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TSPO PET detects acute neuroinflammation 
but not diffuse chronically activated MHCII 
microglia in the rat
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Udunna C. Anazodo1,4, Matthew S. Fox3,5, Shawn N. Whitehead2*† and Jonathan D. Thiessen1,5*† 

Abstract 

Background:  Accurate and sensitive imaging biomarkers are required to study the progression of white matter (WM) 
inflammation in neurodegenerative diseases. Radioligands targeting the translocator protein (TSPO) are considered 
sensitive indicators of neuroinflammation, but it is not clear how well the expression of TSPO coincides with major 
histocompatibility complex class II (MHCII) molecules in WM. This study aimed to test the ability of TSPO to detect 
activated WM microglia that are immunohistochemically positive for MHCII in rat models of prodromal Alzheimer’s 
disease and acute subcortical stroke.

Methods:  Fischer 344 wild-type (n = 12) and TgAPP21 (n = 11) rats were imaged with [18F]FEPPA PET and MRI to 
investigate TSPO tracer uptake in the corpus callosum, a WM region known to have high levels of MHCII activated 
microglia in TgAPP21 rats. Wild-type rats subsequently received an endothelin-1 (ET1) subcortical stroke and were 
imaged at days 7 and 28 post-stroke before immunohistochemistry of TSPO, GFAP, iNOS, and the MHCII rat antigen, 
OX6.

Results:  [18F]FEPPA PET was not significantly affected by genotype in WM and only detected increases near the ET1 
infarct (P = 0.033, infarct/cerebellum uptake ratio: baseline = 0.94 ± 0.16; day 7 = 2.10 ± 0.78; day 28 = 1.77 ± 0.35). 
Immunohistochemistry confirmed that only the infarct (TSPO cells/mm2: day 7 = 555 ± 181; day 28 = 307 ± 153) and 
WM that is proximal to the infarct had TSPO expression (TSPO cells/mm2: day 7 = 113 ± 93; day 28 = 5 ± 7). TSPO and 
iNOS were not able to detect the chronic WM microglial activation that was detected with MHCII in the contralateral 
corpus callosum (day 28 OX6% area: saline = 0.62 ± 0.38; stroke = 4.30 ± 2.83; P = .029).

Conclusion:  TSPO was only expressed in the stroke-induced insult and proximal tissue and therefore was unable to 
detect remote and non-insult-related chronically activated microglia overexpressing MHCII in WM. This suggests that 
research in neuroinflammation, particularly in the WM, would benefit from MHCII-sensitive radiotracers.

Keywords:  TSPO, Major histocompatibility complex class II, White matter inflammation, Ischemic stroke, Alzheimer’s 
disease

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/.

Introduction
Diffuse inflammation of brain white matter (WM) has 
been clinically implicated in the pathology of neurode-
generative diseases including schizophrenia, traumatic 
brain injury, and Alzheimer’s Disease [1–3]. In the con-
tinuum from mild cognitive impairment to Alzheimer’s 
disease (AD), diffuse WM inflammation may explain why 
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WM undergoes demyelination, tract disintegration, and 
atrophy while patients undergo cognitive decline [4–6]. 
To measure WM inflammation in living subjects, previ-
ous studies have used PET tracers that target the 18 kDa 
translocator protein (TSPO) [7, 8]. TSPO is overex-
pressed in astrocytes and microglia during their activa-
tion, but the subtypes of activated microglia that express 
TSPO remain a subject of research.

Microglia that express major histocompatibility com-
plex class II (MHCII) molecules, which are involved in 
antigen presentation, are considered to be proinflamma-
tory [9]. MHCII molecules are correlated to cognitive 
dysfunction throughout AD and diffusely overexpressed 
in the WM microglia of patients with early-onset AD [1, 
10]. Previously, our group correlated diffuse MHCII acti-
vated microglia in WM with cognitive dysfunction in a 
prodromal transgenic rat model of AD that overexpresses 
human Swedish- and Indiana-mutated amyloid precur-
sor protein (TgAPP21) to produce high levels of beta-
amyloid without depositing amyloid plaques [11–13]. We 
further demonstrated the importance of diffuse MHCII 
activated microglia by detecting them in WM remote to 
an ischemic subcortical stroke in an endothelin-1 (ET1) 
rat model that also exhibits executive dysfunction [14, 
15]. Overall, these observations motivate the need to 
detect MHCII activated microglia in vivo.

In this study, we used the TgAPP21 and ET1-induced 
subcortical stroke rat models to investigate whether 
TSPO can detect diffuse MHCII activated microglia in 
WM. To quantify TSPO in vivo, we used a second-gen-
eration TSPO PET tracer ([18F]FEPPA) and validated the 
cerebellum as a pseudoreference region [16]. TSPO-PET 
was validated using immunohistochemistry of TSPO, 
which was compared to the activated astrocyte marker 
GFAP and activated microglia markers iNOS and OX6 
(MHCII) in ET1 rats.

Materials and methods
Animals and experimental design
Animal ethics and procedures of this study are in com-
pliance with the Canadian Council for Animal Care and 
were approved by the Western University Animal Care 
Committee (Protocol 2014-016). Rats were housed under 
a 12-h/12-h light/dark cycle and received ad  libitum 
access to food and water.

This study used male rats of the Fischer 344 strain aged 
11–14 months. TgAPP21 (n = 11) and wild-type (n = 12) 
rats were used to investigate [18F]FEPPA uptake in WM 
of prodromal AD using PET. Randomization was accom-
plished using rat ids. Genotype was validated with PCR 
as previously described [13].

To study ischemic subcortical stroke, the same wild-
type rats that received baseline in  vivo imaging later 

received a stereotactic injection of 60  pmol endothe-
lin-1 (ET1) dissolved in 3  μL sterile saline (n = 5) or 
sterile saline alone for control (n = 6) in the right dor-
sal striatum as previously described [17]. Whether a rat 
received ET1 or only saline was randomized. Rats were 
imaged in vivo post-stroke at day 7 and day 28, at which 
point they were euthanized for immunohistochemistry 
(Fig. 1a). A saline rat was omitted at day 7 because of a 
tail vein issue and 2 saline rats had to be replaced for 
imaging on day 7 and day 28 because they died between 
initial imaging and surgery. Their baseline points were 
included in the figures and all analyses where applica-
ble. For day 7 immunohistochemistry, additional rats 
were euthanized at day 7 (n = 5 ET1, n = 6 saline).

Fig. 1  Analytical methods. a Experimental timeline. b Representative 
ROIs delineated on T2w MRI and applied to fused [18F]FEPPA PET in a 
control rat at day 7. c Infarct at baseline and post-stroke day 7 and 28 
on T2w MRI. c, contralateral; CC, corpus callosum; CIR, contralateral to 
the infarct region, FM: Forceps Minor; i, ipsilateral; IR, infarct region p, 
posterior
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In vivo imaging
Each in  vivo imaging session consisted of a PET scan 
followed by MRI and CT. Before PET, anesthesia was 
administered at 2 L/min oxygen with isoflurane at 5% for 
induction then maintained at 2% until after CT. Respira-
tory rate, heart rate, and body temperature were moni-
tored and maintained throughout.

MRI
MRI was performed on a 3T MRI (Siemens Bio-
graph mMR) with a dedicated quadrature rat brain 
coil (Cubresa, 44  mm inner diameter). 2D sagittal and 
axial T2-weighted fast spin echo (FSE) images were 
acquired spanning the brain with an in-plane field-of-
view (FOV) = (70 × 70)  mm2, matrix size = 320 × 320, 
in-plane resolution = (0.22 × 0.22) mm2 and slice thick-
ness = 1  mm. Other relevant parameters for the FSE 
sequence include: repetition time (TR) = 2930 ms (sagit-
tal acquisition) and 3900 ms (axial acquisition), effective 
echo time = 97 ms, refocusing flip angle = 150°, echo train 
length = 11, bandwidth = 225 Hz/pixel, and averages = 4.

CT
For attenuation correction of the PET, full-body heli-
cal CT scans were acquired with a resolution of 
(0.20 × 0.20 × 1.25) mm3, tube current = 80  mA, tube 
voltage = 80 kVp, and rotation time = 1 s (GE Revolution 
CT).

PET acquisition and processing
PET data were acquired dynamically over 90-min (Sie-
mens Inveon). Thirty seconds after initiating the scan, 
33.7 ± 5.6  MBq [18F]FEPPA was injected through a tail 
vein catheter. On day 28, rat tail arteries were cannulated 
for blood sampling (n = 4). A blood volume of 50 µL was 
sampled at 2, 8, 16, 64, and 90 min post-injection. Blood 
was centrifuged to extract plasma, which was then passed 
through omniphilic cartridges at 0%, 20%, and 40% ace-
tonitrile to elute successively more lipophilic metabolites 
(Oasis HLB, Waters) [18]. Elutants, blood, and plasma 
were counted using a calibrated gamma detector.

PET data from 70–90 min post-injection were used for 
standardized uptake value (SUV) analysis and dynamic 
frames of 1 × 27  s, 21 × 3  s, 12 × 10  s, 5 × 30  s, 4 × 60  s, 
and 16 × 300  s for pharmacokinetic modeling, in which 
the radiotracer was not injected until after the first thirty 
seconds. The 70–90 min timeframe was chosen for static 
quantification because it was sufficiently long to provide 
a sufficient signal-to-noise and, given our acquisition, it 
was the latest timeframe possible, which is often the gold 
standard [19]. PET reconstruction consisted of 2 itera-
tions of 3D ordered-subset expectation-maximization 

followed by 18 iterations of fast maximum a posteriori 
(OSEM3D/FMAP) with a co-registered CT-based atten-
uation correction map.

PET analysis
Co-registration, region of interest (ROI) segmentation, 
and data extraction were performed using 3D Slicer 
4.10 [20]. Images were zero-interpolated to an isotropic 
0.22  mm voxel size and linearly co-registered to define 
the ROI in each rat (Fig.  1). ROI segmentation was 
based on the Paxinos-Watson atlas and included the 
T2w-hyperintense infarct region and contralateral to the 
infarct region for a positive control (5.39 ± 3.09  mm3), 
periaqueductal gray (4.09 ± 0.04  mm3), cerebellum 
(29.97 ± 4.50 mm3), frontal cortex (17.54 ± 3.95 mm3 per 
side), WM forceps minor (2.37 ± 0.65 mm3 per side), cor-
pus callosum proximal to the infarct (5.03 ± 1.25  mm3 
per side), and corpus callosum remote to the infarct 
(7.59 ± 1.85 mm3 per side). A 4 mm3 spherical ROI was 
placed in the center of the cardiac left ventricular cav-
ity to derive input functions. Input functions were cor-
rected using biexponential and Hill function population 
fits of whole blood-to-plasma ratio and unmetabolized 
[18F]FEPPA-to-all metabolites ratio (MATLAB 2019a). 
Corrected input functions and time–activity curves were 
used with an assumed blood volume of 5% to solve for the 
Logan total distribution volume (DV) and ratio (DVR) 
using custom MATLAB scripts. Standardized uptake 
value (SUV) was calculated based on weight and injected 
dose then used to calculate uptake ratios normalized to 
the cerebellum (UR).

Immunohistochemistry
All rats were euthanized with an intraperitoneal injection 
of pentobarbital (Euthanyl, Bimeda MTC Animal Health 
Inc) then underwent transcardiac perfusion using 10 mM 
phosphate-buffered saline (PBS) followed by 4% para-
formaldehyde (PFA). Brains were extracted, fixed in 4% 
PFA for 24 h, then stored at 4 °C in 30% sucrose until they 
were cryosectioned into 30-µm-thick sections (CryoStar 
NX50, Thermo Fisher Scientific). Sections were stored 
in cryoprotectant at + 20  °C until all tissue was avail-
able for 3,3′-Diaminobenzidine immunohistochemistry 
with avidin–biotin complex amplification (ABC Staining 
Kit, Thermo Fisher Scientific). Primary antibodies were 
anti-TSPO (1:1000, ab154878, abcam) for TSPO+ cells, 
anti-iNOS (1:1000, ab15323, abcam) for proinflammatory 
microglia, anti-OX6 (1:1000, #554926, BD Pharmingen) 
for MHCII, and anti-GFAP (1:2000, #G3893, Sigma-
Aldrich) for activated astrocytes.

The observer was blinded to experimental group dur-
ing analysis. Images were acquired using a Nikon Eclipse 
Ni-E microscope and Nikon DS Qi2 color camera on 
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the NIS Elements Imaging software at a consistent 
lamp voltage and exposure for each antibody. TSPO 
cells were counted using four 20 × sections at opposite 
borders of each defined in  vivo region except the pos-
terior corpus callosum, which used eight. Weak or dif-
fuse staining was considered negative. GFAP, iNOS, and 
OX6 within-region % area coverage analysis used large 
images stitched from 10 × magnification fields. Regions 
were manually defined using the polygon tool to repli-
cate in vivo delineations of the proximal corpus callosum 
and forceps minor. The infarct and contralateral regions 
were also defined for iNOS. Images were binarized with 
a consistent threshold to get % area coverage within each 
region (ImageJ 1.52a) [12].

Statistical analysis
No a priori power analysis was performed as there is no 
literature data of detecting diffuse WM MHCII micro-
glial activation with TSPO PET in rodent models of sub-
cortical stroke or AD. All analyses of variance (ANOVA) 
were based on type III sum of squares and considered 
mixed if there were both between-subject and within-
subject variables (SPSS 26). To start, we conducted a 
two- or three-way ANOVA (depending on whether time 
was a variable) on PET (between ET1 or genotype, within 
region and time) and immunohistochemistry (between 
ET1 and time, within region). Unless stated, higher-order 
interactions had to meet significance before analyzing 
simpler effects with lower-order ANOVA and pooled 
variances if appropriate. Within-subject sphericities were 
accounted for using Greenhouse–Geisser corrections. 
Posthoc analyses for repeated timepoint effects were 
evaluated using Tukey’s honestly significant differences 
(HSD) unless Shapiro–Wilk normality or Levene’s vari-
ance assumptions were violated, in which case the Wil-
coxon signed-rank or Mann–Whitney U test were used, 
depending on whether samples were paired. Correlation 
and graphing were performed on GraphPad Prism 7. All 
data is expressed as mean ± standard deviation (SD). Sig-
nificance was set at alpha = 0.05.

Results
The cerebellum is an appropriate pseudoreference region 
for [18F]FEPPA PET
To determine an appropriate pseudoreference region 
for quantifying [18F]FEPPA uptake, [18F]FEPPA PET 
70–90  min SUVs of the cerebellum and periaqueductal 
gray were compared (Additional file 1: Online Figs. 1–2 
and Online Table  1). The periaqueductal gray was a 
good candidate for a pseudoreference region because 
it was usually hypointense relative to the rest of the 
brain (Additional file  1: Online Fig.  2). The region con-
tralateral to the infarct was also compared in the ET1 

investigation. SUV was not significantly affected by 
genotype, ET1, or interaction between ET1 and time-
points (P = ns for two-way and three-way ANOVA). 
Although it was not significant, it is worthwhile to note 
that cerebellar SUV appeared elevated at post-stroke 
day 7. Interestingly, region was a significant factor in 
both analyses of TgAPP21 vs. wild-type rats (periaq-
ueductal gray = 0.43 ± 0.14; cerebellum = 0.56 ± 0.18; 
F(1,21) = 53.30, P < 0.0005, two-way ANOVA) and 
ET1 vs. saline rats (periaqueductal gray = 0.43 ± 0.12; 
region contralateral to the infarct = 0.49 ± 0.19; cerebel-
lum = 0.60 ± 0.15; F(2,12) = 27.47, P = 0.001, three-way 
ANOVA). Although SUV was lowest in the periaque-
ductal gray, Logan DVR correlated better with DV when 
the pseudoreference region was the cerebellum instead 
of the periaqueductal gray or region contralateral to the 
infarct (Additional file 1: Online Fig. 3). TSPO immuno-
histochemistry cell count of the day 28 infarct also corre-
lated better with the UR calculated using the cerebellum 
(R2 = 0.63, P = 0.0191) instead of the region contralat-
eral to the infarct (R2 = 0.47, P = ns) or periaqueductal 
gray (R2 = 0.36, P = ns) (Additional file 1: Online Fig. 4). 
Accordingly, cerebellum-based [18F]FEPPA UR are 
reported hereafter.

[18F]FEPPA UR was not elevated in WM of TgAPP21 rats
UR in TgAPP21 and wild-type rats were analyzed to 
investigate [18F]FEPPA uptake in WM regions in which 
our group previously demonstrated MHCII microglial 
activation [12, 13]. Genotype did not have a significant 
effect (P = ns, two-way ANOVA, Fig.  2). This suggested 
that [18F]FEPPA PET was not detecting the WM MHCII 
microglia that were previously reported in TgAPP21 rats.

[18F]FEPPA UR was not elevated in remote WM 
following ET1‑induced stroke
UR at baseline, day 7, and day 28 after injection of ET1 
or saline were analyzed to investigate [18F]FEPPA uptake 
in WM with the infarct as a positive control (Fig. 3). An 
interaction between region, timepoint, and ET1 sug-
gested that UR was increased following ET1-induced 
stroke only in regions near the infarct [F(20,120) = 3.66, 
P = 0.036, three-way ANOVA]. In the infarct ROI of the 
ET1 group, UR significantly increased from baseline 
(0.94 ± 0.16) to day 7 (2.10 ± 0.78; P = 0.043, Wilcoxon 
signed-rank) and day 28 (1.77 ± 0.35; P = 0.043, Wilcoxon 
signed-rank). Similarly, proximal WM (ipsilateral corpus 
callosum) UR of the ET1 group significantly increased 
from baseline (0.94 ± 0.12) to day 7 (1.42 ± 0.34; P < 0.005, 
Tukey’s HSD) and day 28 (1.38 ± 0.14; P < 0.005, Tukey’s 
HSD). UR was not significantly affected in remote WM.
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TSPO was not expressed in remote WM 
following ET1‑induced stroke
TSPO immunohistochemistry-based cell counting 
was performed to confirm [18F]FEPPA PET findings 
in stroke. An interaction between region and ET1 

suggested that TSPO immunohistochemistry concurred 
with [18F]FEPPA on the finding that ET1 increased 
TSPO only in regions near the infarct [F(9,117) = 27.04, 
P < 0.0005, three-way ANOVA, Fig.  4]. In the infarct, 
ET1 significantly increased TSPO cell count at day 

FM R FM L CC R CC L CC pR CC pL FC R FC L
0.0

0.5

1.0

1.5

Wt
TgAPP21

[18F]FEPPA uptake ratio (to the cerebellum)

Fig. 2  Transgenic amyloid precursor protein rats did not have an elevated [18F]FEPPA PET WM uptake ratio, to the cerebellum, relative to wild-type 
saline rats. Genotype effect was not significant (P = ns, two-way ANOVA). CC, corpus callosum; FC, frontal cortex; FM, Forceps Minor; p, posterior. 
Error = SD

Fig. 3  [18F]FEPPA UR was not elevated in remote WM following ET1-induced stroke. a Maps and b values of longitudinal [18F]FEPPA PET uptake 
ratio, relative to the cerebellum, revealed a significant region-ET1-timepoint interaction in saline and ET1 rats [F(20,120) = 3.66, P = .036, three-way 
ANOVA]. c, contralateral; CC, corpus callosum; CIR, contralateral to the infarct region; FM, Forceps Minor; i, ipsilateral; IR. infarct region p, posterior. 
Error = SD
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7 (cells/mm2: saline = 48 ± 43; ET1 = 555 ± 181; 
P = 0.014, Mann Whitney U test) and day 28 (cells/
mm2: saline = 6 ± 6; ET1 = 307 ± 153; P = 0.025, Mann 
Whitney U test). Proximal WM (ipsilateral corpus cal-
losum) TSPO cell count agreed with [18F]FEPPA PET 
in regards to a day 7 elevation (113 ± 93 cells/mm2) but 
disagreed by showing no day 28 elevation (5 ± 7 cells/
mm2) (Additional file  1: Online Fig.  5). Remote WM 

TSPO cell counts were low and unaffected by stroke 
(Fig.  5 and Additional file  1: Online Fig.  5). Recogniz-
ing that spillover of PET signal from the infarct into the 
ipsilateral corpus callosum might indicate an increased 
uptake in [18F]FEPPA PET when there is no TSPO over-
expression, we used TSPO immunohistochemistry for 
further comparison of TSPO with GFAP, iNOS, and 
MHCII.

Fig. 4  Immunohistochemistry showed that TSPO, but not iNOS, was elevated in the infarct site of ET1 rats at days 7 and 28 post-stroke. a 
Representative images of OX6 (MHCII), GFAP, iNOS, and TSPO in the infarct region (IR) and contralateral to the IR (CIR) post-stroke at day 7 and day 28 
in saline and ET1 rats. b Quantification of cell count for TSPO and % area coverage for iNOS. Bar indicates 1 mm in large images and 100 µm in TSPO 
images. Error = SD
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GFAP and iNOS expression was not changed in WM 
following ET1‑induced stroke
GFAP and iNOS immunohistochemistry were performed 
to further investigate changes in astrocytes and micro-
glia as these markers are often compared with TSPO 
[21, 22]. GFAP signal showed a day 7 border around the 
infarct and a day 28 scar in ET1 rats, but there were no 
significant effects in WM (P = ns, three-way ANOVA, 
Fig. 4). iNOS signal showed sensitivity to ET1 only in the 
infarct (% area: day 7 = 1.84 ± 2.16; day 28 = 4.74 ± 5.65; 
P = ns), without significance, and was not elevated in 
WM (P = ns, three-way ANOVA) (Figs.  4 and 5). Over-
all, GFAP and iNOS concurred with TSPO immunohis-
tochemistry, with no significant changes in remote WM 
following ET1-induced stroke.

MHCII positive activated microglia were chronically 
expressed in remote WM following ET1‑induced stroke
Immunohistochemistry of the MHCII rat antigen OX6 
was used to confirm previous findings by our group of 
an ET1-induced increase of remote WM MHCII positive 
microglia activation (Fig. 5) [14, 15]. WM OX6 signal was 
significantly affected by an interaction between timepoint 
and ET1 [F(1,15) = 9.73, P = 0.007, three-way ANOVA]. 

Although there were no significant interactions with 
region, we separately analyzed the contralateral corpus 
callosum at day 28 and found a significant effect of ET1 
(% area saline = 0.62 ± 0.38, ET1 = 4.30 ± 2.83; P = 0.029, 
Mann Whitney U test). This indicated that by day 28 
post-stroke, MHCII was the only marker to show sensi-
tivity to ET1 in WM.

Discussion
The literature about the non-specificity of TSPO to acti-
vated microglia is growing, but there are few reports 
showing that TSPO does not colocalize with all activated 
microglia or is not as sensitive as MHCII [23–25]. We 
found that [18F]FEPPA PET did not capture the expected 
increase of diffuse, chronically activated MHCII micro-
glia in WM of TgAPP21 rats. Additionally, in an ET1-
induced subcortical stroke model, MHCII microglia in 
remote WM were not detectable by [18F]FEPPA PET or 
TSPO immunohistochemistry.

The cerebellum was found to be an appropriate pseu-
doreference region. Other rodent AD studies have 
shown that the cerebellum is an acceptable pseudorefer-
ence region by demonstrating a lack of group effect on 
SUV [26]. When multiple pseudoreference regions are 
assessed in stroke, if the group effect is null for multiple 

Fig. 5  WM immunohistochemistry in the contralateral corpus callosum (CC c) showing that at 28 days post-stroke, ET1 rats only showed an 
elevation of OX6 (MHCII); not TSPO, iNOS, and GFAP. a Representative images and b quantification of cell count for TSPO and % area coverage for 
other markers. Bar indicates 100 µm. Error = SD
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regions, preference is sometimes given to the region with 
the lowest uptake [27]. Although SUV was overall lower 
in the periaqueductal gray and region contralateral to the 
infarct, and cerebellar SUV post-stroke at day 7 was non-
significantly elevated, we found that calculating UR using 
the cerebellum provided better correlations with TSPO 
immunohistochemistry and between DV and DVR. 
Using the cerebellum also ensured that our WM ROIs 
are sufficiently distant, thereby minimizing bias caused 
by partial volume effects. All of this suggests that the cer-
ebellum is a practical pseudoreference for rodent TSPO 
PET studies of stroke and AD, but others should continue 
to investigate and validate their choice.

Although an increase in uptake of TSPO tracers in the 
infarct has been well documented along with the cellular 
source of TSPO using other microglial markers such as 
Cd11b and Iba1, to our knowledge, rodent studies have 
only investigated cortical strokes as opposed to subcorti-
cal strokes [21–24, 27]. In our study, we found that ET1-
induced subcortical stroke infarcts have increased TSPO 
uptake at days 7 and 28 post-stroke. The proportion of 
TSPO signal from astrocytes cannot be deduced without 
multilabel immunofluorescence, but the formation of a 
GFAP-positive astrocyte scar between days 7 and 28 sug-
gests a change in astrocyte function that might explain 
why TSPO expression increases in astrocytes with time 
after a stroke [21, 23, 24]. Similarly, microglial functions 
seem to change as proinflammatory markers differ lon-
gitudinally; after day 7, some proinflammatory markers 
decrease while others, including iNOS, increase [28]. 
Our study similarly demonstrated that after day 7, iNOS 
increases while TSPO decreases, albeit insignificant 
partly due to high variability in rodent post-stroke iNOS 
expression (28). Moreover, studies of cortical strokes 
have used a variety of multilabel immunofluorescence 
combinations to investigate the cellular origin of TSPO 
in stroke. For these reasons, TSPO PET may not provide 
unequivocal, longitudinal measurements for guiding sub-
ject-specific infarct-targeted anti-inflammatory therapy 
after stroke in rodent models.

Our findings suggest that TSPO does not capture dif-
fuse WM inflammation in the TgAPP21 model or remote 
WM inflammation in the ET1-induced subcortical stroke 
model. WM TSPO studies in rodents have been restricted 
to mouse models of multiple sclerosis, which have focally 
elevated TSPO in active demyelinating lesions [30]. In the 
current study, prodromal AD TgAPP21 rats did not take 
up more [18F]FEPPA according to PET in WM, despite 
having previously demonstrated diffuse WM MHCII 
activated microglia [12]. Similarly, in ET1-induced sub-
cortical stroke, WM TSPO expression was only increased 
in regions with focal inflammation and not in regions 
with diffuse inflammation. To our knowledge, TSPO 

overexpression in rodent WM without a nearby lesion 
has yet to be demonstrated.

TSPO mismatch with MHCII might be dependent on 
whether the pathology is associated with antigens that 
would induce the antigen-presenting function of MHCII 
in microglia. When antigens are not expected to induce 
pathology, TSPO is overexpressed without MHCII, as 
was shown in a rat model of alcohol-induced neurode-
generation [31]. Conversely, when lesions are present 
with antigenic alpha-synuclein, as in cases of human 
multiple system atrophy, post-mortem tissue had a 6-fold 
increase in MHCII and 2-fold increase in TSPO rela-
tive to controls [25]. Our work in rats demonstrates that 
although TSPO detected neuroinflammation near the 
ET1-induced infarct, only MHCII was able to detect the 
WM microglial activation that occurred late post-stroke 
or in response to overexpression of pathogenic APP. 
Although this makes MHCII a desirable target for PET, 
its many genetic variants may pose a challenge. Addi-
tionally, MHCII may be expressed by the other antigen-
presenting cells such as dendritic cells and B cells, but 
further investigation is needed as MHCII expression in 
the brain has currently only been attributed to microglia 
and neural progenitor cells to our knowledge [9, 32].

This study has two main limitations. First, rat WM is 
small and susceptible to limits in PET resolution and sen-
sitivity. A higher resolution (50–100  μm) and improved 
binding context may be achieved using autoradiography, 
which does this by allowing sections to be extracted from 
the body of a subject and (i) placed closer to high-res-
olution detectors than what is used in PET and (ii) the 
radiotracer does not need to pass a blood compartment 
and can be exposed to toxically high non-radioactive 
ligand amounts that can outcompete low-affinity non-
specific binding [33]. Although autoradiography could 
greatly help evaluate the binding specificity and estimate 
the whereabouts of [18F]FEPPA uptake better than [18F]
FEPPA PET, we were overall interested in the expression 
of TSPO itself. Accordingly, we opted for the higher-
resolution (< 1 μm) TSPO immunohistochemistry in rats 
injected with ET1 or saline to validate that TSPO is not 
sensitive to WM MHCII activated microglia. As immu-
nohistochemistry was not performed for the TgAPP21 
rats, it is possible that they had elevated TSPO expres-
sion in the WM, but unlikely given that their PET [18F]
FEPPA UR was lower, although insignificantly, than that 
of Wt rats. Second, this study used only males to mini-
mize variables as females differ in their TSPO expression 
and neuroinflammatory response [34]. Whether males 
and females differ in their TSPO expression at an infarct 
or in WM should be further investigated.

In conclusion, we found that an ET1-induced subcorti-
cal stroke increases TSPO expression. More importantly, 
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WM microglia only expressed TSPO near an ET1-
induced lesion, thereby revealing that TSPO was insensi-
tive to MHCII activated microglia in remote WM and in 
WM of prodromal AD rats without a lesion. An MHCII 
radiotracer would enable longitudinal imaging of chroni-
cally activated MHCII microglia in neurodegenerative 
diseases.
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