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PET/CT images is associated with overall
survival in patients with prostate cancer
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Abstract

Background: Sodium fluoride (NaF) positron emission tomography combined with computer tomography (PET/CT)
has shown to be more sensitive than the whole-body bone scan in the detection of skeletal uptake due to metastases
in prostate cancer. We aimed to calculate a 3D index for NaF PET/CT and investigate its correlation to the bone scan
index (BSI) and overall survival (OS) in a group of patients with prostate cancer.

Methods: NaF PET/CT and bone scans were studied in 48 patients with prostate cancer. Automated segmentation of
the thoracic and lumbar spines, sacrum, pelvis, ribs, scapulae, clavicles, and sternum were made in the CT images.
Hotspots in the PET images were selected using both a manual and an automated method. The volume of each hotspot
localized in the skeleton in the corresponding CT image was calculated. Two PET/CT indices, based on manual (manual
PET index) and automatic segmenting using a threshold of SUV 15 (automated PET15 index), were calculated by dividing
the sum of all hotspot volumes with the volume of all segmented bones. BSI values were obtained using a software for
automated calculations.

Results: BSI, manual PET index, and automated PET15 index were all significantly associated with OS and concordance
indices were 0.68, 0.69, and 0.70, respectively. The median BSI was 0.39 and patients with a BSI >0.39 had a significantly
shorter median survival time than patients with a BSI <0.39 (2.3 years vs not reached after 5 years of follow-up [p = 0.01]).
The median manual PET index was 0.53 and patients with a manual PET index >0.53 had a significantly shorter median
survival time than patients with a manual PET index <0.53 (2.5 years vs not reached after 5 years of follow-up [p < 0.001]).
The median automated PET15 index was 0.11 and patients with an automated PET15 index >0.11 had a
significantly shorter median survival time than patients with an automated PET15 index <0.11 (2.3 years vs not
reached after 5 years of follow-up [p < 0.001]).

Conclusions: PET/CT indices based on NaF PET/CT are correlated to BSI and significantly associated with overall
survival in patients with prostate cancer.
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Background
Bone is the most frequent site of metastases in prostate
cancer, and the standard imaging technique for detection
of bone involvement is two-dimensional (2D) whole-
body bone scan [1]. The bone scan index (BSI), obtained
from planar whole-body bone scans, is the first quantita-
tive imaging biomarker in prostate cancer and consti-
tutes a surrogate for the tumor burden which is
presented as a percentage of the total skeletal mass. The
development of automatically calculated BSI has mark-
edly reduced the interpretation time and decreased
inter-observer variability compared to visual analysis
alone [2, 3]. Several studies have confirmed that auto-
mated BSI has standardized the calculation of BSI
and represents a consistent imaging biomarker for
patients with advanced prostate cancer. Automated
BSI provides clinicians with prognostic information as
it is an independent predictor of survival, and can
assess response to therapy in men with metastasized
prostate cancer [4–7].
Positron emission tomography (PET) combined with

computed tomography (CT) is a rapidly growing im-
aging modality and its role in oncologic diagnostics has
expanded during recent years. Unlike planar bone scan,
PET/CT is a three-dimensional (3D) method that can
quantitatively assess biologic processes using specific ra-
diotracers such as 18F-fluorodeoxyglucose, 11C-acetate,
11C-choline, 18F-sodium fluoride (NaF), and 68Ga-pros-
tate-specific membrane antigen. NaF has specific affinity
for bone and can be used to track skeletal pathology.
Several studies have indicated that NaF PET/CT has
superior sensitivity compared to bone scan in detecting
skeletal changes due to bone metastasis in prostate can-
cer [8–10]. However, the interpretation of NaF PET/CT
still poses a challenge. Similar to bone scan interpret-
ation prior to the development of BSI, there is no object-
ive method to evaluate skeletal uptake in PET/CT scans.
The prostate cancer working group 3 consensus criteria
state that there is a lack of standards in NaF PET inter-
pretation for reporting disease presence or changes post-
treatment and that NaF should be approached as a new
biomarker subjected to independent validation [11].
Quantification from NaF PET/CT images could make it
possible to stratify prognosis and track disease progress.
It would also yield an objective way of evaluating treat-
ment outcome which would enable the development of
new therapies.
The aim of this study was to develop a 3D PET/CT

index which reflects tracer uptake due to tumor bur-
den in the skeleton in a similar way as BSI. A sec-
ondary aim was to compare PET/CT index to BSI in
the same group of patients with prostate cancer and
the association between PET/CT index, BSI, and over-
all survival (OS).

Methods
Training group
The automated segmentation of the skeleton in the CT
images was developed using a retrospective training set
from 25 patients who had undergone PET/CT examina-
tions between 2008 and 2010 at Sahlgrenska University
Hospital, Gothenburg, Sweden. The study was conducted
according to the principles expressed in the Declaration of
Helsinki, approved by the local research ethics committee
at University of Gothenburg (# 295-08), and informed
consent was obtained from each subject.

Study group
We retrospectively studied PET/CT scans and bone
scans in prostate cancer patients who previously had
been selected for a study at Odense University Hospital,
Denmark, with the aim to compare whole-body bone
scans, choline-PET/CT, and NaF PET/CT with MRI
[12]. The inclusion criteria in that study were (1) biopsy-
proven prostate cancer, (2) a current bone scan with a
minimum of one metastasis, (3) the ability to undergo
MRI, and (4) the ability to safely postpone treatment
with androgen deprivation until after all scans were
finalized. The exclusion criteria were (1) current or pre-
vious treatment with androgen deprivation, and (2) pain
or suspicion of spinal cord compression based on malig-
nant bone lesions. Bone scans, PET/CT scans, and MRI
were performed within a time frame of 1 month in
random order. A total of 50 patients, aged 53–92 years,
were included between May 2009 and March 2012.
For the current study, only bone and NaF PET/CT

scans were utilized. Staging information, i.e., PSA values
and Gleason score, was collected. Dates for all scans and
survival data were collected from the local radiology
information system. The study was conducted according
to the principles expressed in the Declaration of
Helsinki, approved by the local research ethics com-
mittees at Lund University (# 2016/193) and Odense
University Hospital (# 3-3013-1692/1).

Image acquisition
Training group PET/CT data were obtained using an
integrated PET/CT system (Siemens Biograph 64 True-
point). A low dose CT scan (64-slice helical, 120 kV,
“smart mA” maximum 30-110 mA) was obtained from
the base of the skull to the mid-thigh. The CT slice
thickness used in the analysis was 3.27 mm.

Study group PET/CT data were obtained by a Discovery
VCT PET/CT scanner (GE Healthcare). All patients re-
ceived an injection of 3 MBq NaF per kg body weight after
having fasted for 6 h. Image acquisition started approxi-
mately 60 min after tracer injection. A diagnostic
contrast-enhanced CT scan (64-slice helical, 120 kV,
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“smart mA” maximum 400 mA) was obtained from the
base of the skull to the mid-thigh. The CT slice thickness
used in the analysis was 3.75 mm. A PET scan with an ac-
quisition time of 2.5 min per bed position was obtained
from the same region.
Whole-body planar bone scans with anterior and
posterior views were acquired using a dual head ɣ

camera (Skylight or PRISM XP2000, Philips Medical,
Surrey) with LEHR collimator, energy window
140 keV ±20%, matrix 256×1024, and scan speed
14 cm/min. All patients received 600 MBq Tc-99m
HDP and imaging acquisition was performed 3 h
postinjection.

Bone scan index
EXINIboneBSI version 2 (EXINI Diagnostics AB, Lund,
Sweden) was used to analyze the bone scans and auto-
matically generates the BSI data. Manual corrections
were made according to the manufacturer’s instructions,
i.e., if a hotspot was included in the BSI calculation, but
clearly represented known trauma, urinary bladder, urin-
ary bag/catheter, or site of injection, it was excluded
from the BSI calculation. Other hotspots were not re-
classified.
The methodology of the automated platform has

been described in detail in previous studies [3]. In
summary, the different anatomical regions of the skeleton
are segmented followed by detection and classification
of abnormal hotspots as metastatic lesions. The frac-
tion of the skeleton for each metastatic hotspot is cal-
culated and the BSI is calculated as the sum of all
such fractions.

PET/CT index
1. Segmentation of skeleton

Step 1: Convolutional neural network-based
landmark detection
A convolutional neural network [17, 18] was
trained to detect a number of anatomical landmarks,
and a second network to detect center lines for the
humeri, ribs, clavicles, and femurs (Fig. 1).
Step 2: Geometric model fitting
Partly due to the limited training set, the
convolutional neural network-based detectors
produced a number of false positives but very few
false negatives. To handle this, geometric models
were used to prune false landmark detections and
determine rough positions for the relevant
anatomical structures. Essentially two types
of models were used. The first was an iterative
technique to track elongated bones such as ribs
and clavicles. The second type was a classical active
shape models used to find plausible positions for
groups of landmarks.
Step 3: Convolutional neural network-based
pixel-wise segmentation
The final step of the automated segmentation
technique was the application of another
convolutional neural network trained to perform
pixel-wise segmentation of the CT image. The
input to the network was not only the CT image
but also a second channel with a rough segmentation
based on an atlas registered using the aligned
landmarks.

An automated segmentation of the following bones
was performed in the CT scans: The thoracic and

Fig. 1 a Maximum intensity projection of the CT scan together with the annotated landmarks. Landmarks with identical markers belong to the
same class and are not separated by the detector. b Detected center lines for ribs, clavicles, and humeri. c Surface reconstruction of the resulting
segmentation. This underlying image belongs to the test set and has not been involved in training the neural networks
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lumbar spines, sacrum, pelvis, ribs, scapulae,
clavicles, and sternum. The slice thickness of the CT
images of 3-4 mm made it difficult to segment the
cervical vertebrae and they were therefore not included.
In addition, the skull, humeral, femoral, and other
appendicular bones were not segmented since they
were not always completely included in the CT scans.
A total of 49 bones were segmented, comprising
approximately 33% of the total skeletal volume [13].
The automated segmentation method was developed
using the separate training set of CT scans. Three
experienced readers manually segmented the
skeleton in these CT scans using the TurtleSeg
software [14–16]. After the training process, the
automated method was applied to the CT scans of
the study group. The segmentation process can be
divided into three steps:

2. Hotspot detection and classification
Volumes in the PET images with uptake above a
given standard uptake value (SUV) were defined as
hotspots. Two separate methods were used to select
this given SUV value and hotspots for inclusion in
the PET/CT index.
Manual: With this method, we aimed to reflect the
clinical interpretations of the PET/CT scans as
closely as possible. For each individual patient first,
an optimal SUV threshold for detection of hotspots
was selected, based on the visual interpretation of a
nuclear medicine specialist who was blinded to the
patients’ bone scans, BSI values, and survival data.
The choice of threshold was made so that all hotspots
interpreted as caused by metastatic disease by the
nuclear medicine specialist were delineated. After
selecting a threshold, each detected hotspot was
manually classified as caused by metastatic disease
or not, based on the interpretation of the nuclear
medicine specialist. Hotspots believed to originate
from degeneration, inflammation, or fractures were
excluded from the analysis. Selected thresholds
ranged between SUV 6–9.
Automated: In a completely automated method, a
SUV threshold of 15 was used to detect hotspots.
This threshold was used in a recent study by Lin
et al [19]. No manual selection was done.
To avoid an unmanageable number of hotspots,
smoothing with a Gaussian filter (standard deviation
2 mm) was performed before defining the hotspots.
Hotspots that had no overlap with the segmented
bone from the CT scans were removed.

3. PET/CT index calculation
The volume of each hotspot classified as metastasis
and localized in the skeleton in the corresponding
CT scan was calculated. A PET/CT index was then
calculated by dividing the sum of all such hotspots

with the volume of the segmented bones, i.e., the
thoracic and lumbar spines, sacrum, pelvis, ribs,
scapulae, clavicles, and sternum. Two indices were
calculated from each patient’s PET/CT scan: one
based upon the manual method (manual PET index)
and one based upon the automated method using
the SUV threshold of 15 (automated PET15 index).
The BSI is defined as the fraction of the total
skeleton that is involved by tumor, and skeletal parts
not included in the analysis were assumed to have
no metastases. Accordingly, both PET/CT indices
were multiplied by 0.33 since the bones included in
the PET/CT indices comprised 33% of the total
skeletal volume [13].

Statistical analyses
Overall survival was defined as time from NaF PET/CT
and bone scan to death/follow-up, respectively. Cutoff
date for analysis was October 28, 2016. Kaplan-Meier
estimates and the log-rank test were used to estimate
the survival difference between high and low BSI and
PET/CT index groups. The group with high indices was
defined as those with values above the median value and
the group with low indices as those with values below
the median value. The choice of a median split was
made as there are no previous studies on the PET/CT
index. A p value <0.05 was considered significant. In the
survival analysis, all data were censored at a follow-up
after 5 years.
The association between the different indices and OS

was evaluated using a univariate Cox proportional
hazards regression model. Hazard ratios (HR) together
with 95% confidence intervals (CI) were estimated, and
the performance assessment of the different survival
models was measured using the concordance index
(C-index). The difference in C-indices between different
models was assessed using the method described by
Haibe-Kains et al [20]. The Bland-Altman method was
used to assess the agreement between the different indi-
ces. All analyses were carried out using R statistical
computing environment [21] and IBM SPSS Statistics 24.

Results
Forty-eight of the 50 patients in the study group had
both a bone scan and a NaF PET/CT available for quan-
titative analysis, while in two patients, the technical
quality of the images was not sufficient for the retro-
spective quantitative analysis. Patient characteristics for
the 48 patients are presented in Table 1.
The 48 patients had a median observation time of

3.7 years (interquartile range [IQR] 1.9–6.0 years) after
NaF PET. A total of 34 patients died during the follow-
up period, with a median survival time from the baseline
NaF PET of 2.4 years (IQR 1.5–3.6). The group of 14
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men that were still alive had a median follow-up time
from the baseline NaF PET of 6.2 years (IQR 5.7–6.9).
The median BSI was 0.39 (IQR 0.08–2.05). The

patients with a BSI >0.39 had a significantly shorter
median survival time than patients with a BSI <0.39
(2.3 years vs not reached after 5 years of follow-up
(p = 0.01)). Figure 2 shows the Kaplan-Meier survival
curves for these two groups. BSI was significantly
associated with OS in a univariate Cox analysis (HR
1.26, 95% CI 1.13–1.41; p < 0.001) and the C-index
was 0.68 (95% CI 0.59–0.76).
The correlation between the manual PET index and

BSI is plotted in Fig. 3. The most common divergence
between the indices was a higher manual PET index
than BSI, exemplified by the patient in Fig. 4. The
median manual PET index was 0.53 (IQR 0.02–2.62).
The patients with a manual PET index >0.53 had a sig-
nificantly shorter median survival time than patients
with a manual PET index <0.53 (2.5 years vs not reached
after 5 years of follow-up [p < 0.001]). Figure 5 shows the
Kaplan-Meier survival curves for these two groups. The
manual PET index was significantly associated with OS
in a univariate Cox analysis (HR 1.17, 95% CI 1.06–1.29;
p = 0.002) and C-index was 0.69 (95% CI 0.60–0.78).

The median automated PET15 index was 0.11 (IQR
0.00–0.98). The patients with an automated PET15 index
>0.11 had a significantly shorter median survival time
than patients with an automated PET15 index <0.11
(2.3 years vs not reached after 5 years of follow-up
[p < 0.001]). Figure 6 shows the Kaplan-Meier survival
curves for these two groups. The automated PET15

index was also significantly associated with OS in a
univariate Cox analysis (HR 2.01, 95% CI 1.43–2.83;
p < 0.001) and C-index was 0.70 (95% CI 0.61–0.79)
(Table 2). The automated PET15 index was lower than
the manual PET index in 39/48 patients. The average
automated PET15 index was 0.7 and the average manual
PET index was 2.1, i.e., only approximately 1/3 of the
tumor burden as defined in the visual interpretation was
reflected in the PET15 index. The relation between these
two indices is presented in Fig. 7.
The differences in C-index between BSI and manual

PET index, BSI and automated PET15 index, and manual
PET index and automated PET15 index were not statisti-
cally significant (p = 0.60, 0.89, and 0.75, respectively).

Discussion
Main results
In this preliminary study, we have shown that PET/CT
indices based on NaF PET/CT scans, which reflects
similar processes in the bone of prostate cancer patients
as BSI, are significantly associated with OS in a group of
prostate cancer patients. The result for the association
between baseline BSI and survival is in agreement with
previous studies [3, 22].
NaF PET/CT scans have shown to be more sensitive

than bone scans in detecting bone changes due to me-
tastases, but a disadvantage has been the lack of a quan-
titative method to evaluate pathological skeletal uptake

Table 1 Patient characteristics

Mean (SD) Median (range) Number of patients

Age (years) 73 (8.6) 73 (53–92) 48

PSA (μg/L) 374 (874) 84 (4–5740) 48

Gleason score 7.7 (1.5) 8.0 (5–10) 47

Fig. 2 The Kaplan-Meier survival curves for the two BSI groups
(BSI <0.39 and BSI >0.39)

Fig. 3 The Bland–Altman plot of the difference between BSI and
manual PET index against the mean of BSI and manual PET index
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in PET/CT scans. In this study, two different PET/CT
indices were studied; one aimed to reflect visual
interpretation by a nuclear medicine specialist, and one
automatically generated. The higher sensitivity of NaF
PET/CT compared to bone scan was reflected by higher
manual PET index than BSI being more common than
the opposite finding, and a slightly but not significantly
higher C-index. Future studies are needed to evaluate
the possible increased clinical value of a PET/CT index
versus BSI.
Quantitative measurements need to be reproducible

and objective in order to qualify as an imaging
biomarker. An automated method can be validated
analytically and clinically and is not dependent on the
knowledge and experience of the interpreting reader.

BSI calculation using EXINIboneBSI is an objective fully
automated approach to quantify skeletal tumor burden
in bone scans. The aim of our research is to develop an
automated PET/CT index using methods similar to
those used for BSI calculations. Methods of these types
require training databases of scans to mimic interpret-
ation by experts. In this study, such a training database
was not available and we therefore studied an automated
PET15 index, which was based on a SUV threshold of
15. This SUV threshold has been used in a recent publi-
cation by Lin et al. to exclude hotspots with low statis-
tical likelihood of being metastases [19]. A disadvantage
with this automated PET15 index was that it reflected on
average only 1/3 of the tumor burden as defined in the
visual interpretation were thresholds ranged between

Fig. 4 Patient example showing hotspot segmentation in a bone scan (anterior and posterior views) with a BSI of 0.4% and b maximum intensity
projection NaF PET/CT scans with a PET index of 2.6%. Note that the BSI analysis is based on the two images showed in (a) whereas the PET/CT
indices are based on a 3D analysis and not the two projection images showed in this figure

Fig. 5 The Kaplan-Meier survival curves for the two manual PET
index groups (index <0.53 and >0.53)

Fig. 6 The Kaplan-Meier survival curves for the two automated PET15
index groups (index <0.11 and >0.11)
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SUV 6–9. We will therefore continue to develop an
automated method that more closely reflects the results
of visual interpretation.
There is relatively little data on how to differ

metastatic from non-metastatic uptake in NaF PET/CT
based on SUV. It is therefor unclear what threshold for
automatic hotspot identification and segmentation that
is optimal in order to generate hotspots that best reflect
true tumor burden. Based on our results, using SUV 15
as a threshold for automatic hotspot segmentation
reflects less tumor burden than BSI, despite the higher
sensitivity of NaF PET/CT compared to bone scan. This
may indicate that using a threshold of SUV 15 may lead
to exclusion of hotspots that are metastatic origin. We
will continue to investigate thresholds for hotspot seg-
mentation. Also, different ways to automatically delin-
eate hotspots, leading to different hotspot volumes and
thus different PET/CT indices, will be further studied.
Other features to identify hotspots with suspected meta-
static origin may also be investigated, such as different
locations within the bone, which could help to differentiate
between metastases and degenerative changes.

Limitations
Fluoride accumulation in PET/CT scans is not specific
for metastatic activity. Fluoride is incorporated in the
bone as hydroxyapatite, forming fluoroapatite and fluor-
ohydroxyapatite, and activity increases as a sign of

osteoblastic activity [1, 23]. Focal uptake can represent
other causes of increased bone turnover, such as
degeneration, fractures in healing, or inflammation. In
addition, focal bone changes may persist for quite some
time after effective cancer therapy and through that give
a false impression of the degree of malignant bone
involvement [23–25]. Hence, the pharmacokinetic radio-
tracer uptake is an inherent limitation in NaF PET/CT
scans in the same way as in bone scans.

Clinical implications
There is a clinical need for a quantitative and a
reproducible assessment of tumor burden in meta-
static prostate cancer patients. BSI has shown to be a
valuable imaging biomarker with clinical relevance in
this patient group. A high BSI is associated with a
poor prognosis both at the time of diagnosis and at
more advanced stages of the disease [26–28], and an
increase in BSI during treatment signals worse out-
come than if BSI remains stable or decrease during
therapy [4, 29, 30]. The same quantitative approach
applied to NaF PET/CT scans would most likely be
successful since the superior performance of NaF
PET/CT compared to planar bone scans is well
documented [11, 12]. If done in an automated
fashion, it could decrease intra-observer variability
and help physicians to assess disease progress or re-
sponse to therapy, thereby affecting clinical decisions
[2]. Although it is encouraging that both manual PET
index and automated PET15 index were associated
with OS in this preliminary study, it is too early to
introduce such an index in clinical routine. We hope
that further development of this method can result in an
automated PET/CT index that can serve as an imaging
biomarker with prognostic and predictive information in
patients with prostate cancer.

Conclusions
We have showed that the amount of increased focal
skeletal uptake determined from NaF PET/CT scans
is associated with OS in prostate cancer patients. A
PET/CT index which reflects tracer uptake due to
tumor burden to the skeleton in a similar way as BSI
can be used to evaluate NaF PET/CT images in a
quantitative way. This type of PET/CT index will
most likely be of value both in a clinical settings and
in future clinical trials.

Table 2 C-index and univariate Cox regression analysis (N = 48)

C-index 95% CI p value Hazard ratio 95% CI p value

BSI 0.68 0.59–0.76 <0.001 1.26 1.13–1.41 <0.001

PET index 0.69 0.60–0.78 <0.001 1.17 1.06–1.29 =0.002

PET15 index 0.70 0.61–0.79 <0.001 2.01 1.43–2.83 <0.001

Fig. 7 The Bland–Altman plot of the difference between manual
PET index and automated PET15 index against the mean of manual
PET index and automated PET15 index
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