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Background: Estimation of functional relevance of a coronary stenosis by fractional flow reserve (FFR) from coronary
computed tomography angiography (CCTA) has recently provided encouraging results. Due to its limited availability,
the corrected contrast opacification (CCO) decrease and the transluminal attenuation gradient (TAG) were suggested
as less complex alternatives. The aim of the present study was to assess the accuracy of CCO decrease and TAG to predict
ischemia as assessed by single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI).

Results: This retrospective study included 72 patients who underwent hybrid CCTA/SPECT MPI with at least one coronary
artery stenosis. Of 127 vessels with a coronary stenosis in CCTA, 38 (30%) were causing ischemia in its subtending
myocardium. The area under the curve (AUC) for CCO decrease to predict ischemia was 0.707 with sensitivity, specificity,
negative predictive value, positive predictive value, and accuracy of 74, 64, 85, 47, and 67%, respectively. For TAG, the AUC

Conclusions: CCTA-derived CCO decrease but not TAG predicts ischemia in SPECT MPI. The negative predictive value of
CCO decrease of 85% may confer clinical implications in the diagnostic work-up of patients with a coronary stenosis.

Keywords: CT-derived functional parameters, CCO decrease, Corrected contrast opacification, Transluminal attenuation

Background

Coronary computed tomography angiography (CCTA) is
a robust non-invasive tool to exclude coronary artery
disease (CAD) [1, 2]. Conversely, its performance is
moderate in assessing the functional relevance of a
coronary stenosis [3]. Documenting evidence of func-
tional relevance of a coronary stenosis is recommended
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prior to any revascularization procedure to improve
outcome [4—6]. Hence, functional information should
complement pure anatomic characterization of a coron-
ary stenosis for appropriate clinical decision-making [7].
Cardiac hybrid imaging is a method to assess coronary
anatomy and function at the same time by combining
CCTA and single-photon emission computed tomog-
raphy (SPECT) myocardial perfusion imaging (MPI).
The added clinical and prognostic value of cardiac hybrid
imaging has been demonstrated [8—11]. Despite these
developments, there is growing interest in a single im-
aging modality that allows comprehensive morphological
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and functional assessment. Besides static and dynamic CT
perfusion [12], recent studies have suggested that func-
tional relevance of a coronary lesion can be estimated by
fractional flow reserve (FFR) derived from CCTA (FFRct)
with high diagnostic accuracy [13] and positive impact on
downstream resource utilization [14]. However, since the
computation of FFRcr is a cumbersome process with
limited availability, faster and less complex alternative
CT-derived parameters have evolved, such as the decrease
in corrected contrast opacification (CCO) across a sten-
osis and the transluminal attenuation gradient (TAG)
along a coronary vessel [15-18]. Despite the widespread
adoption of SPECT MPI into clinical routine and its utility
in appropriate clinical decision-making [19, 20], none of
the previous studies investigating CCO decrease and TAG
has used SPECT MPI as the standard of reference. There-
fore, the present study aims at evaluating the diagnostic
accuracy of CCO decrease and TAG in comparison to
SPECT MPL

Methods

Study population

The present retrospective study consists of 72 consecu-
tive patients who underwent hybrid CCTA/SPECT MPI
and had at least one coronary stenosis (i.e., luminal
diameter narrowing > 50% as assessed in CCTA). Exclu-
sion criteria were history of coronary artery bypass graft
(CABQ) or stenting.

CCTA acquisition and interpretation
On a stand-alone 64-slice CT scanner (LightSpeed VCT,
GE Healthcare), patients underwent contrast-enhanced
CCTA with prospective electrocardiography (ECG) trig-
gering [21]. The following scanning parameters were ap-
plied: slice acquisition 64 x 0.625 mm, smallest X-ray
window (only 75% of the RR-cycle), z-coverage value of
40 mm with an increment of 35 mm, gantry rotation time
350 ms, body mass index (BMI) adapted tube voltage
(100 kV, BMI < 25 kg/m?% 120 kV, BMI = 25 kg/m?), and
effective tube-current (450 mA, BMI<225 kg/m>
500 mA, BMI 22.5-25 kg/m? 550 mA, BMI 25-27.5 kg/
m% 600 mA, BMI 27.5-30 kg/m% 650 mA, BMI > 30 kg/
m?). Bolus tracking was performed with a region of inter-
est (ROI) placed into the ascending aorta, and image ac-
quisition was started 4 s after the signal density reached a
predefined threshold of 120 Hounsfield units (HU). In
order to achieve a target heart rate < 65 bpm, intravenous
metoprolol (5-20 mg) was administered prior to the
CCTA examination if necessary. Furthermore, all patients
received 2.5 mg sublingual isosorbiddinitrate 2 min prior
to the scan.

CCTA images were analyzed by consensus of two
experienced readers with regard to morphologically
significant lesions (=50%). CCO decrease was measured
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for each stenosis as previously described [17]. In brief, a
region of interest (ROI) with a diameter of 1 mm was
placed in the center of the coronary lumen and a ROI
with a diameter of 10 mm was placed in the descending
aorta (on the same axial slice). CCO was calculated as
the ratio of mean attenuation in the coronary ROI over
the aorta ROL. CCO was measured twice within 2 cm
proximal and distal of a lesion. The difference between
the proximal and the distal CCO (using the lower of the
two CCO values) was defined as CCO decrease (Fig. 1).
If multiple lesions were present within one vessel, only
the highest CCO decrease was used for further calcula-
tion of diagnostic accuracy.

TAG was measured in each major vessel with a
coronary stenosis while side-branch vessels were not
included in TAG assessment as previously described [22].
The luminal centerline was determined, and perpendicular
cross-sectional images were reconstructed. At 5-mm
intervals from the ostium to the distal level where the
vessel cross-sectional area decreases below 2.0 mm?, a
ROI with a diameter of 1 mm was manually positioned in
the luminal center and mean HU were determined. In
order to maintain linearity of the gradient, excessively
calcified coronary segments were excluded as previously
reported [22]. TAG was defined as the linear regression
coefficient between intraluminal attenuation in HU and
length from the ostium (Fig. 1).

SPECT MPI acquisition and interpretation

A 1-day ECG-gated stress/rest protocol was used with
pharmacologic stress induced by infusion of adenosine
at a standard rate of 140 pg/kg/min, and a BMI-adapted
dose of 250 to 350 MBq 99mTc-tetrofosmin was injected
3 min into the pharmacologic stress [23]. After a delay
of 60 min, stress images were acquired during 15 min.
Immediately thereafter, a threefold higher dose 99mTc-
tetrofosmin was administered and rest images were
acquired during 15 min. In all patients, gated images
were acquired with a dual-head camera (Millenium VG
and Hawkeye or Ventri, both GE Healthcare) using
standard acquisition parameters and X-ray-based attenu-
ation correction. A commercially available software
package (Cedars QGS/QPS, Los Angeles, CA, USA) was
used for image analysis. Identification of ischemia and
allocation to its corresponding coronary vessel was
performed as previously reported [10]. In brief, SPECT
myocardial tomograms were split into 20 segments for
each patient. These segments were analyzed by consen-
sus of two experienced readers using the following five-
point scoring system: 0, normal; 1, equivocal; 2, moderate;
3, severe reduction of radioisotope uptake; and 4, absence
of detectable tracer in a segment. A scan was scored as
abnormal if two or more segments had stress scores > 2.
A reversible perfusion defect was categorized as one in
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Fig. 1 Example of CCO decrease and TAG assessment. A soft plaque with high-grade stenosis is located in the proximal LAD (a, red arrow). Two
coronary ROIs (a, small white circles) are placed proximal (b) and distal of a lesion (c). Corrected contrast opacification (CCO) is calculated as the
ratio of mean attenuation in the coronary ROl over the ROl in the descending aorta (large white circles). Using the lower of the two values, the
difference between the proximal (b) and distal (c) was defined as CCO decrease. The transluminal attenuation gradient (TAG) was measured by
ROIs at 5-mm intervals from the ostium to the distal segment where the vessel cross-sectional area decreases below 2 mm? (a, small black circles)
and defined as the linear regression coefficient between intraluminal attenuation and distance from the ostium

which a stress defect was associated with a rest score <1
or a stress defect score of > 4 with a rest score of 2.

Statistical analysis

Continuous variables are expressed as mean * stand-
ard deviation (SD) or as median with interquartile
range (IQR) if not normally distributed. Categorical
variables are expressed as frequencies or percentages.
Kolmogorov-Smirnov test was applied to assess
normal distribution. P values for categorical variables
were calculated by the chi-square test and for
continuous variables by Mann-Whitney U test or
Kruskal-Wallis test. We took into account the
repeated structure of the measures and the hierarch-
ical data structure (i.e., the fact that the segments and
vessels were clusters of observations in the patients).
Although generalized linear mixed modeling would be
an excellent alternative, such analysis was restricted
by the data structure (complexity due to multiple
intrinsic hemodynamic and scan parameters) of the
present study [24]. Receiver-operating characteristics
(ROC) curve analysis was plotted to illustrate the
performance of CCO decrease and TAG to diagnose
ischemia. Youden’s index was calculated to define the
optimal threshold. Sensitivity, specificity, positive predict-
ive value, negative predictive value, and accuracy of CCO
decrease and TAG were assessed on a per-vessel basis, in
case the ROC curve analysis was statistically signifi-
cant. A p value <0.05 was considered statistically sig-
nificant. SPSS 20.0 (IBM Corporation, Armonk, NY)
was used for analysis.

Results

Study population

The baseline characteristics of the study population are
summarized in Table 1. The 72 patients had 183 coronary
lesions in 127 vessels (108 major vessels and 19 side-
branch vessels).

CCTA and SPECT findings
CCO decrease was successfully assessed in all 183 coron-
ary lesions of the 127 vessels (100%). Distribution of CCO
decrease according to stenosis severity is illustrated in
Fig. 2a. Median CCO decrease was 0.094 (IQR, - 0.017 to
0.209), 0.128 (IQR, 0.005 to 0.205), and 0.530 (IQR, 0.405
to 0.678) for lesions with 50-69, 70-89, and 90-100%
stenosis severity, respectively. While CCO decrease was
significantly different across stenosis severities (p < 0.001),
comparison between lesions of 50-69% and 70—89% sten-
osis severity revealed no significant difference (p = 0.470).

TAG was successfully assessed in 106 major vessels with
a coronary stenosis (98%). Distribution of TAG according
to stenosis severity is illustrated in Fig. 2b. Median TAG
was - 0.9 (IQR, - 1.3 to - 0.6), - 1.1 (IQR, - 1.8 to - 0.8),
and - 1.7 (IQR, - 3.2 to - 1.0) for vessels with the most
severe lesion of 50-69, 70-89, or 90-100% stenosis
severity. While TAG was significantly different across
stenosis severities (p < 0.05), comparison between lesions
of 50-69 and 70-89% stenosis severity only trended
towards a difference (p = 0.069).

Of 127 vessels with a coronary stenosis, 38 vessels
(including four side-branch vessels) (30%) were subtended
by ischemic myocardium. In these vessels, median CCO
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Male gender, n (%) 54 (75)
Age (years) 63+10
Imaging heart rate (bpm) 57+7
Body mass index (kg/m?) 27+4
Cardiovascular risk factors, n (%)
Smoking 28 (39)
Diabetes 9 (13)
Hypertension 45 (63)
Dyslipidaemia 40 (56)
Family history of CAD 25 (35)
Median Agatston score (IQR) 564 (175-1368)
Reason referral, n (%)
Pre-operative evaluation, equivocal/abnormal stress test 15 (21)
Atypical chest pain 30 (42)
Typical angina pectoris 15 (21)
Dyspnoea 12(17)
Cardiac history, n (%)
Previous myocardial infarction 3 (4)
Clinical pre-test probability (%) 51+20

Mean + standard deviation, if not otherwise specified

decrease was significantly higher compared to vessels
subtended by non-ischemic myocardium (0.266 vs. 0.115;
p<0.001; Fig. 3a). In contrast, median TAG remained
unchanged in vessels subtended by ischemic myocardium
(- 1.1 HU/mm vs. — 1.1 HU/mm; p = 0.616; Fig. 3b).

Diagnostic accuracy of CCO decrease and TAG

The ROC curve analysis resulted in an area under the
curve (AUC) of 0.707 (p<0.001) for CCO decrease to
predict ischemia (Fig. 4a). The optimal threshold of
CCO decrease was defined at 0.168. Implementing the
latter, an abnormal CCO decrease correctly detected
ischemia in 28 of 38 vessels (sensitivity, 74%; 95% CI 57
to 87%) and correctly ruled out ischemia in 57 of 89
(specificity, 64%; 95% CI 53 to 74%) vessels. This
resulted in a negative predictive value, positive predictive
value, and accuracy of 85% (95% CI 74 to 93%), 47%
(95% CI 34 to 60%), and 67%, respectively. After exclu-
sion of lesions with 90-100% stenosis severity, the ROC
curve analysis resulted in an AUC of 0.649 (p < 0.05).
The optimal threshold of CCO decrease was unchanged.
It correctly detected ischemia in 18 of 28 vessels (64%)
and correctly ruled out ischemia in 55 of 82 vessels
(67%). This resulted in a sensitivity, specificity, negative
predictive value, positive predictive value, and accur-
acy of 64% (95% CI 44 to 81%), 67% (95% CI 56 to
77%), 85% (95% CI 74 to 92%), 40% (95% CI 26 to
56%), and 66%, respectively.

The ROC curve revealed an AUC of 0469 (p=0.616;
Fig. 4b), indicating that TAG is no predictor for ischemia.

Discussion

The present study demonstrates that an abnormal CCO
decrease has an encouraging negative predictive value to
exclude functionally relevant lesions conferring potential
implication in the diagnostic work-up of patients with low
pre-test probability for CAD which is the population
benefiting most from CCTA. While median CCO
decrease was significantly higher in vessels subtended
by ischemic myocardium, TAG remained unchanged.
Consequently, TAG did not predict ischemia in pa-
tients with a coronary stenosis.

While previous studies have reported on the diagnostic
value of CCO decrease and TAG in comparison to
thrombolysis in myocardial infarction (TIMI) flow,
cardiac magnetic resonance imaging, and invasive FFR,
our results are the first to compare their performance in
the assessment of the functional relevance of a coronary
stenosis with SPECT MPI. Considering the fact that
invasive FFR was originally validated against SPECT
MPI [25] and that there exists substantial mismatch
between invasive FFR and SPECT ([26], the direct com-
parison between CCO decrease and SPECT MPI extends
our understanding of CCO decrease as a clinical tool.
The diagnostic accuracy of CCO decrease in the present
study is lower than that in the previous studies despite
the comparable baseline characteristics [15—-17]. Previous
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Fig. 2 CCO decrease and TAG according to stenosis severity. Box-and-
whisker plot showing corrected contrast opacification (CCO) decrease
(@) and TAG (b) of all lesions in the categories of 50 to 69, 70 to 89,
and 90 to 100% diameter stenosis. The red horizontal line corresponds
to the cutoff value for an abnormal CCO decrease as used in the
present study (CCO decrease > 0.168). The boxes represent the
interquartile range (IQR) and the dark line in the middle is the median.
The whiskers are defined as 1.5 times the IQR

studies included substantially smaller study populations
[15, 16] or used other techniques as a standard of refer-
ence (TIMI flow in a previous report [17] vs. SPECT MPI
in the present study). Comparing CCO decrease to PET
MPI, the ultimate gold standard for non-invasive assess-
ment of myocardial blood flow has resulted in a diagnostic
accuracy of 70% and a cutoff for an abnormal CCO de-
crease at 0.166 [18], matching well with the present study.
Conversely, the literature is inconsistent concerning the
diagnostic accuracy of TAG. While several reports have
demonstrated an incremental value to diagnose function-
ally relevant lesions over anatomic CCTA findings [27-
29], studies without single-beat acquisition rarely revealed
a diagnostic benefit for TAG [30, 31]. Overall, the finding
that differences in resting CCTA contrast densities may
predict functional relevance is astounding, particularly in
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Fig. 3 CCO decrease and TAG in ischemic and non-ischemic
myocardium. Box-and-whisker plot showing CCO decrease (a) and
TAG (b) in ischemic and non-ischemic myocardium. The red horizontal
line corresponds to the cutoff value for an abnormal CCO decrease as
defined in the present study (CCO decrease > 0.168). The boxes
represent the interquartile range (IQR) and the dark line in the middle
is the median. The whiskers are defined as 1.5 times the IOR

view of the evidence that an expected reduction in resting
flow only occurs in lesions with a stenosis degree of 90%
and above [32, 33]. The distribution of stenosis severity
across the patient population, therefore, is key to the
interpretation of previous studies and could potentially
contribute to the inconsistencies in the literature. In the
present study, however, if the analysis was limited to
lesions below 90% diameter stenosis, diagnostic accuracy
did only change marginally. Thus, CCO decrease seems to
add moderate but significant value to the evaluation of
intermediate lesions. This finding—that functional rele-
vance of an anatomic coronary lesion can be assessed
without requiring any hyperemic stress—is in line with
previous studies measuring instantaneous wave-free ratio
(iFR) [34]. Interestingly, iFR estimates coronary pressure
during diastole when resting resistance is lowest—a timing
interval similar to the one used by prospectively ECG-
triggered CCTA [35].
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A large body of evidence has documented that the
presence of a functionally relevant stenosis impairs out-
come, regardless by which modality the latter was assessed
[4, 10, 19, 36, 37]. As a consequence, physiological assess-
ment of stenosis relevance is critical in decision-making
for appropriate treatment strategy as both revasculariza-
tion of non-relevant lesions [6] and deferral from revascu-
larization of hemodynamically relevant lesions may lead
to a less favorable outcome [4, 5]. Although current guide-
lines mandate functional assessment for evidence-based
revascularization [7], both non-invasive stress testing
before invasive coronary angiography and FFR before
percutaneous coronary intervention remain underused in
daily practice [38, 39]. By its ease of use at no additional
costs, CCO decrease may increase the probability for a
comprehensive anatomic and functional non-invasive
assessment before the patient is referred to invasive
coronary angiography. Due to its moderate diagnostic
accuracy, CCO decrease may not replace MP], but it could
potentially be positioned as a gatekeeper after CCTA to
allocate further non-invasive diagnostic work-up. Al-
though any test added to CCTA should ideally feature
high positive predictive value, this does not apply to CCO
decrease [16]. However, its encouraging negative predict-
ive value and, as recently demonstrated, its added
prognostic value [40] indicates a role to individualize
clinical workflow: CCTA identifies a stenosis but if CCO
decrease is normal, patients might be deferred from
further MPI [41]. In contrast, if CCO decrease is abnormal
over a stenosis, further non-invasive testing should be
considered. In order to minimize the number of under-
diagnosed patients, the cutoff value of an abnormal CCO
decrease could be adjusted from 0.168 to lower values,
e.g, a cutoff value at 0.026 would increase sensitivity to
90% (Fig. 4a). Through this workflow, downstream
resource utilization might be influenced in a cost-effective

manner. This may hold true in particular for the popula-
tion which is typically referred for CCTA, namely patients
with low to intermediate pre-test probability.

We acknowledge the following limitations. First, the
present study is a retrospective single-center study and
has all of the inherent limitations of that study design.
Second, the threshold for CCO decrease as defined in
the present study should be extrapolated with caution to
different patient populations since differences not only
in baseline characteristics but also in scan protocol and
post-processing might influence analysis of CT images
[42, 43]. Third, it cannot be excluded that the lack of a
diagnostic value of TAG was due to the inferior
performance of TAG with 64-slice scanners [27, 30]
compared to wide-volume scanners [28, 44]. With the
wider distribution of 256-slice CT scanners [45], future
studies may assess the diagnostic value of TAG without
this limitation.

Conclusions

CCTA-derived CCO decrease but not TAG predicts
ischemia in SPECT MPI. The negative predictive value
of CCO decrease of 85% may confer clinical implica-
tions in the diagnostic work-up of patients with a
coronary stenosis.
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