
Silvestri et al. EJNMMI Research  (2018) 8:88 
https://doi.org/10.1186/s13550-018-0439-8
ORIGINAL RESEARCH Open Access
18
The kinetics of F-FDG in lung cancer:
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Abstract

Background: The validation of the most appropriate compartmental model that describes the kinetics of a specific
tracer within a specific tissue is mandatory before estimating quantitative parameters, since the behaviour of a
tracer can be different among organs and diseases, as well as between primary tumours and metastases. The aims
of our study were to assess which compartmental model better describes the kinetics of 18F-Fluorodeoxygluxose(18F-FDG)
in primary lung cancers and in metastatic lymph nodes; to evaluate whether quantitative parameters, estimated using
different innovative technologies, are different between lung cancers and lymph nodes; and to evaluate the intra-tumour
inhomogeneity.

Results: Twenty-one patients (7 females; 71 ± 9.4 years) with histologically proved lung cancer, prospectively evaluated,
underwent 18F-FDG PET-CT for staging. Spectral analysis iterative filter (SAIF) method was used to design the most
appropriate compartmental model. Among the compartmental models arranged using the number of compartments
suggested by SAIF results, the best one was selected according to Akaike information criterion (AIC). Quantitative analysis
was performed at the voxel level. K1, Vb and Ki were estimated with three advanced methods: SAIF approach, Patlak
analysis and the selected compartmental model. Pearson’s correlation and non-parametric tests were used for statistics.
SAIF showed three possible irreversible compartmental models: Tr-1R, Tr-2R and Tr-3R. According to well-known 18F-FDG
physiology, the structure of the compartmental models was supposed to be catenary. AIC indicated the Sokoloff’s
compartmental model (3K) as the best one. Excellent correlation was found between Ki estimated by Patlak and by SAIF
(R2 = 0.97, R2 = 0.94, at the global and the voxel level respectively), and between Ki estimated by 3K and by SAIF (R2 = 0.98,
R2 = 0.95, at the global and the voxel level respectively). Using the 3K model, the lymph nodes showed higher
mean and standard deviation of Vb than lung cancers (p < 0.0014, p < 0.0001 respectively) and higher standard
deviation of K1 (p < 0.005).

Conclusions: One-tissue reversible plus one-tissue irreversible compartmental model better describes the kinetics
of 18F-FDG in lung cancers, metastatic lymph nodes and normal lung tissues. Quantitative parameters, estimated at the
voxel level applying different advanced approaches, show the inhomogeneity of neoplastic tissues. Differences in
metabolic activity and in vascularization, highlighted among all cancers and within each individual cancer, confirm the
wide variability in lung cancers and metastatic lymph nodes. These findings support the need of a personalization of
therapeutic approaches.
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Background
18F-Fluorodeoxygluxose positron emission-computed to-
mography (18F-FDG PET-CT) is one of the most used
diagnostic tool in oncology [1]. The quantitative parame-
ters, such as Ki (the fractional uptake of 18F-FDG), K1

(the rate constant of 18F-FDG forward trans-capillary
membrane transport) and Vb (the percentage of blood
volume) are not often utilised in clinical practice although
they are more reliable than semi-quantitative parameters
[2–5] and provide both accurate and exhaustive descrip-
tion of tissue metabolism [6]. Quantitative parameters can
be estimated utilising compartmental models solved by
non-linear regression methods. In particular, the classical
Sokoloff ’s compartmental model [7], which was primarily
validated to quantify the 18F-FDG metabolism in normal
brain tissue, in brain tumours and in myocardium [8–10]
provides the estimation of four parameters, including K1

and Vb plus the derived parameter Ki. Alternatively, Ki can
be obtained by using Patlak graphical analysis [11]. It has
been reported that glucose metabolism, represented by
the kinetics of 18F-FDG, can be different among organs
and diseases, as well as between primary tumours and
their metastases [12]. Therefore, before estimating quanti-
tative parameters, it is mandatory to design and validate
the most appropriate compartmental model for that spe-
cific tracer within that specific tissue, rather than to apply
“sic et simpliciter” a standard one. Finally, the quantitative
analysis can be performed either at a global level, i.e.
within the volume of interest, or at a voxel level, applying
innovative technologies. Voxel analysis allows identifying
the presence of intra-tumour inhomogeneity, which is one
of the characteristics of the neoplastic cells. In particular,
lung cancer, despite several multimodal therapeutic ap-
proaches (http://globocan.iarc.fr/Pages/fact_sheets_cancer.
aspx?cancer=lung), still has a poor prognosis mainly due
to its intra-tumour inhomogeneity and consequently in-
homogeneous response to treatments [13]. Therefore,
from a clinical point of view, characterising the intra-
tumour inhomogeneity is becoming increasingly more im-
portant because it enables us to: (1) better personalise the
treatment, such as a tailored radiotherapy planning target-
ing specific areas within the cancer; (2) better assess the
treatment response since it can be inhomogeneous; and
(3) better evaluate the prognosis [14]. To our knowledge,
a few attempts have been performed in identifying an ap-
propriate compartmental model to describe the kinetics of
18F-FDG in lung tissues but in an animal study [15]. And
only recently, SAIF has been employed to quantify these
kinetics in 5 normal subjects and 11 patients with acute
lung injury [16].
The aims of our study were (1) to assess which compart-

mental model better describes the kinetics of 18F-FDG in
primary lung cancers and in metastatic lymph nodes; (2)
to evaluate whether quantitative parameters can be
different between primary lung cancers and metastatic
lymph nodes; and (3) to quantitatively investigate the
intra-tumour inhomogeneity.

Methods
Patients
We prospectively evaluated 21 patients (7 females, 14
males, mean age 71.0 ± 9.4 years) with histologically proved
(all but one) primary lung cancer (19 non-small cell lung
cancer, 1 non-Hodgkin lymphoma bronchus associated
lymphoid tissue) referred from the Unit of Thoracic
Surgery of San Camillo Forlanini Hospital of Rome to the
PET-CT centre of the Fondazione Policlinico Universitario
A. Gemelli IRCCS of Rome.
The characteristics of the patients, the anatomic site of

the primary lung cancer and the histopathological data
are reported in Table 1. All patients underwent 18F-FDG
PET-CT for staging, and suspected metastatic lymph
nodes with moderate/intense 18F-FDG uptake under-
went biopsy to confirm their neoplastic nature. Overall,
we analysed 23 primary lung cancers (patients no. 8 and
no. 15 had two primary lung cancers) and 24 metastatic
lymph nodes. Regarding the histological classification,
we analysed 9 adenocarcinomas and 11 other histotypes:
in one patient (no. 3), two biopsies were both not diag-
nostic; in patients with two primary lung cancers (no. 8
and no. 15), it has been possible to clearly identify the
histotype only in one of them. The ethical committee of
Fondazione Policlinico Universitario A. Gemelli IRCCS
approved the study, and all patients signed an informed
consent form.

18F-FDG PET-CT acquisition protocol and reconstruction
data
All patients, fasted for at least 6 h and in normo-glycaemic
conditions before they underwent dynamic PET acquisition
using an integrated PET-CT scanner (3D Biograph mCT,
Siemens Healthcare). An X-ray scout was carried out to
precisely define the spatial range of CT acquisition, and a
low-dose CT (120 kV, 90 mA) was performed over the
thoracic region with a field-of-view of 21 cm. The transaxial
CT matrix size was 512 × 512 (1 mm× 1 mm× 3 mm). Pa-
tients were intravenously injected with 240 MBq (range
185–333 MBq, according to the body mass index) of
18F-FDG, using an infusion pump (Tema Sinergie, model
RADInject). 10 ml of 18F-FDG were administered at a rate
of 4.32 ml/s followed by a 10 ml saline flush. The actual
dose delivered to the patient was calculated accounting for
the residual activity in the infusion system. PET images
were acquired in list mode over the same area defined at a
low-dose CT, lasting 60 min. Dynamic PET frames were de-
fined using the following protocol: 24 frames at 5 s, 12
frames at 15 s and 11 frames at 300 s. Each of the 47 frames
was reconstructed with the OSEM algorithm, including
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Table 1 Characteristics of the patients

Patient Sex Age Anatomic site Histology

1 M 57 Left superior lobe ADC

2 M 75 Left inferior lobe NSCLC (favouring adenocarcinoma)

3 F 80 Right superior lobe Two not diagnostic biopsies

4 M 74 Middle lobe LCNEC

5 M 55 Left inferior lobe SqCC

6 M 73 Right inferior lobe NSCLC (favouring adenocarcinoma)

7 M 50 Right inferior lobe NHL

8 M 77 Right inferior lobe SqCC

9 M 80 Left superior lobe NSCLC (favouring adenocarcinoma)

10 F 73 Left superior lobe ADC acinar and solid patterns

11 M 73 Right superior lobe ADC solid pattern

12 M 70 Right superior lobe NSCLC (favouring adenocarcinoma)

13 M 73 Right Inferior Lobe ADC acinar and solid patterns

14 F 74 Right Superior Lobe ADC

15 F 76 Right superior lobe NSCLC (favouring adenocarcinoma)

16 F 72 Right inferior lobe ADC acinar and solid patterns

17 M 81 Right superior lobe ADC

18 F 86 Middle lobe ADC

19 M 74 Left inferior lobe NSCLC (favouring adenocarcinoma)

20 M 61 Left superior lobe ADC

21 F 58 Right superior lobe NSCLC (favouring adenocarcinoma)

M male, F female, ADC adenocarcinoma, NSCLC non-small cell lung carcinoma, LCNEC large cell neuroendocrine carcinoma, SqCC squamous cell carcinoma, NHL
BALT non-Hodgkin Lymphoma bronchus associated lymphoid tissue
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time-of-flight and UltraHD recovery with 21 subsets and 2
iterations. The transaxial PET matrix size was 256 × 256
(3.18 mm × 3.18 mm × 3 mm). After dynamic acquisi-
tion, total-body PET-CT was acquired, and images were
reconstructed using the protocol described above. CT
images were used for attenuation correction, anatom-
ical localization and fusion with PET images (Syntegra
software, Siemens).

Image processing and quantification
The individual arterial input function was directly de-
rived from the PET images of each patient by manually
drawing a region of interest (ROI) in the centre of the
descending aorta [17]. The plasma fraction over the
blood image-derived activity was calculated assuming a
constant partition coefficient of 1.136; derived from Eq.
5 in [18] assuming a lung haematocrit of 40% [19]. ROIs
over primary lung cancer and metastatic lymph nodes
with 18F-FDG uptake were manually drawn on PET-CT
images.

18F-FDG data were analysed at the voxel level using
the semi-quantitative standardized uptake value (SUV)
[20] and using three different quantitative methods:
Patlak graphical analysis [11], spectral analysis with it-
erative filter (SAIF) approach as proposed by Veronese
and colleagues in [21] and compartmental modelling
[22]. As one of the aims of the work was to identify the
compartmental model structure that better fits the
18F-FDG kinetics in tumours and metastatic lymph
nodes, the spectral analysis approach was exploited to
identify the number of compartments necessary to de-
scribe those kinetics [18]. The component of trapping
was explicitly included in the SAIF implementation as
from literature it has been know that in lung 18F-FDG is
irreversibly trapped in the tissues within the first 60 min
after injection [23] (i.e. dephosphoryllation is supposed
to be negligible over the duration of measurement). In
order to configure the structure of the compartmental
model, once the number of reversible compartments
(“equilibrating components” in [24]) has been provided
by SAIF, the compartments were arranged according to
physiological insight of the tracer. As previously re-
ported for other outside-brain tissues such as in muscu-
loskeletal tissue [25] and liver [26] (where however the
underpinning physiology is different as dephosphorylla-
tion is not negligible), only models with a catenary struc-
ture that describe the tracer transport and consumption
were considered as physiologically plausible. SAIF results
in different scenarios; therefore, for each of them, a
compartmental model structure was identified and fitted
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on the 18F-FDG dynamic data using a variational Bayes-
ian approach as proposed by Castellaro and colleagues
[27]. The compartmental model that best describes
18F-FDG kinetics at the voxel level within both the pri-
mary lung cancer and metastatic lymph nodes was fi-
nally selected by comparing the fitted models in terms
of parsimony using the Akaike information criterion
(AIC) [28]. Regarding the model parameters, the inflow
rate constant from blood to tissue (K1, ml/cm3/min),
the blood volume fraction (Vb, %), and the fractional
uptake of 18F-FDG (Ki, ml/cm3/min) were estimated as
main outcome. As in Grecchi et al. [16], Ki estimated
by SAIF approach was chosen as the reference param-
eter for comparison with Ki estimated by Patlak ana-
lysis and Ki estimated by the selected compartmental
model.

Statistical analysis
Pearson’s correlation analysis was performed to correlate
the Ki values estimated by Patlak analysis with those es-
timated by SAIF, as well as the values of Ki estimated by
the compartmental model selected using AIC with those
estimated by SAIF. Wilcoxon rank-sum test was em-
ployed to compare SUV and quantitative parameters
values between primary lung cancers (n = 23) and meta-
static lymph nodes (n = 24). Significance level was set to
0.05. The non-parametric approach was used because of
the non-Gaussian distribution of the data, assessed by
Komolgorov-Smirnov test. Additionally, to confirm that
the statistical results do not depend on outliers, we per-
formed a random cross validation test [29] and boot-
strap [30]. Statistical analysis was performed with both
in-house and naïve scripts running on Matlab™R2016b
(The Mathworks Inc. Natick Massachusetts, USA).

Results
In primary lung cancers, in metastatic lymph nodes and
in normal lung tissues, SAIF approach showed one trap-
ping component and up to three spectral lines corre-
sponding to just as many reversible compartments. The
model order related to these results is reported in what
follows as Tr-1R, Tr-2R and Tr-3R, where Tr and R
stand respectively for trapping and reversible
Table 2 Number of compartments that SAIF approach returned to d
among patients of the percentages of voxels resulting from SAIF in
reported

One-tissue reversible
compartment (Tr-1R)

Primary lung cancers (mean ± SD) 56% ± 13%

Metastatic lymph nodes (mean ± SD) 59% ± 11%

Normal lung tissues (mean ± SD) 57% ± 10%

SAIF Spectral Analysis with Iterative Filter, SD standard deviation
compartment. Table 2 reports the percentages of num-
ber of compartments identified at the voxel level within
primary lung cancers, metastatic lymph nodes and in nor-
mal lung parenchyma of all patients. Among the possible
compartmental models provided by SAIF, the Tr-3R oc-
curred in less than 3% of voxels; hence, it was decided to
not consider it for further analysis as scarcely plausible.
Starting from the SAIF results (i.e. trapping plus one or
two reversible compartments), two catenary models were
defined, namely the 3K and the 5K model. The 3K model
includes one reversible compartment followed by one
irreversible compartment: the first compartment
represents the exchanges from plasma pool to
interstitial-intracellular space and back, while the irrevers-
ible compartment describes the phosphorylation process.
The 5K model includes two reversible compartments
followed by one irreversible compartment; in this second
model, the first and second compartments respectively
represent the transport between plasma pool and the
extracellular space and between the latter and the cell; as
for 3K, phosphorylation is described by the irreversible
compartment. After estimating 3K and 5K model with a
variational Bayesian approach, the AIC indicated that in
almost all voxels of the primary lung cancers and meta-
static lymph nodes, 3K represented the best compromise
between model fit and model complexity (Fig. 1).
In primary lung cancers and in metastatic lymph

nodes, the correlation between Ki values estimated by
Patlak analysis with those estimated by SAIF, as well
as between Ki values estimated by 3K model with
those estimated by SAIF was high both at the global
level (R2 = 0.97 and R2 = 0.98, respectively) and at the
voxel level (R2 = 0.94, R2 = 0.95, respectively).
Figure 2 shows the mean and standard deviation values

of Ki (i.e. the
18F-FDG net uptake of the tracer), K1 (i.e. the

18F-FDG transport rate from plasma to tissue, which is
tightly related to the blood flow) and Vb (i.e. the blood vol-
ume fraction), estimated by 3K model, in both primary lung
cancers (n = 23) and in metastatic lymph nodes (n = 24).
Metastatic lymph nodes showed significant higher mean
and standard deviation values of Vb when compared with
lung cancers (p < 0.0014, p < 0.0001 respectively), as well as
higher standard deviation values of K1 (p < 0.005).
escribe the kinetics of 18F-FDG. Average and standard deviation
one, two or three reversible compartments (plus trapping) are

SAIF

Two-tissue reversible
compartment (Tr-2R)

Three-tissue reversible
compartment (Tr-3R)

41% ± 12% 3% ± 3%

39% ± 10% 2% ± 2%

40% ± 9% 3% ± 2%



Fig. 1 Pie charts of model comparison performed in primary lung cancers and in metastatic lymph nodes. In green, the percentage of voxels for
which Akaike information criterion indicates the 3K compartmental model as the optimal model to fit 18F-FDG data. In violet, the percentage of
voxels for which the 5K compartmental model results the optimal model
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For completeness, we have also tested for differences be-
tween primary lung cancers and metastatic lymph nodes in
k2 (i.e. 18F-FDG transport from the interstitial-intracellular
space to the blood) and k3 (i.e. phosphoryllation) parame-
ters (results not reported in Fig. 2 for the 281 sake of
Fig. 2 Comparison of quantitative parameters estimated by 3K model in p
values (top row) and standard deviation (SD, bottom row) of Ki, K1 and Vb,
nodes (n = 24). The individual values making up the box plot are shown as
and the edges of the box plot are the 25th and 75th percentiles, whereas
two groups (p < 0.05, Wilcoxon rank-sum test)
clarity), as well as in SUV, however, no statistically signifi-
cant difference was found.
Figures 3 and 4 report respectively, in a representative

patient, the map of SUV and the parametric maps of Ki

values obtained with Patlak analysis, SAIF approach,and
rimary lung cancers and metastatic lymph nodes. Box plot of mean
respectively, in primary lung cancers (n = 23) and metastatic lymph
grey points. In the box plots, the red line indicates the median value
the star (*) indicates statistically significant differences between the



Fig. 3 Parametric maps of SUV and Ki in a representative patient. Transaxial thoracic CT image: the primary lung cancer is highlighted by red
circle (a). Map of SUV within primary lung cancer over-imposed on transaxial thoracic CT image (b). Voxel-wise maps of Ki obtained with Patlak,
SAIF approach and 3K model, respectively, in primary lung cancer over-imposed on transaxial thoracic CT image (c, d and e)CT, computed
tomography; SUV, standardized uptake value; Ki, the fractional uptake of 18F-FDG; SAIF, Spectral Analysis with Iterative Filter.
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3K model, and the parametric maps of K1 and Vb as well
as the spatial distribution of SUV. The heterogeneity of
18F-FDG-uptake distribution, influx rate constant and
blood volume fraction within voxels in primary lung
cancer is evident.

Discussion
This is the first paper that identifies, in oncological pa-
tients, which compartmental model better describes the
kinetics of 18F-FDG in both primary lung cancers and in
their metastatic lymph nodes. The application of a single
“standard compartmental model” to different organs
and/or to different diseases is not recommended. There-
fore, before estimating quantitative parameters, it is im-
portant to understand the behaviour of the tracer in that
organ/disease and to individuate the most appropriate
compartmental model to describe it. A very few authors
followed this approach in animals [15].
From our data, SAIF approach performed at the voxel

level showed that in primary lung cancers, metastatic
lymph nodes and normal lung tissues, the kinetics of
18F-FDG could be represented by compartmental models
with three different model orders: one-tissue reversible
plus one-tissue irreversible (Tr-1R), two-tissue reversible
plus one-tissue irreversible (Tr-2R) and three-tissue re-
versible plus one-tissue irreversible (Tr-3R). Percentages
obtained in normal lung tissues reported in Table 2 are
in line with the findings of Grecchi and colleagues [16],
whereas the very low percentages obtained for the Tr-3R
in the tumour and metastases tissues led us to consider
this configuration as scarcely plausible and to exclude it
from the further compartmental modelling and model
selection. According to the SAIF results and the physio-
logical knowledge on 18F-FDG transport and consump-
tion [25, 26], two catenary model structures were tested:
3K and 5K. Between 3K and 5K compartmental models,
AIC selected the 3K model as the best to describe the
kinetics of 18F-FDG within tumours and metastatic
lymph nodes. Differences between the percentages ob-
tained with SAIF and AIC in terms of model complexity
(i.e. number of spectral lines in the first case and num-
ber of model parameters in the second) are somehow
expected, as the mathematical framework that lies at the
base of those two methods is very different. In particular,
the spectral analysis approach relies on a linear de-
composition of the dynamic data that employs an
overcomplete basis of the signals space [31] which
makes the decomposition not unique and could lead



Fig. 4 Parametric maps of SUV, K1 and Vb in a representative patient. Transaxial, lateral and frontal views of thoracic CT image: the primary lung
cancer is highlighted by red circle (a). Map of SUV (b) within primary lung cancer over-imposed on thoracic CT image (b). Voxel-wise parametric
maps of K1 and Vb obtained with 3K model in primary lung cancer over-imposed on thoracic CT image (c and d). CT, computed tomography;
SUV, standardized uptake value; K1,

18F-FDG transport rate from plasma to tissue; Vb, blood volume fraction
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to an overestimation of the number of compartments
necessary to describe the kinetics. Whereas, AIC is
employed for the model selection in a compartmental
modelling framework, where the structure of the two
compared models is fixed (i.e. it has not to be esti-
mated), and the selection is based on a compromise
between the model complexity and the accuracy of the
model prediction. Notably, the 3K is the same model
validated to quantify the 18F-FDG-glucose metabolism
in normal brain tissue, in brain tumours and in myo-
cardium [8–10] and has the same complexity observed
in normal and inflamed lung tissue [16]. Therefore,
these findings confirm that 3K compartmental model
can be applied to analyse the kinetics of 18F-FDG in
normal lung tissue but also in lung cancer.
Regarding the quantitative parameters, excellent cor-

relation was found between Ki estimated by Patlak and
by SAIF (R2 = 0.97, R2 = 0.94, at the global and the voxel
level respectively) and between Ki estimated by 3K and
by SAIF (R2 = 0.98, R2 = 0.95, at the global and the voxel
level respectively). Therefore, the three mathematical
methods are equally good at estimating Ki. From a clin-
ical point of view, we advise the use of Patlak graphical
analysis because of its robustness and simplicity, and
when it is sufficient to have only the estimation of Ki.
More advanced methods, such as compartmental model-
ling or SAIF, are recommended when it is important to
provide a full characterisation of the tracer kinetics [6].
As clearly depicted in Fig. 4, the quantitative parame-

ters, when obtained at the voxel level with a compart-
mental modelling approach, allow to better point out the
intra-tumoural inhomogeneity if compared with SUV
maps. It is well known that cancers are characterised by
areas of higher or lower or absence functionality when
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compared with healthy tissues. This is due to several
factors, such as cellular proliferative activity, hypoxia,
necrosis, angiogenesis, gene expression, etc. [32–36].
Quantitative parameters identified at a voxel level have
a potential role in several phases of the lung tumour
care. In particular, the diagnostic process could benefit
of a better tissues characterisation, as well as the treat-
ment planning where the delivered radiation dose need
to be modulated within tumour according to its patho-
physiology. Moreover, the 18F-FDG absolute quantifica-
tion at the voxel level enables to assess the spatially
heterogeneity of tissues which is relevant to evaluate
the treatments response and to accurately estimate the
patient’s prognosis [37–39].
From our data, we found that the 18F-FDG uptake

rate, the 18F-FDG consumption and the blood volume
fraction are variable among all primary lung cancers, as
well as among all metastatic lymph nodes as expressed
by relatively wide range of K1, Ki, and Vb mean values
depicted in Fig. 2 (inter-cancer variability). In addition,
within each individual cancer (primary or metastatic
lymph node), we found inhomogeneity of functional ac-
tivity with areas of faster and slower rate of 18F-FDG up-
take and metabolic activity, and areas heterogeneously
vascularized as expressed by relatively wide range of
standard deviation of all parameters evaluated (intra--
cancer variability). Differences in functional activity and
vascularization are expected because it is known that the
behaviour of neoplastic cells is variable and depends on
histotype, histological grading (inter-cancer variability), as
well as on up-regulation of glucose transporters and hexo-
kinase enzymes, aggressiveness, hypoxia, etc. (intra-cancer
variability) [40–43]. Finally, we observed that the in-
homogeneity is more evident in metastatic lymph nodes
compared with primary lung cancers, as expressed by
significant higher standard deviation values of K1 and
Vb (p < 0.05 by Wilcoxon rank-sum test). This finding
suggests that metastases tend to be less differentiated
with a more chaotic behaviour compared with primary
cancers [14, 44, 45]. The metastatic lymph nodes are
characterised by higher blood volume and higher
18F-FDG-uptake rate (even if, this latter, not significant)
when compared with primary lung cancers. Further-
more, these findings might be attributed to higher
up-regulation of glucose transporters [46], poor differen-
tiation, higher angiogenesis, faster growing and higher ag-
gressiveness of the metastases compared with primary
cancers [14, 44, 45]. In clinical practice, it is difficult to
evaluate the intra-cancer inhomogeneity even with biopsy,
which is considered the gold standard, because when the
result is positive for malignancy it might be representative
only of a small part of the sample. Moreover, in some
cases, the result of biopsy may be not diagnostic, due to
insufficient materials, or negative for malignancy because
the neoplastic cells are not included in the sample. In
addition, it is almost impossible to perform biopsy of all
metastatic tissues to evaluate intra-cancer inhomogeneity.
The voxel-analysis has the potential to provide a more ex-
tensive map of the intra-cancer inhomogeneity of all neo-
plastic sites, or at least of those included in the field of
view of the tomograph.
Finally, regarding SUV, we did not find any significant

difference, also at voxel level, between primary lung can-
cers and metastatic lymph nodes. This finding further
confirms that quantitative parameters, obtained from a
full dynamic study, highlight more detailed aspects of
the tracer kinetics compared to SUV, obtained with a
simple static acquisition.
Limitations of the study were as follows: the small

sample size due to the difficulty to have surgical speci-
mens of all neoplastic lesions in patients with advanced
disease; and the possibility to evaluate only the medias-
tinal lymph nodes included in the field of view of the
tomograph.
Of note, our data were not corrected for motion pres-

ence. Motion can have an impact on the assessment of
model parameters. In fact, normal respiratory motion,
involuntary patient motion and cardiac cyclic movement
can introduce partial volume effect in the ROIs and,
consequently, reduce the precision and accuracy of the
estimates.
It is known that the smaller the ROI size the higher

the impact on the estimates will be [47]. In our study,
the smaller ROIs included in the analysis have a mini-
mum size of 13.5 mm (patient no. 1). Thus, we do not
expect a misinterpretation of the results due to this
issue.
It is also known that motion reduces and regularises

the PET intensity [47]. This decreases the power of our
quantitative analysis in detecting tissues heterogeneity.
In other words, it is expected that tissue heterogeneity is
underestimated in our study.
However, these limitations are not strictly related to

the dynamic acquisition since, these factors (i.e. normal
respiratory motion, involuntary patient motion and
cardiac cyclic) have an impact even on the static SUV
images [48].

Conclusions
In primary lung cancers, in metastatic lymph nodes and
in normal lung tissue, the kinetics of 18F-FDG can be de-
scribed by one-tissue reversible plus one-tissue irreversible
compartmental model (3K). The quantitative parameters,
especially when estimated at the voxel level using ad-
vanced approaches, show the finest differences in the kin-
etics of 18F-FDG reflecting the inhomogeneity of the
neoplastic tissues. The differences in metabolic activity
and in vascularisation, highlighted among all cancers and
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within each individual cancer confirm the wide inter-
and intra-cancer variability of primary lung cancer and
metastatic lymph nodes. Further studies are needed in
larger and more selected oncological samples to con-
firm that quantitative parameters at the voxel level are
useful especially to better individualise the treatment
and to evaluate both the treatment response and the
prognosis. In addition, to validate the method, it would
be interesting to correlate the quantitative parameters
representing vascularization and metabolism with im-
munohistochemical analysis.
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