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Abstract

Background: Staphylococcus epidermidis (S. epidermidis) has emerged as one of the leading pathogens of

biomaterial-related infections. Vascular adhesion protein-1 (VAP-1) is an inflammation-inducible endothelial molecule

controlling extravasation of leukocytes. Sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) is a leukocyte ligand
of VAP-1. We hypothesized that 58Ga-labeled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugated

Siglec-9 motif containing peptide (*®Ga-DOTA-Siglec-9) could detect inflammatory response due to S. epidermidis
peri-implant infection by positron emission tomography (PET).

Methods: Thirty Sprague-Dawley rats were randomized into three groups. A sterile catheter was implanted into
the medullary canal of the left tibia. In groups 1 and 2, the implantation was followed by peri-implant injection of
S. epidermidis or Staphylococcus aureus (S. aureus) with adjunct injections of aqueous sodium morrhuate. In group 3,
sterile saline was injected instead of bacteria and no aqueous sodium morrhuate was used. At 2 weeks after operation,
®8Ga-DOTA-Siglec-9 PET coupled with computed tomography (CT) was performed with the measurement of the
standardized uptake value (SUV). The presence of the implant-related infection was verified by microbiological
analysis, imaging with fluorescence microscope, and histology. The in vivo PET results were verified by ex vivo
measurements by gamma counter.

Results: In group 3, the tibias with implanted sterile catheters showed an increased local uptake of ®*Ga-DOTA-Siglec-9
compared with the intact contralateral bones (SUV,ai +29.5%). ©*Ga-DOTA-Siglec-9 PET detected inflammation induced
by S. epidermidis and S. aureus catheter-related bone infections (SUV,4tio +58.1% and +41.7%, respectively). The tracer
uptake was significantly higher in the S. epidermidis group than in group 3 without bacterial inoculation, but the
difference between S. epidermidis and S. aureus groups was not statistically significant. The difference between
the S. aureus group and group 3 was neither statistically significant.

Conclusion: PET/CT imaging with novel ®®Ga-DOTA-Siglec-9 tracer was able to detect inflammatory tissue
response induced by catheter implantation and staphylococcal infections.
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Background

Coagulase-negative staphylococci, including Staphylococcus
epidermidis, have emerged as the leading pathogen of
nosocomial implant-related infections, including peri-
prosthetic joint infections [1] and intravascular catheter-
related bloodstream infections [2]. Slime-producing S.

* Correspondence: hannu.aro@utu fi

TEqual contributors

’Orthopaedic Research Unit, Department of Orthopaedic Surgery and
Traumatology, Turku University Hospital, University of Turku, Turku FI-20521,
Finland

Full list of author information is available at the end of the article

@ Springer

epidermidis strains exhibit robust attachment to the
plastic devices and metallic implant surfaces followed
by slow proliferation and low metabolic activity within the
biofilm [3-5]. By nature, these infections are frequently
clinically indolent and represent diagnostic and treatment
challenges [1,6,7]. Related to differences in virulence, the
outcome of bone implant infections caused by coagulase-
negative staphylococci is better than those caused by
Staphylococcus aureus (S. aureus) [8].

The gold standard for the non-invasive imaging of
periprosthetic joint infections is the use of white blood
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cell (WBC) scintigraphy [9,10]. The American Academy
of Orthopaedic Surgeons (AAOS) could give only a weak
recommendation for nuclear imaging modalities in the
diagnosis of periprosthetic joint infections [11]. The
inaccuracy of [*®*Fluorine]-2-fluoro-2-deoxyglucose com-
bined positron-emission tomography/computed tomog-
raphy (**F-FDG PET/CT) imaging relates not only to
the high uptake of the tracer both in bacterial infections
and aseptic inflammatory processes, such as mechanical
loosening of prostheses [12], but probably also to the
difficulties in detection of indolent low-grade S. epidermidis
infections.

Confirming the clinical experience with '*F-FDG-PET
imaging of chronic osteomyelitis, our experimental studies
of rabbit tibia models have shown that **F-FDG-PET im-
aging is highly effective in detection of S. aureus osteo-
myelitis [13], in evaluation of prevention of S. aureus
biomaterial infections [14], and in evaluation of treatment
response in local therapy of S. aureus osteomyelitis [15].
In contrast, our recent experiment confirmed that sub-acute
peri-implant S. epidermidis infections are characterized by
low "F-FDG uptake in the rabbit osteomyelitis model
[16]. The result demonstrated the need of better PET
tracers for diagnosing S. epidermidis infections.

Leukocyte migration is an important step in several
types of acute and chronic inflammation as well as auto-
immune diseases. Vascular adhesion protein-1 (VAP-1) is
an inflammation inducible 170-kDa endothelial sialo-
glycoprotein mediating interaction between leukocyte
and endothelium [17,18]. VAP-1 is stored in intracellular
granules within endothelial cells. However, upon inflam-
mation, it is rapidly translocated to the endothelial cell
surface. Besides being an adhesion molecule, VAP-1 is also
a semicarbazide-sensitive amine oxidase (SSAO) enzyme,
which catalyzes oxidative deamination of primary amines
resulting in aldehyde formation and releasing of hydrogen
peroxide [19]. The end products are highly potent
inflammatory mediators. Therefore, VAP-1 is both an
optimal candidate for anti-inflammatory therapy and a
potential target for imaging of inflammation.

Sialic acid-binding immunoglobulin-like lectins (Siglecs)
are usually involved during inflammatory and immune
responses in subset of leukocytes [20]. We have recently
discovered that Sialic acid-binding immunoglobulin-like
lectin 9 (Siglec-9) is a leukocyte ligand of VAP-1 and
a Gallium-68-labelled 1,4,7,10-tetraazacyclododecane-
1,4,7,10-tetraacetic acid (DOTA)-conjugated Siglec-9
motif peptide (**Ga-DOTA-Siglec-9) can be used for
PET imaging of inflammation and cancer [21].

The current study was delineating the efficacy of novel
%8Ga-DOTA-Siglec-9 PET for the detection of inflamma-
tory response due to S. epidermidis peri-implant infection.
The comparison was made with implant infections caused
by S. aureus and a sterile implant group.
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Methods

Experimental design

Thirty adult male rats were randomized into three
groups. Each animal underwent surgical implantation of
a sterile intravenous catheter into the medullary canal of
the left tibia while the right tibia served as the intact
intra-animal control. In group 1, the implantation was
followed by sequential injections of aqueous sodium
morrhuate and biofilm-inducing S. epidermidis suspension
via the catheter. The animals of group 2 received equal
injections of aqueous sodium morrhuate and biofilm-
inducing S. aureus suspension. In group 3, an equal
amount of sterile saline was injected via the sterile
catheter. Two weeks after surgery, PET/CT imaging
with ®3Ga-DOTA-Siglec-9 tracer was performed. The
in vivo PET results were verified by ex vivo measurements
of both tibias. The presence of inoculated staphylococcal
infections and the absence of contamination in the group
with sterile catheters were verified by separate microbio-
logical analyses of bone specimens and retrieved catheters.
The presence of microbial biofilms on catheters was veri-
fied ex vivo with fluorescence microscopy. Histological in-
flammatory reactions were graded using a scoring system.

Ethical statement

The animal study protocol was approved by the Finnish
National Animal Experiment Board, ELLA (Permit #
ESAVI/3485/04.10.03/2012). The animal experiments
were carried out in the Central Animal Laboratory of
the University of Turku. The institutional guidelines
and the protocols for the analgesia, anesthesia, and
housing of the rats were followed. Before surgery, the
rats were acclimated to their new environment and fed
a standard laboratory diet. The animals were housed in
groups of two with constant room temperature. After
surgery, the functional activity of the animals was not
restricted. The animals were allowed free weight-bearing
after recovery from anesthesia.

Animals

Thirty adult male Sprague-Dawley rats (obtained from
Harlan, the Netherlands), weighing a mean of 425 g
(SD 37 g) were used. Five rats served as reserve.

Bacterial strains and measurement of biofilm production
capability

S. epidermidis clinical isolate T-54580 and S. aureus
clinical isolate 52/52A/80 were used. Prior to the in vivo
experiment, the bacterial strains were tested for their
in vitro capability to form the biofilm. The strains were
cultured overnight at 35°C with agitation on brain-heart
infusion broth (BHI; Sigma-Aldrich, co, St. Louis, MO,
USA). Thereafter, the bacterial suspension was adjusted
to an optical density (OD) at 600 nm to 0.18 in BHIL
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Static biofilms were constructed according to Merrit
et al. [22]. Briefly, the bacterial suspensions were diluted
with BHI in a ratio of 1:10, and 200 pL were pipetted
into the 96-well flat bottom polystyrene microplates
(Nunc A/S, Roskilde, Denmark). BHI without the bacterial
suspension was used as a control. Bacteria were incubated
at 35°C, in ambient air for 24 h. After incubation, the
culture medium was removed and the wells were washed
twice with phosphate buffered saline (PBS) to remove
planktonic cells. Capability of biofilm formation was ana-
lyzed by the crystal violet technique [22]. All tests were
performed in triplicate.

Preparation of bacterial suspension for the in vivo study
S. epidermidis and S. aureus were cultured overnight on
blood agar plates. Thereafter, bacterial suspensions were
prepared by adjusting OD at 600 nm to 0.18 (correspond-
ing to Mc Farland 1) in sterile saline. One milliliter of
S. epidermidis suspension was adjusted to be equal to
3 x 10® colony-forming units (CEU). One milliliter of S.
aureus suspension was diluted to be equal to 3 x 10> CFU.
Bacterial suspensions were stored at 4°C and used as an
inoculum at the day of preparation. To evaluate the actual
bacterial number in each suspension, the series of tenfold
dilutions were prepared and 100 pL from each dilution
was plated on blood agar plates to calculate colony-
forming units per milliliter.

Animal model

For surgery, the animals were anesthetized by subcuta-
neous injections of a mixture of ketamine hydrochloride
(Ketaminol® vet 50 mg/mL, Intervet International B.V.,
Boxmeer, the Netherlands) and medetomidine hydrochlor-
ide (Cepetor vet 1 mg/mL, CP-Pharma Handelsges. mbH,
Burgdorf, Germany). Skin preparation involved careful
shaving, disinfection with chlorhexidine, and surgical
draping. The anterior part of the proximal right tibia was
exposed through a short skin incision, and a small cortical
bone hole was made next to the patellar tendon insertion
using an injection needle. An intravenous catheter made
of polytetrafluoroethylene (PTFE) (BD VenflonTM, Becton
Dickinson Infusion Therapy, Helsingborg, Sweden) with
the diameter of 1 mm was introduced into the medullary
canal. The bacterial suspension was injected into the
medullary cavity through the catheter. The group 1
rats received 0.05 mL solution of 3 x 10® CFU/mL of S.
epidermidis. Before the inoculation, a volume of 0.05 mL
of 5% wt/vol. sodium morrhuate (Scleromate, Glenwood,
Englewood, NJ, USA) was injected via the catheter. So-
dium morrhuate is a sclerosing agent, composed of
fatty acids and arachidonic acids, producing aseptic bone
necrosis and increasing the probability of local bone infec-
tion. The animals of group 2 received equal 0.05 mL in-
jections of S. aureus suspension (3 x 10° CFU/mL) and
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aqueous sodium morrhuate. In group 3, no bacteria or
aqueous sodium morrhuate were injected, but an equal
amount of sterile saline was injected via the catheter
into the medullary canal. Subsequently, the catheter was
cut at the site of the cortical bone entry and the intra-
medullary portion of the catheter was left in situ. The
wound was closed in layers. The anesthesia was reversed
by subcutaneous injection of atipamezole hydrochloride
(Antisedan 5 mg/mL, Orion Oyj, Espoo, Finland). During
and after the surgery, the hypothermia of the animals was
prevented using heating pads. Standard postoperative pain
medication of buprenorphine (Temgesic® 0.3 mg/mL,
PB Pharmaceuticals Limited, Slough, Berkshire, UK)
was given subcutaneously for 3 days after the surgery.
After the surgery, the functional activity of the animals
was not restricted.

Radiochemistry

DOTA-Siglec-9 peptide was purchased from Peptide
Specialty Laboratories (Heidelberg, Germany). “®Ga was
obtained from a “*Ge/°®Ga generator (Eckert & Ziegler,
Valencia, CA, USA) by elution with 0.1 M HCL *®*Ga elu-
ate (0.5 mL, 290 to 350 MBq) was mixed with 2-[4-(2-
hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES;
120 mg) to give a pH of approximately 4.1. Next, 85 ug
DOTA-Siglec-9 (35 nmol, dissolved in deionized water)
was added, and the reaction mixture was heated at 100°C
for 15 min. Radiochemical purity of **Ga-DOTA-Siglec-9
was determined by reversed-phase high-performance
liquid chromatography coupled with a radiodetector
(radio-HPLC; Jupiter C18 column, 4.6 x 150 mm, 300 A,
5 um; Phenomenex, Torrance, CA, USA). The HPLC con-
ditions were as follows: flow rate = 1 mL/min; A = 215 nm;
A =0.1% trifluoroacetic acid (TFA)/water; B=0.1% TFA/
acetonitrile; and A/B gradient at O to 2 min 82/18, at 2 to
11 min from 82/18 to 40/60, at 11 to 14 min 40/60, at 14
to 15 min from 40/60 to 82/18, and at 15 to 20 min 82/18.

PET/CT imaging

The imaging device was Inveon Multimodality PET/CT
scanner (Siemens Medical Solutions, Knoxville, TN, USA).
Two weeks after the surgery, rats were anesthetized with
isoflurane and CT was performed for anatomical reference
and attenuation correction. Subsequently, rats were
intravenously injected with 19 + 2.0 MBq of ®®Ga-DOTA-
Siglec-9 via the tail vein and a 30-min PET acquisition in
a list mode was performed. PET data were recon-
structed iteratively with the ordered-subsets expectation
maximization 3D algorithm. A quantitative analysis was
performed by a blinded observer (H.A.), and regions of
interest (ROIs) were defined in the proximal and distal
part of the operated, contralateral tibia and contralateral
skeletal muscle using Inveon Research Workplace software
(Siemens Medical Solutions, Malvern, PA, USA). The tracer
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accumulation was expressed as a standardized uptake value
(SUV), i.e, [(average radioactivity within the ROI)/(injected
radioactivity dose/rat body weight)]. The SUV ,,s between
the operated tibia and the contralateral intact tibia and the
operated tibia and contralateral muscle were calculated
and used for intra- and inter-group comparisons.

Immediately after the PET imaging, the rats were
sacrificed. The tibias with intramedullary catheters were
retrieved and sliced into five segments using sterile tech-
niques (Figure 1). The first two segments were taken for
histology, the third segment was taken for microbio-
logical analyses, the fourth segment was used for PET
ex vivo radioactivity measurements, and the last fifth
segment was prepared for fluorescence microscopy im-
aging of biofilm formation. Standard tissue samples (oper-
ated and contralateral tibia, contralateral muscle, blood,
heart, kidney, liver, lung, plasma, and urine) were excised,
weighed, and measured for total radioactivity using a
gamma counter (1480 Wizard 3", PerkinElmer/Wallac,
Turku, Finland). Ex vivo radioactivity measurements were
corrected for the radionuclide decay to the time of injec-
tion. The radioactivity remaining in the tail was subtracted
from the injected radioactivity. The tissue uptake of radio-
activity was reported as a SUV and SUV 0.

Histology

The first bone segment of the retrieved tibias with the
catheter in situ was used to prepare non-decalcified
histological sections. The bone segment were fixed in
70% ethanol, dehydrated in a graded series of ethanol,
cleared in xylene, and embedded in isobornylmehyacrylate

1 2 3 4 5

(on Tute W st ¥ mien | mutn
a

ROI 1 ROI 2

b

Figure 1 Schematic illustration of the operated tibia. (a) The
bone was sliced into five sections for further characterization: (1)
histological analysis (decalcified sections); (2) histological analysis
(non-decalcified sections); (3) microbiological analysis; (4) ex vivo
radioactivity measurement; (5) fluorescent microscopy of biofilm
formation. (b) Quantification of the in vivo PET/CT data using two
regions of interest (ROI).
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(Technovit 1200 VLC, Kulzer, Germany) for sectioning
and staining with van Gieson method. For the preparation
of decalcified sections, the second bone segment was fixed
in 10% formaldehyde, decalcified, embedded in paraffin,
and stained with hematoxylin and eosin for the evaluation
of inflammatory cell response. The stage of infection was
semi-quantitatively graded using a scale system [23]: grade
0 = no infection, grade 1 = minimum evidence of infection,
grade 2 =moderate evidence of infection, and grade 3 =
severe infection. The histological grading was based on
the consensus of three independent investigators.

Microbiological analysis

The third bone segment of the retrieved tibia with the
catheter in situ was used to prepare microbiological
specimens. The bone was separated from the catheter.
The bone specimens and the catheter specimens were
placed into the separate tubes containing the fastidious
anaerobe broth (FAB; LabM, Lancashire, UK). The bone
specimens were kept in the freezer while the catheter
specimens were incubated for 7 days under aerobic con-
ditions, at 35°C. If visual bacterial growth was detected
during the incubation period, then 50 pL of bacterial
suspension was cultured on the blood agar plate and
incubated overnight, at 35°C. Staphaurex latex agglutin-
ation test (Remel Europe Ltd, Dartford, Kent, UK) was
performed for the identification of the isolated patho-
gens. If the agglutination test was negative, the analytical
profile index (API °/ID 32, BioMérieux SA, Marcy 1'’Etoile,
France) was used for identification of staphylococcal col-
onies. If no visual bacterial growth was detected during
the incubation time, the bone specimens were snap frozen
with liquid nitrogen and pulverized with a mortar and a
pestle. The bone chips were vortexed in saline for 5 min.
The serial tenfold dilutions were taken. Subsequently, the
samples were cultured on a blood agar plate and incu-
bated for 48 h. If the culture results were negative, the
polymerase chain reaction with universal 16S ribosomal
DNA primers (16 s PCR) was performed, as previously de-
scribed [24].

Imaging with fluorescence microscope

The fifth segment of the retrieved tibia with the catheter in
situ was taken for imaging with fluorescence microscope
(Olympus BX 51; Olympus Optical Co Ltd, Hatagaya,
Shibuya-ku, Tokyo, Japan). The bone content was separated
from the catheter. The catheter was immersed in a 1-mL
PBS, stained with live/dead staining (BacLight kit™;
Invitrogen, Barcelona, Spain) for 15 min without light
access and then rinsed with PBS. The following staining
conditions were used: 1.5 pL of SYTO® 9 (stock 3.34 mM
dimethyl sulfoxide, DMSO) and 1.5 pL propidium iodide
(stock 20 mM DMSO) in 1 mL PBS. During the imaging
with fluorescence microscope, SYTO® 9 green fluorescence



Ahtinen et al. EINMMI Research 2014, 4:45
http://www.ejnmmires.com/content/4/1/45

marked the living microorganisms with intact membrane
and propidium iodide red fluorescence marked the dead
bacteria with damaged membrane. After the staining pro-
cedure, the cells were imaged.

Statistical analyses

Normal distribution of the data was verified using
Kolmogorov-Smirnov test. A paired ¢ test was used in
the intra-animal comparison of the tracer uptake be-
tween the operated and contralateral bones. One-way
ANOVA with Tukey's post hoc tests were used in the
inter-group comparisons of the PET data. Non-parametric
Kruskal-Wallis test with Mann-Whitney post hoc tests
were used in the inter-group comparison of the histo-
logical data. Non-parametric Spearman rank-order
correlation analysis (two-tailed) was used to examine
associations between the PET and histological data.
Statistical analyses were done using IBM SPSS statistical
software (version 19, SPSS Inc, Chicago, IL, USA).

Results

Measurements for biofilm production

Prior to the in vivo experiments, the bacterial strains
were tested for their in vitro capability to form biofilms.
After 24 h of incubation, both strains were able to form
the biofilm. Moreover, there were no significant differences
in biofilm mass and, therefore, in the capacity of biofilm
production between the S. epidermidis and S. aureus
strains.

Radiochemistry

According to radio-HPLC, the radiochemical purity of
%8Ga-DOTA-Siglec-9 was >95% throughout the study.
Under the conditions described above, the retention
time of ®*Ga-DOTA-Siglec-9 was 9.8 + 0.04 min.

PET imaging

Inflammatory response to sterile catheters

The **Ga-DOTA-Siglec-9 PET/CT imaging was able to
detect the inflammation/bone healing process induced
by implantation of the indwelling catheters. Group 3
(n =10) showed an increased local uptake of the *®Ga-
DOTA-Siglec-9 in the operated tibias compared with
the intact contralateral bones. The differences were signifi-
cant both in the proximal (SUV 4, +29.5%, p < 0.001) and
distal (SUV 40 +23.7%, p <0.001) tibia (ROI1 and ROI2,
respectively).

Histologically, there was a low inflammatory reaction
and reactive new bone formation around the catheters
(Figure 2e,f). No bacteria could be cultured from the
retrieved catheters and bone specimens. Except for one
sample with probable contamination, the catheters
showed no bacterial biofilm in fluorescent microscopy
(Figure 3c).
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Inflammatory response to S. aureus peri-implant infection

The ®®Ga-DOTA-Siglec-9 PET/CT imaging detected in-
flammatory response to the implant-related infection
caused by S. aureus in the proximal (SUV 4, +41.7%) and
distal (SUV .40 +30.9%) tibia (ROI1 and ROI2, respect-
ively). However, due to the limited group size (n =7) fol-
lowing failed tracer injections in three animals and high
scatter in the data, the differences were not statistically
significant. Subsequently, in the inter-group comparison
of the PET data, the difference between S. aureus group
and group 3 without bacterial inoculation was not statisti-
cally significant, even when the animals with the negative
microbiological results were excluded from the analysis.

The histological appearance of the infection sites ranged
from low to severe reaction; in general, the infection was
severe (median grade 3, range 1 to 3). In the most extreme
cases, the infection was manifested in significant periosteal
reaction, extensive destruction of the cortex, and increased
number of the polymorphonuclear leukocytes in the me-
dullary canal (Figure 2c,d). In the inter-group comparison
of the histological data, there were statistically significant
differences between S. aureus group and group 3 without
bacterial inoculation (p < 0.001).

There was a positive bacterial growth for the inoculated
S. aureus strain in 70% and 60% of the catheter and bone
specimens, respectively. The animals with negative cul-
tures also had negative PCRs. In fluorescent microscopy
imaging, the presence of a biofilm on the surface of the
retrieved catheters was observed 70% of the specimens
(Figure 3b).

Inflammatory response to S. epidermidis peri-implant
infections

The *®Ga-DOTA-Siglec-9 PET/CT imaging detected in-
flammatory response to the implant-related infection
caused by S. epidermidis. The animals with peri-implant
S. epidermidis inoculations (n = 10) showed the highest
local uptake of the ®®Ga-DOTA-Siglec-9. Compared
with the intact contralateral bones, the difference in the
tracer uptake was significant both in the proximal
(SUV atio +58.1%, p = 0.009) and distal (SUV ., +48.2%,
p=0.013) tibia (ROIl and ROI2, respectively). **Ga-
radioactivity was accumulated especially in the proximal
part of the tibia (Figure 4a). In the inter-group compari-
son, the uptake of ®®Ga-DOTA-Siglec-9 in the proximal
tibia was significantly higher in the S. epidermidis group
than in group 3 without bacterial inoculation (p = 0.020)
(Figure 5). The difference in the tracer uptake between
the S. epidermidis group and group 3 was significant
(p =0.005) also in the distal part of the tibia (ROI2). In
addition, when the PET data of S. epidermidis group
and S. aureus group were pooled together, statistical
comparison with group 3 without bacterial inoculation
revealed significant differences in the tracer uptake
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Figure 2 Histological-analysis. (a) Staphylococcus epidermidis group, van Gieson stain. Inflammatory response is expressed as a sunburst type
periosteal reaction (PR) and partial resorption of the cortex (C). Implant is denoted as ‘Impl". (b) S. epidermidis group, hematoxylin and eosin stain.
Increased number of polymorphonuclear leukocytes were observed in the medullary canal in the proximity of the implant (arrow). This layer is
surrounded by granulation tissue; (c) Staphylococcus aureus group, van Gieson stain; Inflammatory response is expressed as a circumferential
sunburst type periosteal reaction (PR) and an almost complete resorption of the cortex (C). (d) S. aureus group, hematoxylin and eosin stain.
Polymorphonuclear leukocytes are seen in the proximity of the implant (arrow). (e) Sterile catheter implant group, van Gieson stain; Periosteal
and cortical reactions are absent. Reactive bone formation (RB) is seen around the implant. (f) Sterile catheter implant group, hematoxylin and
eosin stain. The implant is surrounded by fibrous capsule and reactive bone (RB).

Figure 3 Fluorescence microscope images of catheters. The catheter surfaces stained with BacLite Kit. Biofilm clusters composed of
aggregates of viable coccoid bacterial cells, which were stained with SYTO® 9 (green color) and dead bacteria stained with Pl (orange-red).
(@) S. epidermidis; (b) S. aureus; (c) sterile catheter.
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Figure 4 Representative sagittal and coronal PET/CT images. Representative sagittal and coronal PET/CT images with **Ga-DOTA-Siglec-9

peptide of the rats with (a) catheter-related S. epidermidis infection of the right tibia, (b) catheter-related S. aureus infection of the right tibia, or
(c) catheter implantation in the right tibia without bacterial inoculation. High focal uptake of radioactivity in the infected right tibia is observed

(red arrows) compared with the contralateral intact left tibia (white arrows). Excess of radioactivity is excreted through the kidneys (two headed
black arrow) to the urinary bladder (black arrow).
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Figure 5 Comparison of the uptake of ®*Ga-DOTA-Siglec-9 in the three groups of animals. The three groups are as follows: S. epidermidis
infection, S. aureus infection, and sterile catheter implant. The uptake is shown as the intra-animal SUV,.;, values of the proximal tibias measured
in vivo (ROIN in Figure 1) and ex vivo (section 4 in Figure 1). Box plots of are showing median, first and third quartiles, minimum and maximum
values, and outliers. Comparison between the groups performed with ANOVA with Tukey's post hoc test.

(p=0.030 in the proximal part of the tibia and p = 0.037
in the distal parts of the tibia).

Histologically, in S. epidermidis group, there were
signs of severe infection (median grade 3, range 1 to 3),
including circumferential sunburst-type periosteal reaction,
moderate subperiosteal, endosteal, and intracortical resorp-
tion of the cortex, and enlarged Haversian canals filled with
granulation tissue and fragmented polymorphonuclear
leukocytes with occasional microabscesses (Figure 2a,b).
However, the extensive destruction of the cortex char-
acteristic to the S. aureus infection (Figure 2c) was not
observed in S. epidermidis group (Figure 2a). In the
inter-group comparison of the histological data, there were
statistically significant differences between S. epidermidis
group and group 3 without bacterial inoculation (p < 0.001).
The difference between S. epidermidis group and S. aureus
group was not statistically significant.

Spearman rank-order correlation revealed statistically
significant associations between SUV,,, and histological
data for proximal (Rs=0.565, p =0.003) and for distal
(Rs=0.629, p=0.003) parts of the tibia when the data
was analyzed en bloc. However, if the data were split into
the three groups (S. epidermidis group, S. aureus group,
and group with catheter implantation without bacterial
inoculation), the statistically significant associations were
no longer present.

Fluorescent microscopy demonstrated the presence of
a biofilm on the surface of the retrieved catheters in 82%
of the animals in the S. epidermidis group (Figure 3a). In
microbiological examination, specimens from all animals,
except one, showed positive bacterial growth in catheter
and bone samples. The API test verified the presence of
bacteria.

Discussion

S. epidermidis, an innocuous commensal habitant of the
human skin and mucous membranes, has emerged as a
frequent cause of nosocomial infections [25]. S. epidermi-
dis is the most common origin of infections of indwelling
medical devices [25], in particular, periprosthetic joint
infections and intravascular catheter-related bloodstream
infections [1,2]. These infections pose high challenges for
microbiologic studies and diagnostic imaging. Indeed, our
recent animal study demonstrated that S. epidermidis
bone infections were characterized by low '*F-FDG up-
take in PET/CT imaging, reflecting the limited inflamma-
tory host response to the pathogen [16]. The rationale of
the current experiment was to explore a novel approach
to detect the inflammatory response to S. epidermidis
peri-implant infections by means of PET imaging of
leukocyte trafficking using VAP-1 as the target molecule.
The results indicate that ®*Ga-DOTA-Siglec-9 PET was
able to detect the inflammatory response to S. epidermidis
peri-implant infections.

The imaging of leukocyte trafficking using VAP-1 as a
target molecule is a novel approach. VAP-1 is an inflam-
mation inducible endothelial cell molecule mediating
leukocyte interactions with the lining of blood vessels
[17,19]. It contributes to several steps in the extravasa-
tion cascade and controls trafficking of lymphocytes,
granulocytes, and monocytes to sites of inflammation.
VAP-1 is practically absent from the endothelial surface
of normal tissues [17,19]. Previously, we have reported
the in vivo stability, tissue distribution, and bio-kinetics
of the VAP-1-targeting peptides for PET imaging of
inflammation in animal models [26-29]. The ability to
image inflammation was shown in a rat bone healing
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model [26]. Using a phage display approach, we have
discovered that Siglec-9 is a granulocyte ligand for VAP-1
and a *®Ga-labeled Siglec-9 motif peptide specifically de-
tects VAP-1 in vasculature at sites of inflammation and
cancer by PET [29]. Although granulocytes can bind to
endothelium via a VAP-1-dependent manner, the counter-
receptor(s) on this leukocyte population were not known
before.

An animal model of acute peri-implant osteomyelitis
was modified for this study. The model relies on the use
of a sclerosing agent, sodium morrhuate, to promote the
development of infection. The use of sodium morrhuate
for the promotion of osteomyelitis has been criticized
[30,31]. For example, in a previous report, histological
examination, performed 2 weeks postoperatively, detected
a slight increase in the periosteal bone formation in rat
tibias treated with sodium morrhuate [32]. The bone
repair process, which follows the aseptic bone necrosis
caused by the sclerosing agent, could be misinterpreted in
diagnostic imaging, especially at the early stages after
inoculation [30]. Despite this drawback, the animal model
with sodium morrhuate pretreatment is considered robust
and reproducible [31]. Therefore, it has been frequently
applied in the studies involving diagnostic imaging without
an animal group dedicated to the assessment of the effect
of sodium morrhuate alone [16,27,32-34]. The virulence of
slime-producing S. epidermidis strains can be so low
that even the use of aqueous sodium morrhuate does
not guarantee the induction of bone infection. In our
previous experiment [16], using a rabbit model with a
small block of bone cement as the foreign body and use
of adjunct sodium morrhuate, we observed that a standard
slime-producing laboratory S. epidermidis strain (ATCC
35983) induced only occasionally culture-positive bone in-
fections, while the clinically retrieved S. epidermidis strain
(T-54580) produced infection in a reliable manner. In this
study, we cannot exclude the possibility that sodium
morrhuate caused inflammation on its own and acted as
a confounding factor. However, the lack of statistically
significant differences in the tracer uptake between S.
aureus group with sodium morrhuate pretreatment and
the sterile implant group without sodium morrhuate
pretreatment suggests that the effect of the sclerosing
agent is marginal.

Silicone catheter is one of the commonly used foreign
bodies in animal models of osteomyelitis [35-37]. Lambe
and colleagues [37] used this model to induce osteomyelitis
in the rabbit tibia with S. epidermidis. To our knowledge,
this is the first study to report the use of catheters in rat
models of osteomyelitis. The main benefit was the closed
direct injection of the inoculum into the close space of the
medullary canal. The use of an injection needle for the
creation of a hole in the metaphysis eliminates the need to
seal the aperture [31].
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In S. aureus group, 10* CFU inoculum (3 x 10° CFU/mL,
0.05 mL) was above the minimum level of 10®> CFU re-
ported to produce implant-related infections [38]. In our
previous experiment, the same inocula induced infection in
the rabbit tibia with a foreign body (a small block of bone
cement) [16]. In rats, 10* CFU inoculum was reported
to produce implant-related infections [39]. Based on the
microbiological and histological findings of this study,
the infection was detected in 60% to 70% of the animals.
The inconstant induction of S. aureus osteomyelitis may
be related to the selected dose. In a previous experiment
of the rat tibia, we applied a higher dose (10’ CFU),
which caused severe osteomyelitis in all cases [34].

The inoculum 10" CFU (3 x 10° CFU/mL, 0.05 mL) of
the slime-producing clinical isolate of S. epidermidis was
used in this study. In the rabbit models of osteomyelitis
with S. epidermidis, bacterial inocula have been in the
range of 10* to 10® CFU [16,37,40]. Rat models of S.
epidermidis osteomyelitis are less common [41]. In an
implant-related osteomyelitis model, 10> CFU inoculum
was reported for S. epidermidis [41]. In our study, a
10" CFU inoculum was selected based on the results of
our pilot study (unpublished data), which showed a
consistent foreign-body-associated (bone cement block)
osteomyelitis in the rat tibia in response to the adjunct
inoculum of 10® CFU of S. epidermidis. The dose was
lowered in the current experiment because the goal was
to create a low-grade biofilm-related infection commonly
encountered in the clinical settings. Probably reflecting
the efficient closed administration of the bacterial in-
oculum via the catheter, even the lowered dose led to the
unexpectedly severe osteomyelitis. Thus, this experiment
did not simulate the PET/CT imaging of typical clinical
low-grade S. epidermidis infections and we cannot be sure
that the applied imaging technique detects low-grade S.
epidermidis infections.

WBC scans have emerged as the leading technique
for imaging of periprosthetic joint infections [9,10].
Optimization of the imaging and interpretation protocols
of WBC scans allows an improved differentiation of sterile
inflammation from infection-related accumulation of leuko-
cytes [42,43]. The specificity of *F-FDG for differentiation
between inflammation and infection is limited [44] and in
the field of orthopedic surgery, the main disadvantage of
the current techniques of '*F-FDG-PET/CT imaging relates
to the inability to differentiate bacterial infections and asep-
tic inflammatory processes caused by mechanical loosen-
ing of joint prostheses [12,45]. This will also be the
challenge for the development of °®Ga-DOTA-Siglec-9
PET/CT techniques to become a useful clinical tool.

Conclusions
Based on this exploratory study, ®*Ga-DOTA-Siglec-9 PET
is able to detect inflammatory tissue response induced by
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catheter-related S. epidermidis infection. One of the next
preclinical steps will be the modification of the current
animal model to achieve a model of low-grade S. epider-
midis peri-implant infection and to compare the uptake
of ®®*Ga-DOTA-Siglec-9 in a model of inflammation
simulating aseptic loosening of bone implants.
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