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Abstract

Background: Somatostatin receptor (SST) targeting, specifically of the subtype 2 (SST2), with radiolabeled
somatostatin analogs, is established for imaging and treatment of neuroendocrine tumors. Owing to the
concomitant and heterogeneous expression of several subtypes on the same tumor, analogs targeting more
subtypes than SST2 potentially target a broader spectrum of tumors and/or increase the uptake of a given tumor.
The analog ST8950 ((4-amino-3-iodo)-b-Phe-c[Cys-(3-iodo)-Tyr-D-Trp-Lys-Val-Cys]-Thr-NH,), bearing 2 iodo-amino
acids, exhibits sub-nanomolar affinity to SST2 and SST5. We report herein the development and preclinical
evaluation of DOTA-ST8950 labeled with ®®Ga, for imaging SST2- and SST5-expressing tumors. Comparative in vitro
and in vivo studies were performed with the de-iodinated DOTA-ST8951 ((4-amino)-p-Phe-c[Cys-Tyr-D-Trp-Lys-Val-
Cys]-Thr-NH,) and with the reference compounds DOTA-TATE (SST2 selective) and DOTA-NOC (for SST2 and SST5).

Results: Compared with "'Ga-DOTA-NOC, "*'Ga-DOTA-ST8950 exhibited higher affinity to SST2 and SST5 (ICsq (95%Cl),
nM = 032 (0.20-0.50) and 1.9 (1.1-3.1) vs 0.70 (0.50-0.96) and 34 (1.8-6.2), respectively), while "Ga-DOTA-ST8951 lost
affinity for both subtypes. "*Ga-DOTA-ST8950 had the same potency for inducing SST2-mediated cAMP accumulation
as "*'Ga-DOTA-TATE and slightly better than "*'Ga-DOTA-NOC (ECso, nM = 046 (0.23-0.92) vs 047 (0.15-1.5) vs 0.59
(0.18-1.9), respectively). [*’Ga]Ga-DOTA-ST8950 had a similar internalization rate as [*’GalGa-DOTA-NOC in SST2-
expressing cells (124 + 1.6% vs 166 + 22%, at 4 h, p = 0.0586). In vivo, [%8Ga]Ga-DOTA-ST8950 showed high and
specific accumulation in SST2- and SST5-expressing tumors, comparable with [*®GalGa-DOTA-NOC (26 + 8 vs 30 + 8
%IA/g, p = 04630 for SST2 and 15 + 6 vs 12 + 5 %IlA/g, p = 03282, for SST5, 1 h p.i.) and accumulation in the SST-
positive tissues, the kidneys and the liver. PET/CT images of [*®GalGa-DOTA-ST8950, performed in a dual HEK-SST2 and
HEK-SST5 tumor xenografted model, clearly visualized both tumors and illustrated high tumor-to-background contrast.

Conclusions: [**Ga]Ga-DOTA-ST8950 reveals its potential for PET imaging SST2- and SST5-expressing tumors. It
compares favorably with the clinically used [%®GalGa-DOTA-NOC in terms of tumor uptake; however, its uptake in the
liver remains a challenge for clinical translation. In addition, this study reveals the essential role of the iodo-substitutions
in positions 1 and 3 of [**GalGa-DOTA-ST8950 for maintaining affinity to SST2 and SST5, as the de-iodinated [*®Ga]Ga-
DOTA-ST8951 lost affinity for both receptor subtypes.
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Introduction

Nuclear imaging of somatostatin receptor (SST)-express-
ing tumors is established for the detection of neuroendo-
crine tumors (NETs) and their metastases. SST
scintigraphy, using ['''In][In-diethylenetriaminepentaa-
cetic  acid®]-octreotide  ([*In]In-DTPA%-octreotide,
Octreoscan®), has covered this medical need since the
1990s. Nowadays, positron emission tomography (PET)
with improved octreotide-based analogs labeled with
®8Ga represents the state of the art. The most widely
used analogs consist of the [°8Ga][Ga-1,4,7,10-tetraaza-
cyclododecane-1,4,7,10-tetraacetic acid’,Tyr’]-octreotide
((**Ga]Ga-DOTA-TOC, SOMAKIT TOC") with a high
affinity for SST2 and a weaker affinity for SST5 (ICs5o =
2.5 + 0.5 and 73 £ 21 nM, respectively) and the high af-
finity =~ SST2-selective [%8Ga] [Ga—DOTAO,Tyr3 Thr®]-
octreotate ([*®Ga]Ga-DOTA-TATE, NETSPOT®) with
an ICsq of 0.20 + 0.04 nM [1].

Although the majority of NETs expresses SST2, a low
and heterogeneous expression has been reported in ap-
proximately 20-30% of cases [2-5]. This is associated
with an inherent worse disease prognosis, a lower sensi-
tivity in imaging and an ineffective therapy with SST2-
specific analogs due to inadequate tumor targeting [6].
Among the five SST subtypes (SST1-SST5), SST5 is con-
comitantly expressed at high density in 70-100% of gas-
troenteropancreatic neuroendocrine tumors (GEP-
NETs), breast cancer and in growth hormone (GH)-se-
creting pituitary adenomas [7-9].

The only clinically used analog for imaging of different
SST subtypes is the octreotide-based [*®Ga][Ga-DOTA1-
Nal’]-octreotide ([**Ga]Ga-DOTA-NOC), with high affinity
for SST2 and SST5 and lower affinity for SST3 [10-12].
The cyclohexapeptide pasireotide (Signifor®, formerly known
as SOM230) [13, 14] is another analog with an affinity for
SST2, SST3, and SST5 that have been evaluated preclinically
with ®*Ga ([**Ga]Ga-DOTA-SOM230 [15, 16] or [*Ga]Ga-
DOTA-PA1 [17]). Other preclinical attempts for combined
targeting of different subtypes involve '''In-labeled analogs
of (a) NOC [18], (b) carbocyclic octapeptides based on the
cyclic KE108 with a non-disulfide 8 member ring [19]; (c)
14mer and pseudo-14mer cyclic somatostatin-14 (SS-14)
mimics, with ring-size of 12, 9, 8, and 6 amino acids [20,
21], and (d) somatostatin-28 (SS-28) modified at positions 8,
22, and 25 [22]. All the abovementioned radiotracers
showed certain limitations, with [*®Ga]Ga-DOTA-NOC be-
ing, so far, the only one used in the clinic.

We are interested in developing somatostatin analogs
with high affinity to SST2 and SST5 for targeting a
broader spectrum of tumors and/or increasing the
tumor uptake, when both receptor subtypes are con-
comitantly present. A library of disulfide-bridged octa-
peptides based on RC-121 (p-Phe-c(Cys-Tyr-p-Trp-Lys-
Val-Cys)-Thr-NH,) [23] that contains synthetic amino
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acids and modifications at positions 1, 3, and 8 was de-
veloped by Moore et al [24]. Out of this library, ST8950
(Fig. 1, peptide #9 in reference [24]) bearing the 2 iodo-
amino acids 4-amino-3-iodo-phenylalanin in position 1
and 3-iodo-tyrosine in position 3 exhibited sub-
nanomolar affinity to both SST2 and SST5 and showed
to be as potent as the natural SS-14 in the inhibition of
growth hormone and prolactin release. We previously
reported that ST8950 (AP102 in references [25, 26]) has
an intermediate agonistic potency between octreotide
and pasireotide at SST2 and SST5 level [25] and reduces
growth hormone secretion without causing hypergly-
cemia (a known undesirable effect of pasireotide) in a
healthy rat model [26]. We aimed to develop and evalu-
ate ®®*Ga-labeled ST8950 for PET imaging of SST2- and
SST5-expressing tumors and we used DOTA as a chela-
tor. Knowing that modifications such as chelator conju-
gation and (radio)metallation impact on affinity and
whole-body distribution of radiolabeled somatostatin an-
alogs [10, 27], with sometimes unexpected outcome, we
decided to include in our study a second analog as an al-
ternative. We chose the de-iodinated ST8951 (Fig. 1,
peptide #2 in reference [24]) that exhibits also good af-
finity to SST2 and SST5 in an attempt to assess, add-
itionally, the influence of the iodo-substitution on the
Ga-DOTA conjugates.

Methods

(Radio)metallated peptide conjugates

DOTA-ST8950 and DOTA-ST8951 were custom-made
by PolyPeptide (San Diego, USA). The reference conju-
gates DOTA-TATE and DOTA-NOC were synthesized
following Fmoc-solid-phase peptide synthesis, purified
by preparative reverse phase high-performance liquid
chromatography (RP-HPLC) and characterized by elec-
trospray ionization mass spectroscopy (ESI-MS). The
structural formulae of all four conjugates are presented
in Fig. 1.

The "Ga complexes of the four conjugates were pre-
pared using 2.5-fold excess of "*Ga(NO3); x 9H,O in
ammonium acetate buffer, 0.2 M, pH4 at 95°C for 30
min. Free metal ions were eliminated via SepPak C-18
cartridge (Waters), pre-conditioned with methanol and
water. The reaction mixture was loaded and the free
"Ga was eluted with water while the metallo-peptides
were eluted with ethanol, evaporated to dryness, re-
dissolved in water and lyophilized.

’Ga-labeled conjugates were prepared by reacting 6
nmol of the corresponding conjugate in 250 pL. Na-acetate
buffer (0.2 M, pH 4.1) with [*’Ga]GaCl; (30-50 MBq, Mal-
linckrodt) at 95°C for 30min. DOTA-ST8950 and
DOTA-NOC were labeled with ®®Ga in an automatic
Modular-Lab Pharm Tracer module (Eckert & Ziegler).
Briefly, the ®®Ge/*®Ga-generator (IGG100, Eckert &
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Ziegler) was eluted with 7 mL HCI 0.1 N and the eluate (~
800 MBq) was loaded onto a cation exchange column
(Strata-XC, Phenomenex). ®®Ga®* was eluted with 800 pL
of acetone/HCI (97.6%/0.02N) in a vial containing 2 mL
Na-acetate buffer (0.2 M, pH 4.0) and 10 nmol of the con-
jugate. The stability of [**Ga]Ga-DOTA-ST8950 was eval-
uated for 1 h after production at room temperature (RT),
without any formulation of the product.

The quality control and the stability study were performed
by analytical RP-HPLC on Phenomenex Jupiter Proteo 90 A
C12 (250 x 4.6 mm) column (eluents: A = H,O (0.1%TFA),
B = acetonitrile (0.1% TFA); gradient: 95-50% A in 15 min;
flow rate: 1.5 mL/min). ESI-MS was carried out with ESI
Bruker Esquire 3000 plus (Bruker Daltonics).

Cell lines, affinity studies, and functional assays

Human Embryonic Kidney (HEK293) cells (a kind gift
from Dr. A. Miihlethaler-Mottet, Pediatric Hematology-
Oncology  Unit, Lausanne University = Hospital,
Switzerland) were stably transfected with plasmids encod-
ing the human SST2 and SST5 (HEK-SST2 and HEK-
SST5) and cultivated as previously described [25]. Non-
transfected HEK cells were used as a negative control.

The binding affinities of "*Ga-DOTA-ST8950 and
"Ga-DOTA-ST8951, in comparison to "*'Ga-DOTA-
TATE and "™Ga-DOTA-NOC, were determined on
HEK-SST2 and HEK-SST5 cells. SS-14, octreotide, and
pasireotide were used as reference compounds. ***I-la-
beled SS-14 (81.4 TBq/mmol, Perkin Elmer) was used as
a radioligand for the competition binding assays. Binding
assays were performed as described previously [25].

cAMP accumulation experiments on HEK-SST2 and
HEK-SST5 cells were performed with cAMP direct im-
munoassay kit (colorimetric, K371, BioVision) as de-
scribed previously [25].

Log D measurement

Log D (pH = 7.4) was determined by the “shake-flask”
method. To a pre-saturated mixture of 500 pL n-octanol
and 500 pL of phosphate-buffered saline (PBS) at pH 7.4,
10uL of 1puM of *’Ga-labeled conjugates was added.
The solutions were vortexed for 1 h to reach equilibrium
and then centrifuged (3000 rpm) for 10 min. From each
phase, 100 uL was removed and measured in a Y-
counter. The partition coefficient was calculated as the
average of the logarithmic values (n = 3) of the ratio
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between the radioactivity in the organic and the PBS
phase.

In vitro characterization

For cell experiments, stably SST2- and SST5-expressing
cells were seeded in 6-well plates (10° cells/well) and in-
cubated overnight with Dulbecco’s modified Eagle’s
medium (DMEM) with 1% fetal bovine serum (FBS, Bio-
chrom GmbH, Merck Millipore) to obtain a good cell
adherence. The plates were pre-treated with a solution
of 10% poly-lysine to promote cell adherence.

Internalization assays

The cells were washed with PBS and incubated with
fresh medium (DMEM with 1% FBS) for 1 h at 37 °C/5%
CO,.  [¥GalGa-DOTA-ST8950,  [*’Ga]Ga-DOTA-
ST8951, [“’Ga]Ga-DOTA-TATE, or [*Ga]Ga-DOTA-
NOC (2.5 nM) were added to the medium, and the cells
were incubated for 0.5, 1, 2, and 4 h at 37°C/5% CO, (in
triplicates). The internalization process was stopped by
removing the medium and washing the cells with ice-
cold PBS, followed by 2 x 5 min treatment with ice-cold
glycine solution (0.05 M, pH 2.8), to distinguish between
cell surface-bound (acid releasable) and internalized
(acid resistant) radio-conjugate. Finally, the cells were
detached with 1 M NaOH at 37°C. To determine non-
specific uptake, selected wells were incubated with the
radio-conjugate in the presence of 1000-fold excess of
SS-14. Internalization and bound rate are expressed as a
percentage of the applied radioactivity.

Off-rate experiments

HEK-SST?2 cells were incubated with [*’Ga]Ga-DOTA-
ST8950, [“’Ga]Ga-DOTA-TATE, or [*Ga]Ga-DOTA-
NOC (2.5nM) for 2h. The medium was removed and
the wells were washed with ice-cold PBS. The surface-
bound radio-conjugate was removed with a glycine solu-
tion (pH 2.8) on ice, as described above. Cells were then
incubated again at 37 °C with a fresh medium. At 10, 20,
30, 60, 120, and 240 min, the medium was removed for
quantification of radioactivity and replaced with a fresh
37 °C medium. At the end of the experiment, the cells
were detached with 1 M NaOH and collected for quanti-
fication of the radioactivity.

In vivo evaluation

The Veterinary Office (Department of Health) of the
Cantonal Basel-Stadt approved the animal experiments
(approval no. 2799) in accordance with the Swiss regula-
tions for animal treatment. Female athymic Nude-
Foxnl"/Foxnl® mice (Envigo, The Netherlands), 4-6
weeks old, were inoculated subcutaneously with 107
HEK-SST2 cells on the right shoulder and 10" HEK-
SST5 cells on the left shoulder, suspended in 100 pL
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sterile PBS. The tumors were allowed to grow for 2-3
weeks until reach an average volume of 100 mm?, con-
sidering both tumor types. The average tumor mass was
0.22 g (0.14-0.31 g) for SST2 tumors and 0.13 g (range
0.08—0.21) for SST5 tumors. For the biodistribution (co-
horts of n = 3-8 mice) and imaging studies, the mice
were euthanized by keeping them in a CO, chamber 2
min, followed by a slow increase of the concentration of
CO, gas. The mice with the largest tumors were used
for PET imaging.

Biodistribution studies of [*®GalGa-DOTA-ST8950 and
[°®*Ga]Ga-DOTA-NOC

Quantitative biodistribution studies were conducted with
[*®Ga]Ga-DOTA-ST8950 (100 uL/100 pmol/5 MBq) at 1
and 2h p.i. Biodistribution of [®*Ga]Ga-DOTA-NOC
was assessed 1h p.i. for comparison. The organs of
interest were collected, rinsed, blotted, weighed, and
counted in a y-counter. The results are expressed as the
percentage of injected activity per gram (%IA/g) ob-
tained by extrapolation from counts of an aliquot taken
from the injected solution as a standard. The specificity
of uptake of [*®Ga]Ga-DOTA-ST8950 was assessed 1h
p.i in HEK-SST-negative xenografted mice.

PET/CT imaging of [®®Ga]Ga-DOTA-ST8950 and [*®Ga]Ga-
DOTA-NOC

[®Ga]Ga-DOTA-ST8950 or [**Ga]Ga-DOTA-NOC
(100 pL/100 pmol/5 MBq) was administered to mice
bearing dual HEK-SST2 and HEK-SST5 tumors. One-
hour p.i. the mice were euthanized, and the bladder was
emptied by gently pressing with hands around the bladder
area. The excess urine was soaked by cotton, followed by
repetitive cleaning of the area with ethanol. The mice were
scanned for 60 min using a human PET/CT scanner (Dis-
covery STE, GE Medical Systems). A scout scan (180°, 10
mA, 120 kV) was performed to establish a protocol for all
other scans. CT scans were acquired with a minimum
slice thickness of 0.625 mm, pitch 1.375:1) and the highest
possible tube current for these settings (320mA @ 120
keV). PET emission events were collected in 3D scanning
mode (septa out) over 60 min. Images were corrected for
the decay of *®Ga and random events and reconstructed
using the manufacturer’s 3D OSEM algorithm to 47 slices
(display FOV = 6.4 cm, 128 x 128 matrix, resulting pixel
size = 0.5 mm), once for each mouse separately in the cen-
ter of the reconstruction cylinder. The in vivo images are
presented as fused images of PET maximum intensity pro-
jection (MIP) and CT.

Data analysis
Statistical analysis was performed by unpaired two-tailed
¢t test using GraphPad Prism 7 software (GraphPad
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Software Inc.). P values of < 0.05 were considered
significant.

Results
(Radio)metallated peptide conjugates, stability, and
lipophilicity
All (metallated) conjugates were used with > 96% purity.
The analytical data are reported in Table 1. The radiochem-
ical yield of the “*Ga-preparations (non-isolated, estimated
by radio-HPLC) was > 98%, with a radiochemical purity >
95% and an apparent molar activity of 50 MBq/nmol.
[*®Ga]Ga-DOTA-ST8950 was stable after 1h at a room
temperature (radiochemical purity remained > 97%).
[’Ga]Ga-DOTA-ST8950 was more lipophilic (log D =
- 1.0 + 0.1) than [*’Ga]Ga-DOTA-NOC (log D = - 1.6
+ 0.1), while [*’Ga]Ga-DOTA-TATE showed the highest
hydrophilicity with a log D = - 3.0 £ 0.1.

Affinity studies

The results are summarized in Table 2. Values regarding
SS-14, ST8950, octreotide, and pasireotide have been
published in our recent study [25], but were measured
head-to-head with all "*Ga-metallated compounds pre-
sented here. The ICsy of the natural SS-14 is in sub-
nanomolar level for both receptor subtypes, while the
ICso of ST8950 correlates with the results reported by
Moore et al. [24]. Conjugation of the chelate "*Ga-
DOTA to ST8950 did not alter its binding affinity to
SST2 (ICs0 (95% CI): 0.32 (0.20-0.50) nM for "*'Ga-
DOTA-ST8950 vs 0.28 (0.19-0.42) nM for ST8950), but
reduced by more than a factor of 2 its affinity to SST5
(ICs50: 1.9 (1.1-3.1) vs 0.77 (0.48-1.2) nM, respectively).
In comparison to "*Ga-DOTA-TATE, "'Ga-DOTA-
ST8950 exhibited a lower affinity to SST2 (ICsq: 0.15
(0.11-0.19) vs 0.32 (0.20-0.50) nM, respectively), but
"Ga-DOTA-TATE was unable to bind to SST5. Com-
pared with "'Ga-DOTA-NOC, "*Ga-DOTA-ST8950 ex-
hibited higher affinity for SST2 and SST5 (ICs: 0.70
(0.50-0.96) vs 0.32 (0.20—0.50) nM and 3.4 (1.8-6.2) vs
1.9 (1.1-3.1) nM, respectively [25]). Surprisingly, the de-
iodinated analog "*'Ga-DOTA-ST8951 demonstrated
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diminished affinities for SST2 and SST5, compared to
"Ga-DOTA-ST8950 and the reference compounds.

Functional assays

The results are summarized in Table 3. The ECg, values
of SS-14, ST8950, octreotide, and pasireotide were pub-
lished in our recent study [25], while all "*Ga-DOTA-
conjugates are presented here. ST8950 was found to be a
highly potent agonist of SST2 (ECso (95% CI) = 0.29
(0.12-0.67) nM (similar to natural SS-14) [25]), but with a
lower potency toward SST5 (ECsq = 8.5 (3.7-19) nM).
However, ST8950 exhibited an intermediate agonistic po-
tency on SST5 between pasireotide and octreotide, the lat-
ter being almost inactive on SST5. Introduction of the
chelate "*Ga-DOTA reduces the agonistic potency for
SST2 by a factor of 1.6 (ECso = 0.46 (0.23-0.92) nM for
"Ga-DOTA-ST8950 vs 0.29 (0.12-0.67) nM for ST8950),
and similar to (by a factor of 1.9) the agonistic potency for
SST5 (ECso = 16 (6.7-36) vs 8.5 (3.7-19) nM, respect-
ively). Regarding the de-iodinated analog "*Ga-DOTA-
ST8951, it loses massively its agonistic potency compared
with "Ga-DOTA-ST8950 and the reference compounds,
similar to the observation at the binding affinity studies.

In vitro characterization

[*"Ga]Ga-DOTA-ST8950, [*'Ga]Ga-DOTA-TATE, and
[¢’Ga]Ga-DOTA-NOC showed specific and time-
dependent cellular uptake on HEK-SST2 cells. The re-
sults are reported in Fig. 2. [*’Ga]Ga-DOTA-ST8950
showed a similar (statistically not significantly different)
internalization as [¢’Ga]Ga-DOTA-NOC (124 + 1.6% vs
16.6 + 2.2%, p = 0.0586, at 4 h), but statistically signifi-
cantly lower than [*’Ga]Ga-DOTA-TATE (12.4 + 1.6%
vs 24.2 + 5.3%, p = 0.0216). The percentage of the
surface-bound fraction was very low (~ 1%) in all cases,
demonstrating that all surface-bound fraction is rapidly
internalized inside the cells. [’Ga]Ga-DOTA-ST8951
had essentially no internalization on HEK-SST2, com-
pared with the other radio-conjugates (1.1 + 0.1%, at 4
h). None of the radio-conjugates had substantial intern-
alization on HEK-SST5 cells ([*’Ga]Ga-DOTA-ST8950:

Table 1 Analytical data of the DOTA conjugates and of their corresponding "*'Ga-complexes

Compounds Purity(%) MW (calculated) MW (observed) HPLC (t, min)
DOTA-ST8950 100 1699.5 1700.1 1051
DOTA-ST8951 98 1447.7 1448.2 8.56
DOTA-NOC 96 1454.6 1456.2 11.00
DOTA-TATE 100 14356 1436.2 9.05
"'Ga-DOTA-ST8950 98 17685 1768.0 10.74
"'Ga-DOTA-ST8951 97 1516.7 1516.1 8.55
"'Ga-DOTA-NOC 97 15236 1524.1 11.40
"'Ga-DOTA-TATE 98 1504.6 1504.1 9.50

MW molecular weight, t, retention time
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Table 2 Affinity toward SST2 and SST5 of all four "'Ga-DOTA-
conjugates compared to reference somatostatin analogs

Compounds SST2 SSTS

ICs0, NM (95% CI) ICs0, NM (95% Cl)
0.11 (0.08-0.15) 035 (0.22-0.55)
0.32 (0.20-0.50) 1.9 (1.1-3.1)

Somatostatin-14"
"'Ga-DOTA-ST8950

"3Ga-DOTA-ST8951 7.5 (52-11) 24 (14-43)
n3Ga-DOTA-TATE 0.15 (0.11-0.19) 69 (28-168)
n3tGa-DOTA-NOC 0.70 (0.50-0.96) 34 (18-62)
ST8950 0.28 (0.19-042) 0.77 (048-12)
Octreotide "™ 0.24 (0.12-0.48) 17 (12-24)
Pasireotide " 3.1 (2.0-49) 0.20 (0.11-0.35)

Experiments were performed in 3 to 5 separate sessions in duplicate
“Somatostatin-14 is the natural ligand and was used as control

**Qctreotide and pasireotide were used for comparison, additionally to "*'Ga-
DOTA-TATE and "'Ga-DOTA-NOC

MFrom [25]

12 + 02% [¥GalGa-DOTA-NOC 0.5 + 0.1%, and
[*’Ga]lGa-DOTA-ST8951 < 0.5%, at 4h). The internal-
ization of [*’Ga]Ga-DOTA-TATE was not evaluated on
HEK-SSTS5, and it has no affinity to SST5.

The results of the cellular retention of [*’Ga]Ga-
DOTA-ST8950, [*’Ga]Ga-DOTA-TATE, and [*'Ga]Ga-
DOTA-NOC in HEK-SST?2 are presented in Fig. 3. The
efflux was in the same range for the three ®’Ga-labeled
conjugates. [*’Ga]Ga-DOTA-NOC showed the lower ef-
flux (34% after 4h at 37°C), while [*’Ga]Ga-DOTA-
ST8950 the highest (49% after 4h at 37 °C); however,
there was no statistically significant difference between
[*’Ga]Ga-DOTA-ST8950 and [*’Ga]Ga-DOTA-NOC (p
= 0.0574) or [*’Ga]Ga-DOTA-TATE (p = 0.1308).

Table 3 Agonistic potency toward SST2 and SST5 of all four
"'Ga-DOTA-conjugates compared to reference somatostatin
analogs

SST2 SSTS
Compounds ECs0, "M ECs0, "M

(95% Cl) (95% Cl)
Somatostatin-14" ) 0.23 (0.09-0.62) 1.9 (0.77-4.5)
nalGa-DOTA-ST8950 046 (0.23-0.92) 16 (6.7-36)
naGa-DOTA-ST8951 9.8 (3.7-26) 128 (41-512)
"aGa-DOTA-TATE 047 (0.15-1.5) 39 (15-101)
"3Ga-DOTA-NOC 059 (0.18-1.9) 33(1.3-85)
ST8950 029 (0.12-067) 85 (3.7-19)
Octreotide™ 021 (0.12-0.36) 27 (8.1-88)
Pasireotide”™ " 1.1 (048-2.5) 060 (0.21-1.7)

Experiments were performed in 3 to 4 separate sessions in duplicate
*Somatostatin-14 is the natural ligand and was used as control

**Qctreotide and pasireotide were used for comparison, additionally to "*'Ga-
DOTA-TATE and "*'Ga-DOTA-NOC

MFrom [25]
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Biodistribution studies of [*®*Ga]Ga-DOTA-ST8950 and
[*®GalGa-DOTA-NOC
The biodistribution results are presented in Table 4.
[°8Ga]Ga-DOTA-ST8950 showed high accumulation in
both SST2- and SST5-expressing tumors and in SST-
positive tissues, such as the pancreas, stomach, and pituit-
ary. In general, [*®*Ga]Ga-DOTA-ST8950 showed relatively
long circulation in the blood, as indicated by the blood
values at 1h and 2 h p.i. (1.9 £ 0.6 and 0.8 £ 0.2 %IA/g, re-
spectively). The accumulation in the kidneys (14 + 4 %IA/g
at 1h p., remaining at the same level after 2 h) indicates
urinary excretion and renal retention. The liver uptake of
[®®Ga]Ga-DOTA-ST8950 is rather high (6.4 + 1.9 %IA/g),
compared to [**Ga]Ga-DOTA-NOC (2.3 + 0.7 %IA/ g). The
significantly low tumor uptake of [**Ga]Ga-DOTA-ST8950
in HEK-SST-negative xenografts (1.4 + 0.5 %IA/g), versus
26 + 8 %IA/g in HEK-SST2 tumors and 15 + 6 %IA/g in
HEK-SST5 tumors at 1h pi. confirms the receptor-
mediated uptake (specificity) of [°8Ga]Ga-DOTA-ST8950.
The biodistribution of [*®Ga]Ga-DOTA-NOC was
similar to [**Ga]Ga-DOTA-ST8950 at 1h p.i, with high
and specific accumulation in SST2 and SST5 tumors
and in SST-positive tissues. However, [**Ga]Ga-DOTA-
ST8950 showed slightly higher blood values and higher
kidney and liver uptake, compared to [**Ga]Ga-DOTA-
NOC, which had in turn higher accumulation in the
SST-positive organs, such as the pancreas and stomach.

PET/CT imaging of [*®Ga]Ga-DOTA-ST8950 and [*®Ga]Ga-
DOTA-NOC

PET/CT images of [*®*GalGa-DOTA-ST8950 and
[*®Ga]Ga-DOTA-NOC at 1h p.i. revealed high image
contrast with clear visualization of both SST2 and SST5
tumors (Fig. 4). The highest tracer uptake is visible in the
tumors and in the kidneys. Accumulation of [*8Ga]Ga-

e N

B [5Ga]Ga-DOTA-ST8950
Bl [*"Ga]Ga-DOTA-NOC

Bl [°'Ga]Ga-DOTA-TATE

% Internalized/added activity

30 60 120 240
Time (min)

Fig. 2 Internalization of the ®'Ga-labeled conjugates in HEK-SST2 cells
over time, expressed as % (mean + SD) of applied activity in the cells
and normalized per million cells. All values refer to specific internalization
after subtracting the non-specific (measured in the presence of 1000-fold
excess of SS-14) from the total internalized fraction, at each time point
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204
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Fig. 3 Cellular retention of the ¢’Ga-labeled conjugates in HEK-SST2
cells over time, expressed as % (mean + SD) of the internalized activity

DOTA-ST8950 is also detected in the liver, in agreement
with the biodistribution data, though lower than in the
kidneys and the tumors.

Discussion
Various expression and co-expression patterns have
been described for the 5 somatostatin receptor subtypes

Table 4 Biodistribution results of [¥Ga[Ga-DOTA-ST8950 at 1
and 2 h p.i. and [*®Ga]Ga-DOTA-NOC at 1h pii

[68Ga]Ga-DOTA-ST8950
Organ 1h* 2hE

[%8GalGa-DOTA-NOC
1h (negative)’k 1h&

Blood 19+£06 08+02 15+02 1.1 £04
Heart 13+£04 08+02 1.1+02 0.7 £02
Lung 54+16 35+£07 46+08 33+ 14
Liver 64+19 73+£15 62+06 23+£07
Pancreas 85+45 86+21 74+19 16+ 3
Spleen 19+£06 15+03 16+0.1 08+02
Stomach 75+£30 8412 60£16 12+2
Intestine 24+13 2703 25+£02 33+07
Adrenal 45+09 43+10 34+07 46+£10
Kidney 14+ 4 14 +2 121 98 £32
Muscle 09+03 06+01 05+0. 05+02
Femur 2006 24+£08 1.1+£01 1.7+08
Pituitary 85+19 78+12 nd. 82+28
SST2 tumor 26+8 32+7 - 30£8
SSTS tumor 15+6 14+£3 - 12+5
SST(-) tumor - - 14 +05 -

Results are expressed as the mean of the % injected activity per gram of tissue
(%lA/g) + standard deviation (SD). The peptide mass and activity injected were
100 pmol and 2.5 MBq, for both radio-conjugates

SST(-) somatostatin receptor negative

*n =8,%n = 5,%n = 3, n.d. not determined
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(SST1-5), depending on the tumor type and origin [5, 6,
28]. Interestingly, tumor area lacking expression of a
given subtype may be populated by another one [4, 5, 8].
Hence, somatostatin analogs with affinity to more than
one receptor subtypes are of great interest as they ad-
dress receptor subtype co-expression and heterogeneous
expression patterns.

Two independent studies comparing the diagnostic ef-
ficacy [*®Ga]Ga-DOTA-NOC, a somatostatin analog
with a high affinity for SST2 and SST5 and a lower affin-
ity for SST3, with the SST2-selective [**Ga]Ga-DOTA-
TATE in NET patients, provided controversial results on
the clinical outcome of multi-receptor subtype targeting.
Kabasakal et al. [29], concluded that even though the
images have comparable diagnostic accuracy, [**Ga]Ga-
DOTA-TATE detected more lesions. Contrary to this,
Wild et al. [30] reported that [**Ga]Ga-DOTA-NOC de-
tected significantly more lesions than [**Ga]Ga-DOTA-
TATE (sensitivity: 93.5 vs 85.5%) and it changed the
clinical management in 17% of the studied patients. Re-
cently, Lamarca et al. [31] confirmed the role of
[®Ga]Ga-DOTA-NOC ~ PET  imaging for the
optimization of the clinical management in lung carcin-
oid patients. Overall, the clinical data support that
multi-receptor subtype targeting is relevant for improv-
ing the diagnostic accuracy and sensitivity of PET im-
aging of SST-expressing tumors. Therefore, effort needs
to be made for developing new radiotracers in this
direction.

With the aim to develop ®®*Ga-tracers for combined
SST2 and SST5 targeting, we focused on the series of
compounds reported by Moore et al. [24], who used syn-
thetic amino acids, among them iodo-substituted ones,
to improve binding affinities. There are several cases in
the literature where (radio)iodination of somatostatin
analogs either did not affect or improve the binding af-
finity and/or potency [8, 32, 33]. In the series of Moore
et al., iodination at position 3 (3-iodo-Tyr>, peptide #6 in
reference [24]) showed improved affinity to SST5 by an
order of magnitude, followed unluckily, by a 4-fold re-
duction in the affinity to SST2. Similar observations on
SST5 were reported by Schotellius et al. [33]. Iodination
at position 3 of DOTA-TATE (DOTA-3-iodo-Tyr?-
octreotate: HA-TATE) enhanced the affinity of "*Ga-
DOTA-HA-TATE to SST5, compared with "Ga-
DOTA-TATE (IC59 = 102 + 65 vs > 1000 nM, respect-
ively), but did not affect the affinity to SST2, contrary to
Moore et al. Taken together, the two studies indicate
that iodo-substitution of Tyr® on the octreotide motif
improves affinity to SST5.

Modification of ST8950 at the N-terminal by coupling of
DOTA and complexation with Ga*>* does not affect the af-
finity for SST2, while reduces the affinity for SST5 by a fac-
tor of approx. 2. Nevertheless, "*Ga-DOTA-ST8950 retains
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[(8Ga]Ga-DOTA-ST8950
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Suv \ o
e
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Fig. 4 Maximum intensity projection (MIP) PET/CT images of [*®Ga]Ga-DOTA-ST8950 and [*®Ga]Ga-DOTA-NOC (100 uL/100 pmol/5 MBa, apparent
molar activity of 50 MBg/nmol) in a dual SST2- and SST5-expressing tumor mouse model, 1 h after the injection of the radiotracer (SUV: standard

[(8Ga]Ga-DOTA-NOC

HEK-SST5

/\r‘) Y

HEK-SST2

b

its affinity in sub- (SST2) or one-digit (SST5) nanomolar
range. It worth mentioning that the determined ICs, of
ST8950 is in very good agreement with the results reported
by Moore et al. [24] (0.6 for SST2 and 0.7 nM for SST5).
Conversely, the de-iodinated analog ST8951 (IC5 = 1.6 nM
for SST2 and 14 nM for SST5 in reference [24]) after the
coupling of the chelate "'Ga-DOTA losses massively its af-
finity for both, SST2 and SST5 (IC5y = 7.5 and 24 nM, re-
spectively). The effect is more prominent in the SST2, for
which ST8951 shows higher selectively. In addition, we
evaluated to which extend ST8950 and ST8951 retain their
agonistic potencies after Ga-DOTA conjugation, in light of
examples in the literature indicating that modifications like
DOTA conjugation can change the function of a somato-
statin analog from an antagonist to an agonist [34]. The ag-
onistic potencies of "*Ga-DOTA-ST8950 and "*Ga-
DOTA-ST8951 followed an identical trend as their affin-
ities to both SST2 and for SST5.

[¥Ga]Ga-DOTA-ST8950 had similar internalization rate
as [%GalGa-DOTA-NOC, but significantly lower than
[®’Ga]Ga-DOTA-TATE in HEK-SST2 cells. All three radio-
tracers had very low surface-bound fraction, confirming
their agonistic nature that leads to instant internalization of
the radiotracer upon binding to the receptor on the cell sur-
face. Four hours after internalization, half of the [*’Ga]Ga-
DOTA-ST8950 still remains inside the cells. There was no
statistically significant difference in the efflux rate between
[*’Ga]Ga-DOTA-ST8950 and [¥Ga]Ga-DOTA-NOC or
[*Ga]Ga-DOTA-TATE. [*'Ga]Ga-DOTA-ST8951 showed

essentially no internalization in HEK-SST2. The inability of
[*Ga]Ga-DOTA-ST8951 to bind and internalize on SST2-
expressing cells, together with its loss of affinity for SST2
and SST5, led us to exclude [*/*®Ga]Ga-DOTA-ST8951
from further studies.

In vitro experiments on HEK-SST5 did not show any
internalization (neither cell surface-bound) for any of
the tested radiotracers. This may be due to the particular
cellular distribution and trafficking of SST5 [35, 36] and
not due to the radiotracers. This phenomenon was also
observed by others using somatostatin analogs with a
high affinity for SST5 [10, 35]. Cescato et al. [35] showed
that SST5 internalization can be induced by natural
somatostatin peptides but not by synthetic high-affinity
SST5 agonists. Indeed, Maina et al showed in vitro in-
ternalization on HEK-SST5 of an '''In-labeled modified
analog of the natural SS-28 [22], even though very low
(approx. 2.5% after 1h at 37°C) and unusually high
(50%) nonspecific portion. Our data are in line with the
published findings. Importantly, the lack of in vitro in-
ternalization in SST5-expressing cells does not exclude
the accumulation of the radiotracer in SST5-expressing
tumors in vivo. Our in vivo data prove this.

The in vivo distribution of [**Ga]Ga-DOTA-ST8950 is
representative of radiolabeled somatostatin analogs, re-
garding the accumulation in SST-positive tissues, such
as the stomach, the pancreas, and the pituitary.
[*8Ga]Ga-DOTA-ST8950 showed high uptake in both
SST2- and SST5-expressing tumors, similar to [**Ga]Ga-
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DOTA-NOC (p = 0.4630 for SST2 and p = 0.3282 for
SST5), proven to be receptor subtype mediated by the
90% reduction found on the SST-negative tumor. The
kidneys were the second tissue after the tumors accumu-
lating radioactivity, which was expected due to the renal
excretion of this class of radiotracers. Unluckily, the
lipophilic character of [**Ga]Ga-DOTA-ST8950 was
reflected on its biodistribution profile, with rather high
blood and liver values. Nevertheless, when we compared
with the ®®Ga-labeled pasireotide which also targets
SST2 and SST5 (referred as ®*Ga-DOTA-SOM230 in
[15, 16]) in the same animal model, [**Ga]Ga-DOTA-
ST8950 has advantages in terms of lower blood values
(1.9 £ 0.6 vs 4.1 £ 0.9 %IA/g at 1 h p.i.) and liver uptake
(64 + 19 vs 129 £ 2.2 %IA/g at 1 h p.i.). Liu et al. con-
firmed similarly high blood values and even higher liver
uptake for the ®®Ga-labeled pasireotide (referred as
%8Ga-DOTA-PA1 in [17]). However, [®®Ga]Ga-DOTA-
ST8950 has certain limitations when compared with the
clinically used [*8Ga]Ga-DOTA-NOC and [*®Ga]Ga-
DOTA-TATE. The blood and liver values of [*®Ga]Ga-
DOTA-ST8950 are higher than [*®*Ga]Ga-DOTA-NOC
(Table 4, p = 0.0141 and p = 0.0005, respectively) and
much higher when compared with our previous data on
[**Ga]Ga-DOTA-TATE [37] (blood: 1.9 + 0.6 vs 0.4 *
0.0 %IA/g and liver 6.4 + 1.9 vs 0.4 + 0.2 %IA/g, respect-
ively). On the other hand, [*8Ga]Ga-DOTA-NOC dem-
onstrated higher uptake in the SST-positive stomach
and pancreas, while [®*Ga]Ga-DOTA-TATE cannot be
used for imaging SST5-expressing tumors as it is unable
to bind to this receptor subtype.

PET/CT imaging is reflecting the biodistribution data,
with clear visualization of SST2- and SST5-expressing
tumors and high image contrast for [**Ga]Ga-DOTA-
ST8950 and for [**Ga]Ga-DOTA-NOC. The higher kid-
ney uptake of [**Ga]Ga-DOTA-ST8950, compared with
[*®Ga]Ga-DOTA-NOC (p = 0.0399), is of no concern for
a diagnostic tracer. However, the accumulation of
[8Ga]Ga-DOTA-ST8950 in the liver is a drawback. Es-
pecially when recognizing that the liver is the first site of
metastasis of NETs, and therefore, low background ac-
tivity is needed for a good image contrast and diagnostic
accuracy. Two approaches are considered to circumvent
this problem: (a) a chemical approach that involves
modification of the structure by introducing hydrophilic
spacers and/or amino acids and (b) a pharmacological
approach by enhancing the tumor uptake via epigenetic
receptor upregulation [38], improving tumor-to-liver ra-
tio. The second approach is mainly considered for the
therapeutic counterpart [*”’Lu]Lu-DOTA-ST8950.

Conclusion
The preclinical evaluation of the 2-iodo-substituted som-
atostatin analog [°8Ga]Ga-DOTA-ST8950 reveals its

Page 9 of 10

potential as PET tracer for in vivo imaging of SST2- and
SST5-expressing tumors, which may be of interest for
gastroenteropancreatic neuroendocrine tumors, pituitary
tumors, and gastric cancers. Its in vivo uptake in the tu-
mors compares favorably with the uptake of the clinic-
ally used [*®Ga]Ga-DOTA-NOC, but its high
accumulation in the liver remains a challenge for clinical
translation. While iodination in positions 1 and 3
seemed not to be a prerequisite for a good binding affin-
ity of ST8950 and of the de-iodinated ST8951 to SST2
and SST5, this is proven to be essential in their
[*8Ga]Ga-DOTA-chelated versions. [*®*Ga]Ga-DOTA-
ST8951 lost its affinity and potency for both subtypes,
and it is disqualified for usage as a PET tracer.
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