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Abstract

Background: ['®F]Fludarabine is a novel positron emission tomography (PET) radiotracer for imaging lymphoma.
The purpose of this preclinical study was to evaluate the robustness of ['®Flfludarabine during rituximab therapy.
In addition, a comparison was made between ['®Flfludarabine and ['®Flfluorodeoxyglucose (['®FIFDG) with regard
to their concordance with histologically derived data.

Methods: CB17-SCID mice bearing human follicular DOHH-2 lymphoma were treated once weekly with rituximab
(10 mg/kg) or physiological saline over 3 weeks. To obtain the tracer uptake in the metabolically active volume of
the tumour (MAVT), a background-level threshold was applied to the volume of interest (VOI) defined on computed
tomography (CT) image. The tumour uptake analysis was performed with MAVT-based segmentation for data
analysis of sequential ['®Flfludarabine PET/CT studies and with total tumour-based segmentation for comparison
with histologically derived data.

Results: The correlation between the MAVT and ['®Flfludarabine accumulation (%ID) in those viable tissues was
equally significant for both vehicle- or rituximab-treated mice; for these latter, the presence of lymphoid tissues
at the end of imaging sessions was confirmed histologically. A stronger correlation was demonstrated between
quantitative values extracted from ['®Flfludarabine-PET and histology (* = 0.91, p < 0.001) when compared to
["8FIFDG-PET (= 0.55, p = 0.03).

Conclusions: ['®F]Fludarabine uptake in the follicular lymphoma model compared favourably with ['®FIFDG in
terms of specificity for PET imaging and also remained robust for persistent viable tissues following rituximab
therapy. ['®FIFludarabine PET/CT may be a promising approach to evaluate lymphoma, including their surveillance
during therapy.

Keywords: ['®FIFludarabine; PET/CT; Imaging; Lymphoma; Rituximab

* Correspondence: hovhannisyan@cyceron.fr

'CEA, DSV/I2BM, LDM-TEP group, GIP Cyceron, Bd Henri Becquerel, BP 5229,
14074 Caen, Cedex, France

2Université de Caen Basse-Normandie, Esplanade de la Paix, 14032 Caen,
France

Full list of author information is available at the end of the article

© 2015 Hovhannisyan et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative

L]
@ SP rlnger Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and

reproduction in any medium, provided the original work is properly credited.


mailto:hovhannisyan@cyceron.fr
http://creativecommons.org/licenses/by/4.0

Hovhannisyan et al. EINMMI Research (2015) 5:23

Background

The non-Hodgkin lymphomas (NHLs) are a greatly
diverse family of disorders characterized by malignant
proliferation of B or T lymphocytes [1,2]. PET has been
proven to be the only imaging technique able to encompass
all the information yielded by conventional morphological
techniques (lymphangiography, computed tomography,
ultrasonography, magnetic resonance imaging). PET
furthermore provides essential information for the
assessment of chemosensitivity and the planning of
radiotherapy. This tomographic technique computes the
three-dimensional distribution of radioactivity based on
the annihilation of the photons that are produced in tissue
by positron-emitting labelled radiotracers. PET, based on
the ['®F]JFDG method, is of proven usefulness in the
diagnosis and monitoring of therapy in patients with
lymphoma. However, the specificity of ["*F]FDG uptake
has been questioned because of its behaviour similar to
glucose metabolism, which may increase indiscriminately
in benign conditions such as inflammatory or infectious
processes [3-5]. Increasingly, research is oriented towards
radiotherapy planning and it will be important that areas,
such as the edge detection of tumours, can be readily
integrated into the parameters for radiotherapy. To
achieve this goal, more specific tracers, which none-
theless maintain all of the positive characteristics of
[*®F]FDG, are needed.

[*®F]Fludarabine is a novel PET radiotracer which was
developed for lymphoma imaging. The radiosynthesis of
this tracer, as well as its biodistribution and dosimetric
studies in animal models, has been reported recently
[6,7]. In the present study, we evaluated the reliability of
[**F]fludarabine during rituximab therapy in a follicular
lymphoma model (indolent B-cell NHL) in xenografted
mice. The question posed was whether or not the
specificity of ['*F]fludarabine for lymphoid tissues is
modified by the treatment. Furthermore, we compared
['®F]fludarabine with [*®F]FDG which, in spite of the
limitations of the latter, is currently the tracer of choice
for imaging lymphoma.

Methods

Radiochemical synthesis

[*®F]Fludarabine was synthesized on a TRACERlab™ FX
F-N module as described previously [6]. Mean injected
radioactivity was approximately 11 MBq, and molecular
quantity of injected fludarabine was approximately 0.038
nmol. [*®F]FDG was purchased from the commercially
available source (Cyclopharma S.A., Caen, France).

Animal model

The animal investigations were performed under the
European directive (86/609/EU) as enacted in national
legislation. The licence to investigate was given to M. Dhilly
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(approval 14-54) in authorized housing (the Biological
Resources Centre (CURB) of the University of Caen
(approval A14-118-015)) immediately adjacent to the
laboratories of experimentation and imaging (GIP Cyceron;
approval D14-118-001). Permission was sought and ob-
tained for all experimental procedures from the regional
committee on animal ethics (approval CENOMEXA 1112-
26). A total of 18 mice were employed in the investigation.

CB17-SCID female mice bearing human DOHH-2
lymphoma cells (EBV negative) were purchased from
Oncodesign (Dijon, France). DOHH-2 cells were established
from the pleural effusion of a 60-year-old man with
refractory immunoblastic B cell lymphoma progressed
from a follicular centroblastic/centrocytic lymphoma.
One million DOHH-2 cells, from exponentially growing
in vitro cultures, were subcutaneously injected into the
right flank.

The mice were kept in specific pathogen-free housing,
in a 12/12-h day/night cycle, at 22°C and had access to
sterilized laboratory chow and water ad libitum. At the
time of the experiments, the mice were approximately 9
weeks old. The mean tumour volume at the initiation of
therapy was approximately 150 mm?® (calliper).

For sequential studies with [**F]fludarabine PET/CT,
five mice received rituximab (Mabthera, Roche) which
was administrated by an ip injection (10 mg/kg, diluted in
physiological saline, 500 pl). Five mice received injections of
physiological saline alone (500 pl). Vehicle and rituximab
treatments were performed thrice during the study
(Additional file 1).

Tumoural growth was monitored by calliper measure-
ments, three times weekly. The greatest longitudinal (d1)
and transverse (d2) diameters were determined, and
tumour volume was calculated by the modified ellipsoidal
formula: tumour volume = % (d1 x d22).

In order to perform a comparative study of the two
tracers ([*®F]fludarabine vs. ['*F]FDG), additional eight
mice were treated (three rituximab-treated and five
vehicle-treated) at the same dates and under the same
conditions as done in the sequential studies with
['8F]fludarabine.

The behaviour of the mice during the experimental
period was normal. Their body weights remained constant
throughout the investigation (18.8+0.8 g). Mice were
maintained under isoflurane anaesthesia during radiotracer
administration, scanning of either radiotracer (induction
5%, maintenance 2%, with 70% N,0O/30% O,, Minerve
anaesthesia system, Bioscan, France). Body temperature
was maintained at 37°C using a feedback controlled
system (Minerve, Bioscan, France).

Immediately after imaging studies were completed, the
mice were sacrificed (cervical dislocation under deep
anaesthesia). The complete tumour was carefully separated
from muscle and skin and then excised.
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Imaging sessions

Firstly, [**F]fludarabine time-activity curves (TACs) were
obtained over a 60-min period for tumour and skeletal
muscle (non-target tissue) (n = 3) (Additional file 2).

For the sequential studies with [**F]fludarabine, the
rituximab-treated (# = 5) and vehicle-treated (# = 5) mice
were imaged thrice: a baseline scan (1 day before dosing)
and two post-treatment scans (Additional file 1).

Additional mice (n=8) were imaged with [**F]JFDG
only once to correspond to the post-treatment period of
the last ['®F]fludarabine scans. A comparative study was
performed where the histological concordance was
undertaken for each of the two radiotracers.

PET/CT imaging
Images were acquired on an Inveon microPET/CT scanner
(Siemens, Knoxville, USA) [8].

A CT scan was used for attenuation correction and
localization of the tumour. The duration of the transmission
scan was approximately 5 min. Acquisition parameters
were: 80-kVp beam energy, 500-mAs current. The data
were reconstructed into a 352 x 352 x 606 matrix images,
corresponding to voxels of 0.022 x 0.022 x 0.022 mm?>,

[*®F]Fludarabine (11.21+2.70 MBq in 100-pl physio-
logical saline) was injected via the caudal vein, and PET
images were acquired 40 to 60 min after radiotracer
administration. ['*F]FDG was injected with a similar
activity (12.59 +1.20 MBq), and the PET scan was
performed 70 to 90 min after radiotracer administration.
The residual radioactivity in the syringe was measured to
determine the received dose. An emission scan was
acquired with default settings of coincidence timing
window of 3.4 ns and an energy window of 350 to 650
keV. PET images were reconstructed with 3-dimensional
maximum a posteriori (OSEM3D/MAP) reconstruction
algorithm with 18 iterations (preceded by two OSEM3D
iterations) with the beta parameter set to 0.2. Setting
values of these parameters are discussed elsewhere
[9]. The data were reconstructed into 128 x 128 x 159
matrix images, corresponding to a voxel of 0.776 x
0.776 x 0.796 mm?. Data were normalized and dead-time,
random, scatter as well as attenuation corrections were

applied.

Analyses of image data

PMOD version 3.1 (PMOD Technologies, Ltd., Zurich,
Switzerland) was used for image analysing and PET/CT
co-registration.

Images were displayed as coronal, sagittal and transaxial
slices, and the region of interest (ROI) was drawn
manually on the coronal plane. The volume of interest
(VOI), consisting of 2D ROIs and delineating the entire
extent of the tumour, was defined on contiguous CT
images and transposed to the PET images for quantification.
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Two methods of quantification were employed: total
tumour-based (VOIror, encompassing the entire
tumour) and a MAVT-based (VOIyayr delineating
the metabolically active volume of the tumour). To
define the MAVT, a threshold was applied to the
drawn VOIror in order to eliminate the pixels in
which the values of intensity were below the activity
in muscle (taken as the non-specific reference tissue). The
segmentation was directed to find multiple disconnected
contours if required. The VOIyayT was used for the data
analyses of the sequential studies with ['°F]fludarabine
PET/CT, thus correlating the MAVT to the radiotracer
accumulation (%ID). The VOItor was used to correlate
radiotracer uptake with histological quantification of
whole sections in order to take into account the tumoural
heterogeneity (non-lymphoid tissues in the tumour).
Therefore, to compare the specificity of [**F]fludarabine to
[*F]FDG in rituximab- and vehicle-treated animals, tracer
concentration (%ID/ml) in the VOItor was correlated to
the percentage of viable lymphoid cells (in representative
sections) as determined by the automatic quantification of
the histological data, see below.

Histopathological analyses

Paraffin-embedded tissue samples (fixed in 4% formation)
were routinely processed. Paraffin blocks were used for
haematoxylin-eosin-saffron (H.E.S.) staining. Conventional
5-um-thick histological sections were obtained. Paraffin-
embedded sections were deparaffinized and stained with
CD20 (clone L26, 1:400 dilution), CD10 (clone 56C6, 1:30
dilution) and Bcl2 (clone 124, 1:100 dilution) in an auto-
mated immunohistochemistry processor (BenchMark XT;
Ventana Medical Systems, Illkirch Graffenstaden, France)
for antigen expression by validated staining protocols. The
acquisition conditions of H.E.S. histological slides were
standardized in order to generate colours of equal inten-
sity and used in subsequent comparisons with the in vivo
results.

The surface ratio between viable lymphoid tissue
and whole histological section (total tissues) of each
specimen was assessed by a computerized analysis (Image],
version 1.43, http://imagej.nih.gov/ij/). In brief, colour RGB
images were deconvolved (red, green and blue), and the
resulting monochrome images were thresholded. The
R and G elements were used for segmentation of viable
lymphoid and total tissues, respectively. This quantification
was then correlated with PET/CT data (radiotracer concen-
tration in tumour) [10].

Statistical analyses

A p value <0.05 was considered statistically significant.
In all analyses, normality and equality of variance were
tested.
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Pearson’s correlation coefficient was determined to evalu-
ate the relationship between radiotracer uptake and tumour
volume or histologically derived data (Prism 4.03,
GraphPad Software, USA).

Repeated measures (RM) two-way ANOVA followed
by Bonferroni post-tests determined the statistical difference
in tumour volume between treated and non-treated animals
(Sigma Plot 11.2, Jandel Scientific, Germany).

Results

Assessment of tumour volume by ['®F]fludarabine PET/CT
Total tumoural volume measurements were based on
CT scans. At baseline, the volume was essentially the
same in rituximab- and vehicle-treated mice (Figure 1a).
Treatment with rituximab suppressed tumour growth
in all treated mice, while in vehicle-treated mice the
tumour volume continued to increase throughout the
study (p <0.001).

MAVT measurements, which were based on PET/CT
scan, showed a similar evolution (Figure la). As mentioned
previously, for the delineation of MAVT, a threshold was
applied to the VOItot, drawn on the CT image and placed
on the corresponding PET image, in order to eliminate
those pixels in which the values of intensity were below the
background level (Figure 1b).

Sequential studies with ['®FIfludarabine PET/CT

It was mentioned that the tumour volume continued to
increase in the vehicle-treated mice throughout the
study period (MAVT range, 0.1 to 1.54 cc). There
was a significant correlation between the MAVT and
the radiotracer accumulation (%ID) in those viable areas
(”* =0.98, p < 0.0001) (Figure 2b); a similar relationship was
observed in the rituximab-treated group, with Pearson’s test
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revealing a significant correlation between related data
(r* =0.96, p < 0.0001).

Comparative analyses of ['®FIfludarabine and ['®FIFDG
[**F]Fludarabine showed a great clearance from physio-
logical tissues which resulted in a marked contrast between
tumoural and normal tissues (Figure 3a).

A correlation analysis was performed between the
histologically derived surface ratio of viable lymphoid
cells to the total tissue mass and PET/CT-derived radio-
tracer concentrations (%ID/ml), in order to evaluate the
pertinence of [**Flfludarabine and [**F]FDG as robust
tracers. To obtain these correlations, the VOItgt was
used for the PET scan analysis in order to take into
account tumour heterogeneity. Correlation analyses
revealed a powerful relationship between quantitative
values extracted from ['®F]fludarabine PET and histology
(r* =091, p <0.001); the comparable results for [**F][FDG
were at the limit of statistical significance (r*=0.55,
p =0.03) (Figure 3b).

Histopathology of tumours

The immunohistochemical characteristics of the engrafted
tumours, i.e. overexpression of the proteins CD20, CD10,
and Bcl2, were similar in both rituximab- and vehicle-
treated mice. These features are the hallmarks of the
human lymphoma cell line. These similarities strongly
support the origin of the large B-cell lymphoma from
a follicular lymphoma in that CD10 and Bcl2 displayed a
diffuse positive reaction. In vehicle-treated mice, the
tumoural tissue was principally composed of lymphoma
cells and contiguous necrotic areas (Figure 4); in
rituximab-treated mice, in addition to lymphoid clus-
ters and necrotic cells, the analysis revealed fibrotic
and haemorrhagic areas.

assessed by subtracting the MAVT from the total tumour volume.
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Figure 1 Volumetric assessment with ["®F)fludarabine PET/CT and illustration of a delineation of MAVT. (a) Tumour growth in rituximab-treated
(n=5) and vehicle-treated mice (n=5) - RM two-way ANOVA, *** p < 0.001. Error bars: + standard error of the mean (SEM). (b) Contouring of
metabolically active part of tumour (MAVT) based on segmentation with background (muscle) as threshold. The volume of non-avid tissues was
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Figure 2 Illustrations of typical PET/CT scans and quantitative ['®Flfludarabine PET/CT analysis. (a) Co-registered and fused coronal images for a
vehicle-treated (to the left of the colour scale) and a rituximab-treated animal (to the right of the colour scale); the totality of the tumour is delineated
on the illustrations. (b) Relationship between ["®FIfludarabine accumulation [%ID] and tumour volume (vehicle-treated, n=9: left graph
and rituximab-treated, n = 9: right graph); PET quantification with VOIyayt based strictly on the viable lymphoid tissue. Data are displayed as a ratio of
baseline (defined as 1). Correlation coefficients and significance were determined using Pearson’s test.

Discussion

The goal of this study was to investigate the eventual
usefulness of surveillance ['®*F]fludarabine PET/CT,
based on a xenograft model of a follicular lymphoma.
We assessed the robustness of ['®F]fludarabine during
rituximab therapy and performed an inter-tracer com-
parison between ['®F]fludarabine and ['*F]FDG. This
investigation is the logical follow-up to our earlier
publication in which many other preclinical features
of ['®F]fludarabine were described. The choice of the
follicular lymphoma model was based on, primarily, its
efficacious response to treatment with the anti-CD20
antibody which alone, or in combination with other
chemotherapeutic agents, is useful in the treatment of
low-grade NHL [11]. As follicular lymphoma is almost
universally FDG avid, we initiated comparative ana-
lysis between ['®F]fludarabine and ['®F]JFDG with
respect to their concordance with histologically derived
data. Although ['®F]JFDG-PET has proven helpful in
the diagnosis and therapy follow-up in patients with
lymphoma, the specificity of [**F]JFDG uptake has
been brought into question because of its behaviour
similar to glucose metabolism, which may indiscriminately
increase in benign processes such as inflammation or
infection [3-5].

In a previous study in SCID mice bearing a human
follicular lymphoma (RL-7), we demonstrated a marked
difference in the behaviour of [**F]fludarabine in compari-
son with [*®F]FDG immediately after their administration,
a difference that favoured [*®F]fludarabine. The accumula-
tion of the latter tracer in the tumour increased rapidly
over the first 20 min and subsequently plateaued in
contrast to that of [**F]FDG for which no plateau

could be determined, even at the final phase of the
examination. The tissue uptake of ['*F]EDG is highly
variable, with concentrations not reaching a plateau for up
to 4 to 6 h in some tumours [12]. As previously described,
[*®F]fludarabine shows a great washout from normal
tissues which, in turn, results in a pronounced contrast
between tumoural and normal tissues.

In positron emission tomography, the delineation
method of the target volume on PET images is crucial
for quantification. A fundamental biological question,
underlying choices of regions of interest in PET analysis,
is whether either the total tumour volume or the
maximally metabolically active portion of the tumour
is the most important [13,14]. In this present investigation,
we have firstly measured the uptake in VOItot which was
then compared to histological data. The VOIyayt was
calculated for the surveillance of the lymphoma con-
sidering only its metabolically active portion. A wide
variety of methods exist to delineate the MAVT
[12-16] such as isocontours based on a fixed percentage of
the maximal pixel in the tumour or adaptive isocontours
based on a threshold set to background. This latter is an
attractive concept if the uptake in the background (normal
organ) is stable over time [13]. In our study, ‘all above
background’ was considered MAVT, with skeletal muscle
activity set as the threshold, which - as revealed by RM
two-way ANOVA - was stable over sequential PET scans
with no significant main effects of group (Fj,9=0.14), of
time (F29=0.73) and with no significant interaction
(Fy29 = 3.38, p = ns for all).

Based on either calliper or volume by imaging measure-
ments, tumour growth was abolished (despite inter-animal
variability) in all rituximab-treated animals, while in
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Figure 3 Illustration of coronal fused PET/CT images with ['®Flfludarabine and ['®FIFDG and quantitative comparative analysis. (@) Maximum
intensity projections (3D rendering) highlighting the difference between these two radiotracers in terms of normal physiological uptake

(e.g. brain, heart, etc); the totality of the tumour is delineated on the illustrations. (b) Relationship between quantitative values extracted
from PET/CT and histology; PET quantification with VOlror taking into account the tumour heterogeneity. Total uptake [%ID/ml] of the
tracer was correlated to the percentage of lymphoid cells in representative sections from each lymphoma as determined by automatic
quantification of the histological slices (("®F)fludarabine, n=7: left graph and ["®FIFDG, n=8: right graph). Correlation coefficients and
significance were determined using Pearson’s test.

vehicle-treated mice the time to double the tumour volume  between the volume of the metabolically active part of
was 6 days, as analysed by their exponential growth rate. the tumour and the ['®F]fludarabine accumulation in those

In the vehicle-treated mice, where the tumour volume  viable tissues. This relationship was equally significant in
(and also the MAVT) continued to increase throughout the rituximab-treated mice when correlating the MAVT of
the experiment, there was a significant relationship the residual tissue with the tracer accumulation. The

haemorrhagic

Figure 4 Histological illustrations. Histological section (H.ES.) and microscopic view (SlidePath Gateway 2.0, Leica Biosystems, Germany) of a
tumour from (a) vehicle-treated animal and (b) rituximab-treated animal.
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presence of lymphoid tissue at the end of imaging
sessions was confirmed histologically, indicating therefore
the ability of [**F]fludarabine PET/CT to detect persistent
viable tumour areas.

It is known that false positives occur with clinical
EDG-PET in diffuse large B-cell lymphoma with rituximab
therapy [3]. Indeed, rituximab administration may induce
necrosis and relatively long-lasting inflammatory changes
in lymphoid tissues, resulting in a non-specific consump-
tion of [**F]FDG [17-20]. Although FDG-PET has proven
to be sensitive for surveillance of lymphoma, its specificity
appears to be insufficient, resulting in a disturbingly large
number of false-positive results.

To address the issue of radiotracer specificity, we
determined the relationship between PET/CT and
histologically derived data by correlating the tracer
uptake in the totality of the tumour to the percentage
of lymphoid cells. This approach revealed a weaker
correlation for ["*F]FDG when compared to [**F]fludara-
bine, presumably due to a nonspecific accumulation of
[*®F]FDG in glucose-consuming inflammatory or stromal
cells [4,21-23].

In addition, as the cellular uptake of fludarabine is
cell-cycle independent [24], ['®F]fludarabine PET/CT is
a method that holds promise for imaging lymphoid
neoplasms characterized by low mitotic activity that
include chronic lymphocytic leukaemia. This latter
typically has weak ["®F]FDG avidity, and the addition
of the ["®F]FDG PET component has not been shown
to improve the usefulness of CT scans alone in the
management of this specific cohort of patients.

Conclusions

In conclusion, the results of present study, coherent with
our previous investigations, demonstrate several major
characteristics that speak in favour of this novel radio-
pharmaceutical agent. Firstly, the use of ['*F]fludarabine
signals a marked tumour/normal tissue contrast and also
demonstrates considerable specificity. Furthermore, the
rituximab treatment did not interfere with [**F]fludarabine
uptake in the present model of lymphoma. Accordingly,
[**F]fludarabine may be considered a promising approach
for detecting the persistence of follicular lymphoid tissues
during or after rituximab-like treatment. Further investiga-
tions are required to extend this conclusion to other spe-
cific types of lymphoma or treatment. Indeed, the accurate
surveillance by PET can help or change the treatment
recommendations, thus avoiding unnecessarily biopsies
consequent to false-positive imaging studies [25]. Of note,
the use of [**F]fludarabine in fludarabine-treated subjects
remains to be tested. Since, however, fludarabine is no lon-
ger detectable 24 h after the last dose [26], [*®Ffludarabine
uptake, when assessed after that period of time, should not
be affected. These encouraging findings suggest that
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[**F]fludarabine PET/CT might well be an innovative ap-
proach for surveillance of lymphoma. This positron-
emitting biomarker could be also used for tumour chemo-
sensitivity assays in order to identify fludarabine-avid
tumours.

Additional files

Additional file 1: Tumour volume growth curves (calliper
measurements) of CB17-SCID mice bearing subcutaneous DOHH-2
human B cell lymphoma. Mice were SC injected with tumour cells at
day 0. Mice were treated with vehicle or rituximab (10 mg/kg, ip) at day
22,29 and 36. Red arrows represent treatment days. to (day 21), t; (day
34) and t, (day 42) represent ["®FIfludarabine PET/CT imaging days for
treated animals at baseline (1 day before dosing) and follow-up scans,
respectively. to' (day 23), t;" (day 37) and t,' (day 44) represent ['®Fifludarabine
PET/CT imaging days for vehicle animals at baseline and follow-up scans,
respectively. Error bars: £ SEM.

Additional file 2: Time activity curves (TAC) of the tumour and
muscle (non-target tissue) with [18F]fludarabine. TACs were
determined on dynamic PET images (n = 3). On PET/CT fused data,
blue and yellow arrows indicate tumour and muscle, respectively.
Error bars: £ SEM.
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