging agent. PET/CT images acquired with ⁶⁸Ga-DOTATATE and ¹⁸F-OC for patient No. 19 (**a**, **b**) and No. 20 (**c**, **d**). The ¹⁸F-OC fusion image (**b**) found an increased uptake in a retroperitoneal lymph node, while the uptake of this lymph node was not significantly increased on ⁶⁸Ga-DOTATATE (**a**) image. However, in another patient, the ¹⁸F-OC fusion image (**d**) shows that the uptake in one retroperitoneal lesion was not obvious, while the uptake of ⁶⁸Ga-DOTATAE was significant (**c**) Hou et al. EJNMMI Res (2021) 11:55 Page 7 of 9 were confirmed as true lesions by follow-up CT and MR. Additionally, ¹⁸F-OC detected 3 peritoneal lesions in patient No. 9. Regarding lymph node lesions, both ¹⁸F-OC and ⁶⁸Ga-DOTATATE detected 1 lesion that was not clearly detected by the other imaging agent. In addition, ¹⁸F-OC and ⁶⁸Ga-DOTATATE PET/CT had comparable effectiveness in detecting primary tumors and bone metastases. Lesion uptake analysis found that ¹⁸F-OC uptake was slightly higher than ⁶⁸Ga-DOTATATE uptake in primary tumors and metastases, but there were no significant differences (primary tumor: 25.01 (16.52-38.58) versus 19.08 (16.37–34.28), p = 0.80; metastases: 18.24 (11.25-37.48) versus 17.13 (8.99-28.72), p=0.33). However, some lesions had higher ¹⁸F-OC uptake and others lesions had higher ⁶⁸Ga-DOTATATE uptake, even among lesions of the same patient. For example, on PET/CT for suspected retroperitoneal pheochromocytoma in patient No. 20, 3 lesions were seen in the neck region, with higher ⁶⁸Ga-DOTATATE uptake than ¹⁸F-OC uptake in 2 of the neck lesions (SUV $_{\rm max}$ 56.59 vs. 53.11 and 27.19 vs. 15.13), but higher ¹⁸F-OC uptake in the other lesion (SUV_{max} 115.14 vs. 111.45) (Additional file 1: Fig. S1). Furthermore, in liver and lymph node lesions, the ¹⁸F-OC TLR was higher than that with ⁶⁸Ga-DOTATATE (p=0.02, Fig. 4). However, the ¹⁸F-OC TSR was not significantly higher than that of ⁶⁸Ga-DOTATATE for primary tumor or metastases (Fig. 4). In our study, we found that despite physiological uptake in the PU (mentioned above), three cases of nodules with abnormal density or signal in the PU on CT or MRI showed abnormal uptake in the PU on 68 Ga-DOTATATE and 18 F-OC PET (Additional file 2: Fig. S2). The SUV $_{\rm max}$ were as follows: 41.1, 86.7, 16.4, respectively in 68 Ga-DOTATATE and 27.5, 94.3, 15.3, respectively in 18 F-OC. ### Discussion Here, we prospectively assessed the performance of ¹⁸F-OC PET/CT relative to ⁶⁸Ga-DOTATATE PET/CT in 20 NEN patients. The ¹⁸F-OC had a favorable biodistribution profile and was not inferior to ⁶⁸Ga-DOTATATE in tumor uptake, TLR and TSR. Our data showed that the ¹⁸F-OC distribution in organs was similar to that of ⁶⁸Ga-DOTATATE. ¹⁸F-OC accumulation was very high in the spleen, which was similar to that of ⁶⁸Ga-labeled DOTA-SSAs. Because both radiotracers were mainly excreted by the urinary system, higher uptake was seen in the kidneys. However, the overall uptake of ¹⁸F-OC in organs was lower than that of ⁶⁸Ga-DOTATATE, especially in the liver, where the background ⁶⁸Ga-DOTATATE uptake was 1.5 times greater than that of ¹⁸F-OC. We found that the salivary glands showed visible differences between the 2 radiotracers, which was consistent with past findings that ⁶⁸Ga-DOTATATE uptake by salivary glands was four-sixfold higher than that of ¹⁸F-OC, mainly because of different radiotracer clearance times [14]. Because of high physiological uptake due to high SSTR2 expression in the PU and artifacts caused by respiratory movement, focal pancreatic lesions and lesions around the head of the pancreas may be obscured. Here, we found that both ¹⁸F-OC and ⁶⁸Ga-DOTATATE had high uptake nodules in the PU, and other imaging examinations (CT or MRI) showed changes in the shape, signal or density of these nodules (Additional file 2: Fig. S2). Other imaging agents based on ⁶⁸Ga-labeled radionuclides also demonstrated high sensitivity and specificity **Fig. 4** Bar chart representing the maximum standardized uptake value (SUV_{max}, **a**), tumor-to-liver ratio (TLR, **b**) and tumor-to-spleen ratio (TSR, **c**) of 18 F-OC. TLR (**b**) and TSR (**c**) were calculated by dividing the SUV_{max} of tumor lesions by the patient-specific SUV_{mean} of the liver and spleen, respectively. The TLRs for lesions in the liver and lymph nodes were significantly higher with 18 F-OC (p = 0.02 and p = 0.02, respectively). All other SUV_{max} TLR and TLR calculations did not show significant differences Hou et al. EJNMMI Res (2021) 11:55 Page 8 of 9 for detecting lesions (93.6% and 90%, respectively) in the PU [17]. We considered that results of a previous study [17] and ours could indicate SSA- PET, combined with morphological information (CT or MRI), especially if performed with enhanced CT or MRI, will improve the accuracy of lesions in the PU. But our number of cases was relatively small (n = 3). Thus, larger studies are needed to confirm these findings. ¹⁸F-OC and ⁶⁸Ga-DOTATATE were highly sensitive in detecting lesions, and there were no differences in their overall diagnostic efficacy. Relative to ⁶⁸Ga-DOTATATE, ¹⁸F-OC can detect lesions better (177 vs. 152), especially lesions in the liver (116 vs. 93), probably due to the lower background level of ¹⁸F-OC uptake in the liver. This finding is of great clinical significance, as it may affect treatment methods. For example, in patient No. 3, liver lesions were detected with ¹⁸F-OC but not ⁶⁸Ga-DOTATATE. In patient No. 10, only one lesion was detected in the left lobe with ⁶⁸Ga-DOTATATE, while ¹⁸F-OC detected another lesion in the right lobe of the liver, which was confirmed to be NEN metastases through pathology. These data are consistent with findings by Pauwels et al. [14] that ¹⁸F-OC detects more liver lesions. Our data did not uncover differences between ⁶⁸Ga-DOTATATE and ¹⁸F-OC in the detection of bone lesions (8 vs. 8). However, Pauwels et al. [14] found that ¹⁸F-OC detects more bone lesions. The differences between the 2 studies may be due to the small number of bone lesions in our study. Regarding lymph node lesions, both imaging radiotracers detected unique lesions. Additionally, ¹⁸F-OC detected 3 relatively small peritoneal metastases (diameter: < 5 mm) in patient No. 9, which were missed by ⁶⁸Ga-DOTATATE. This is attributable to ¹⁸F being a typical short-distance positron emitter with better spatial resolution [18], which may be better suited for detecting small lesions. Thus, the capacity of ¹⁸F-OC to detect lesions is similar to that of ⁶⁸Ga-DOTATATE, and ¹⁸F-OC may detect liver lesions more efficiently. In this study, the SUV_{max} of ¹⁸F-OC was higher than that of ⁶⁸Ga-DOTATATE, but the difference was not statistically significant. Interestingly, relative to ⁶⁸Ga-DOTATATE, ¹⁸F-OC had a better target-to-background ratio. In this study, using liver and spleen for background comparisons, we found the ¹⁸F-OC TLRs for lesions in the liver and lymph node were significantly higher than those of ⁶⁸Ga-DOTATATE, probably due to low liver background with ¹⁸F-OC. However, this finding differs from the results from Pauwels et al. [14] that the ¹⁸F-OC SUV_{max} for all lesions were significantly lower than those of ⁶⁸Ga-DOTATATE, but there was no difference in TBR, which may be attributable to the small sample size. We also found that some patients exhibited higher ⁶⁸Ga-DOTATATE uptake in lesions while others had higher ¹⁸F-OC uptake, and even within the same patient, some lesions had higher ⁶⁸Ga-DOTATATE uptake while others had greater ¹⁸F-OC uptake; this is probably because of NEN heterogeneity [19]. The reason for the difference between the two radiotracers still needs further study. Taken together, we found that ¹⁸F-OC had similar characteristics to ⁶⁸Ga-DOTATATE in terms of physiological distribution, lesion detection, and lesion uptake. However, ¹⁸F-OC was relatively better in detecting liver lesions than ⁶⁸Ga-DOTATATE. The two radiotracers had significantly difference TLRs, which is an important parameter for lesion detection. #### Limitations The most significant limitation of this study was the lack of pathological confirmation of most lesions, which was not performed due to the ethical implications of pathologically examining all patient lesions. Thus, all lesions found with ¹⁸F-OC and ⁶⁸Ga-DOTATATE were confirmed using alternative imaging approaches such as ¹⁸F-FDG PET, CT, or MRI. In addition, due to the small size of the study group and the small number of patients with higher-grade NENs, we could not evaluate the correlation between uptake and tumor grade. Future studies will involve a larger sample size. ## **Conclusion** Overall, ¹⁸F-OC shows a favorable biodistribution, in which the uptake in various organs is similar to or even lower than that of ⁶⁸Ga-DOTATATE. ¹⁸F-OC can detect liver lesions better than ⁶⁸Ga-DOTATATE, with a better tumor-to-liver ratio. However, both ¹⁸F-OC and ⁶⁸Ga-DOTATATE have similar detection rates for lesions in other organs. In general, ¹⁸F-OC has great potential as an alternative to ⁶⁸Ga-DOTATATE in the absence of a ⁶⁸Ge/⁶⁸Ga generator. In the future, more patients are needed for comparisons between ⁶⁸Ga-DOTATATE and ¹⁸F-OC to verify the value of ¹⁸F-OC in clinical applications. ### **Supplementary Information** The online version contains supplementary material available at https://doi.org/10.1186/s13550-021-00797-4. **Additional file 1.** Inconsistent uptake of 68Ga-DOTATATE (a–c) and 18F-OC in different lesions of a patient. **Additional file 2.** The lesions of ⁶⁸Ga-DOTATATE (a–c) and F-OC in the uncinate process of the pancreas (PU) of two patients. ## Acknowledgements Not applicable. ## Authors' contributions JH, TL, ZH, MZ, NY, DC, SZ, and SH contributed to the study design and coordination of the study. JH, TL, and DC contributed to management of registration Hou et al. EJNMMI Res (2021) 11:55 Page 9 of 9 of cases, collected PET-data. MZ and NY contributed to tracer synthesis. JH, TL, MZ, NY, DC, and SH contributed to image quality control, analysis, and data interpretation. JH, TL, and ZH contributed to statistical analysis. JH, TL, and SZ were involved in collection of clinical data. JH, TL, and SH contributed to drafting and revising the manuscript. All authors read and approved the final manuscript. #### Funding This study has received funding from the National Natural Science Foundation of China (No. 91859207 and No. 81771873). #### **Author details** ¹Department of Nuclear Medicine, XiangYa Hospital, Central South University, No. 87 XiangYa Road, ChangSha, Hunan Province, People's Republic of China. ²Department of Cancer Chemotherapy, XiangYa Hospital, Central South University, No. 87 XiangYa Road, ChangSha, Hunan Province, People's Republic of China. ³Key Laboratory of Biological Nanotechnology, NHC. No. 87 XiangYa Road, ChangSha 410013, Hunan Province, People's Republic of China. ⁴National Clinical Research Center for Geriatric Disorders (XIANGYA), XiangYa Central South University, Changsha 410008, Hunan, People's Republic of China. Received: 23 February 2021 Accepted: 28 May 2021 Published online: 09 June 2021 #### References - Dasari A, Shen C, Halperin D, et al. Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 2017;3:1335–42. - Sackstein PE, O'Neil DS, Neugut Al, Chabot J, Fojo T. Epidemiologic trends in neuroendocrine tumors: an examination of incidence rates and survival of specific patient subgroups over the past 20 years. Semin Oncol. 2018;45:249–58. - Johnbeck CB, Knigge U, Kjær A. PET tracers for somatostatin receptor imaging of neuroendocrine tumors: current status and review of the literature. Future Oncol (London, England). 2014;10:2259–77. - Bozkurt MF, Virgolini I, Balogova S, et al. Guideline for PET/CT imaging of neuroendocrine neoplasms withGa-DOTA-conjugated somatostatin receptor targeting peptides and F-DOPA. Eur J Nucl Med Mol Imaging. 2017;44:1588–601. - Hope TA, Bergsland EK, Bozkurt MF, et al. Appropriate use criteria for somatostatin receptor PET imaging in neuroendocrine tumors. J Nucl Med Off Publ Soc Nucl Med. 2018;59:66–74. - Sadowski SM, Neychev V, Millo C, et al. Prospective Study of 68Ga-DOTATATE Positron Emission Tomography/Computed Tomography for DetectingGastro-Entero-Pancreatic Neuroendocrine Tumors and Unknown Primary Sites. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2016;34:588–96. - Schreiter NF, Brenner W, Nogami M, et al. Cost comparison of 111In-DTPAoctreotide scintigraphy and 68Ga-DOTATOC PET/CT for staging enteropancreatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2012;39:72–82. - 8. Banerjee SR, Pomper MG. Clinical applications of Gallium-68. Appl Radiat Isot Incl Data Instrum Methods Use Agric Ind Med. 2013;76:2–13. - Coenen HH, Elsinga PH, Iwata R, et al. Fluorine-18 radiopharmaceuticals beyond [18F]FDG for use in oncology and neurosciences. Nucl Med Biol. 2010;37:727–40 - Ilhan H, Lindner S, Todica A, et al. Biodistribution and first clinical results of F-SiFAlin-TATE PET: a novel F-labeled somatostatin analog for imaging of neuroendocrine tumors. Eur J Nucl Med Mol Imaging. 2019;47:870–80. - Berends AMA, Kerstens MN, Bolt JW, et al. False-positive findings on 6-[18F]fluor-l-3,4-dihydroxyphenylalanine PET (F-FDOPA-PET) performed for imaging of neuroendocrine tumors. Eur J Endocrinol. 2018:179-125–33 - Narayan A, Yan Y, Lisok A, et al. A side-by-side evaluation of [F]FDOPA enantiomers for non-invasive detection of neuroendocrine tumors by positron emission tomography. Oncotarget. 2019;10:5731–44. - Long T, Yang N, Zhou M, et al. Clinical application of 18F-AIF-NOTAoctreotide PET/CT in combination with 18F-FDG PET/CT for imaging neuroendocrine neoplasms. Clin Nucl Med. 2019;44:452–8. - Pauwels E, Cleeren F, Tshibangu T, et al. [(18)F]AIF-NOTA-octreotide PET imaging: biodistribution, dosimetry and first comparison with [(68)Ga] Ga-DOTATATE in neuroendocrine turnour patients. Eur J Nucl Med Mol Imaging. 2020;47:3033–46. - Zhernosekov KP, Filosofov DV, Baum RP, et al. Processing of generatorproduced 68Ga for medical application. J Nucl Med Off Publ Soc Nucl Med. 2007;48:1741–8. - Laverman P, McBride WJ, Sharkey RM, et al. A novel facile method of labeling octreotide with (18)F-fluorine. J Nucl Med. 2010;51:454–61. - Kroiss A, Putzer D, Decristoforo C, et al. 68Ga-DOTA-TOC uptake in neuroendocrine tumour and healthy tissue: differentiation of physiological uptake and pathological processes in PET/CT. Eur J Nucl Med Mol Imaging. 2013;40:514–23. - Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys. 2016;3:8. - Maschauer S, Heilmann M, Wangler C, Schirrmacher R, Prante O. Radiosynthesis and preclinical evaluation of (18)F-fluoroglycosylated octreotate for somatostatin receptor imaging. Bioconjug Chem. 2016;27:2707–14. ## **Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. # Submit your manuscript to a SpringerOpen journal and benefit from: - ► Convenient online submission - ► Rigorous peer review - ▶ Open access: articles freely available online - ► High visibility within the field - Retaining the copyright to your article Submit your next manuscript at ▶ springeropen.com