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Abstract
Decoding approaches provide a useful means of estimating the information
contained in neuronal circuits. In this work, we analyze the expected classification
error of a decoder based on Fisher linear discriminant analysis. We provide expressions
that relate decoding error to the specific parameters of a population model that
performs linear integration of sensory input. Results show conditions that lead to
beneficial and detrimental effects of noise correlation on decoding. Further, the
proposed framework sheds light on the contribution of neuronal noise, highlighting
cases where, counter-intuitively, increased noise may lead to improved decoding
performance. Finally, we examined the impact of dynamical parameters, including
neuronal leak and integration time constant, on decoding. Overall, this work presents
a fruitful approach to the study of decoding using a comprehensive theoretical
framework that merges dynamical parameters with estimates of readout error.
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1 Introduction
In recent years, neuronal decoding has emerged as a key aspect of understanding the neu-
ral code [1]. The aim of decoding algorithms is to read out the sensory-driven responses
of a neuronal population and classify them following a given criterion. Popular criteria in-
clude Fisher information [2, 3], mutual information [4], and machine learning approaches
[5, 6]. While many types of decoders exist [7], a linear readout of neural activity has of-
ten been employed to perform sensory classification [8, 9] and predict motor decisions
[10, 11]. Further, different classes of linear readouts are amenable to mathematical analy-
sis and capture biological learning rules such as Hebbian learning [12].

In this work, we formally analyze the optimal decoding error of a linear decoder based
on Fisher linear discriminant analysis (LDA). Assuming discrete classes of stimuli, LDA
provides an upper bound on linear decoding capacity [13]. In addition, LDA shows good
agreement with decision-making tasks and offers a bridge between cortical activity and
behavioral performance [14, 15].

Importantly, most theoretical approaches based on neural decoding are not concerned
with how linear decoders would be influenced by specific dynamical parameters of mod-
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Figure 1 Fisher linear discrimination of neural activity in a population model. (A) Two neural populations (x
and y) where the noise correlation is adjusted via a parameter ρ . Each population receives two distinct inputs
(ν1 and ν2) and a private source of noise whose gain is βx and βy , respectively. The stimulus-driven response
of each population is described by a tuning curve relating stimulus orientation to firing rate. (B) Activity for
populations x and y is shown at discrete time-points (solid black circles). The optimal decision boundary (c)
obtained by LDA discriminates amongst the neural activity generated by each of the two inputs. Neural
responses follow a Gaussian distribution. The shaded area shows the proportion of discrimination error for
stimulus 2

eled neural systems [16]. Here, we address this concern by providing expressions that re-
late decoding error to the adjustable parameters of a rate-based population model with a
linear neural integrator [17, 18]. This model captures the average spiking activity of neu-
ronal populations [19–21] and the quasi-linear responses of neurons found in many exper-
imental contexts [22]. Preliminary results have been presented in previous work [13, 14],
yet the full analytical solution had remained incomplete and limited to positive noise cor-
relation; we now present the complete solution.

The framework relies on the simplifying assumption that signal and noise correlations
originate from independent sources. While this assumption does not hold in biological
circuits, where signal and noise are related [1], it allows us to systematically explore a
wide range of scenarios that describe the impact of neuronal inputs, noise, correlations,
and dynamical parameters on linear decoding, where the contribution of each parameter
can be examined independently.

This paper begins by describing the neural integrator model and the LDA readout. Then,
we provide expressions for LDA error that rely on the parameters of the integrator model.
Finally, we consider the effect of correlation, noise, and dynamical parameters on neuronal
decoding using both analytical expressions and numerical simulations.

2 Linear population model
As a starting point, we assume two independent neuronal populations, each projecting in
a feedforward manner to a readout discriminating amongst two inputs, ν1 and ν2, that are
constant over time (Fig. 1(A)). Each population’s mean firing rate in response to stimuli
is conceptualized by a tuning curve where a stimulus feature, for instance visual orien-
tation, generates a graded response. This scenario is analogous to analyses that examine
population responses after performing a dimensionality reduction to generate a “popula-
tion tuning curve” [23]. While a more complex model could account for a heterogeneity
of responses within each population, we choose to limit our model to two homogeneous
populations in order for the classification problem to remain tractable.
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The activity of each population is described by a linear neural integrator

τx
dxi

dt
= –αxxi + νi,x + βxξx(t),

τy
dyi

dt
= –αyyi + νi,y + βyξy(t),

(1)

where xi and yi are the firing rates of each population in response to a given stimulus i, τ

is a time constant, α is a leak term, ξ (t) is Gaussian white noise (N (0, 1)), and β is the gain
of the noise. Network parameters τ , α, and β are bound to R>0. We make no distinction
between noise induced by stimuli and noise generated through intrinsic neural activity.
While their effect on mean rate activity is similar [24], their impact on noise correlations
differs [1]; in the model, we explicitly separate the effect of firing rate and noise correlation.
This will be done by controlling noise correlation through a tunable parameter, as detailed
in Sect. 4. An advantage of this formalism is that the effect of noise correlation can be
systematically isolated from changes in firing rates and signal correlation that would be
induced through reciprocal connections between the two populations. Further, depending
on the choice of parameters, the addition of recurrent weights to Eq. (1) may prevent the
system from reaching a stationary state, which is a fundamental assumption of LDA.

3 Fisher linear discriminant decoder
A linear decoder based on LDA reads out the activity of the population model in order
to perform a binary discrimination (Fig. 1(B)). Discrimination error generated by LDA
provides an estimate of the statistical confidence in distinguishing pairs of stimuli based on
network activity. We focus on pairwise discrimination given that error rates obtained from
more than two stimuli are well approximated by values obtained from all combinations of
pairwise comparisons [25].

LDA assumes that neural activity is sampled from a multivariate Gaussian distribution
with class covariance matrix �i and class mean vector μi. Further, LDA assumes equal
class covariance, therefore �1 = �2 = �. LDA attempts to find a projection line w, per-
pendicular to the decision boundary, onto which the input space is projected. The optimal
projection line maximizes the Fisher criterion J (w) defined as the ratio of the projected
between- to within-class variance:

J(w) =
w · (μ2 – μ1)2

wT ·�W ·w
.

Given the assumption of equal class covariance, we set �W = 2�. By taking the derivative
of J (w) with respect to w and setting it to zero, one finds the closed-form solution for the
optimal projection line to be

W = (2�)–1(μ2 – μ1). (2)

4 Formulating a model-based linear decoder
To analytically derive means (μ1 and μ2) and covariance (�) from the neural population
model, we rearrange Eq. (1) as follows, using population x as example:

dxi =
αx

τx

(
νix

αx
– xi

)
dt +

βx

τx
ξx(t) dt. (3)
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Given that a white noise process is by definition the time derivative of a Weiner process,
ξ (t) = dWt/dt, we can rewrite Eq. (3) as

dxi = θx(μix – xi) dt + λx dWx,t , (4)

with θx = αx/τx, μix = νix/αx, and λx = βx/τx. Equation (4) is an Orstein–Uhlenbeck process
with known solution

xi(t) = μix + (xi0 – μix)e–θxt + λ

∫ t

0
e–θx(t–s) dB(s). (5)

Equation (5) is a mean reverting process whose stable state follows a Gaussian distri-
bution. A full derivation of this process is found in Sections A.1–A.2. To summarize this
derivation, the expected mean and variance are

E
[
xi(t)

]
= μix + (xi0 – μix)e–θxt ,

Var
(
xi(t)

)
=

λ2
x

2θx

(
1 – e–2θxt).

The stationary mean and variance of Eq. (5) are

lim
t→∞ E[xi] = μix =

νx,i

αx
,

lim
t→∞ Var(xi) =

λ2
x

2θx
=

β2
x

2τxαx
= σ 2.

With the assumption that the mean of x is much larger than the variance, there is negli-
gible probability that x would fall below zero. Imposing strictly positive values of x could
be achieved by the addition of a constant and would not alter the results obtained from
the linear classifier.

The readout of neural activity depends on the following feature space:

Z ∼N (μi,�),

μi = [μxi,μyi]T ,

� =

[
σ 2

x ρσxσy

ρσxσy σ 2
y

]
,

where Z is obtained from the probability distribution of a multivariate Gaussian with mean
μi and covariance �. Setting the parameter ρ = 0 would be equivalent to a so-called “di-
agonal decoder” where off-diagonal elements of the covariance matrix are neglected, thus
ignoring noise correlations altogether [16].

The closed form solution of LDA (Eq. (2)) can be expressed using the parameters of the
population model (Eq. (1)) as follows. First, the total within-class scatter Sw is

Sw = 2�

= 2

[
σ 2

x ρσxσy

ρσxσy σ 2
y

]
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= 2

⎡
⎢⎢⎣

β2
x

2τxαx
ρ

√
β2

x
2τxαx

β2
y

2τyαy

ρ

√
β2

x
2τxαx

β2
y

2τyαy

β2
y

2τyαy

⎤
⎥⎥⎦ .

To alleviate the notation, we define �μT = [�μx,�μy]T = μ0 –μ1, where �μu = �νu/αu,
and �νu is the absolute difference between the two stimuli, given an index u that stands
for either population x or y. In this way, Eq. (2) becomes

W = (2�)–1�μ

=
1

2(1 – ρ2)

⎡
⎢⎣

1
σ 2

x
�μx – ρ 1√

σ 2
x σ 2

y
�μy

1
σ 2

y
�μy – ρ 1√

σ 2
x σ 2

y
�μx

⎤
⎥⎦

=
1

2(1 – ρ2)

⎡
⎣

τx
β2

x
�νx – ρ

√
τxαx
β2

x

τy
β2

y αy
�νy

τy
β2

y
�νy – ρ

√
τyαy
β2

y

τx
β2

x αx
�νx

⎤
⎦ .

From the law of total probability, the error rate of classification is given by

ε = P[y = 0|k = 1]P[k = 1] + P[y = 1|k = 0]P[k = 0], (6)

where P[k = 1] is the probability that a randomly sampled point from any distribution be-
longs to class j and P[y = i|k = j] is the probability that a point is classified as belonging
to class i when it belongs to class j. Given that the classifier is unbiased towards each of
the two neural populations, P[k = 0] = P[k = 1] = 0.5. To calculate conditional probabil-
ities P[y = i|k = j], one must define a threshold c that serves as a boundary between the
two distributions. The value of c is chosen to be the midpoint between the means of the
projected distributions.

We calculate P[y = i|k = j] as the area under the curve of the density function for j in the
region where i is the correct class. As a first step, we shift the projected distributions by a
factor c, so that the threshold becomes zero to simplify the integration. More specifically,
the unshifted threshold c, the means of the shifted distributions ηi, and their variance ζ 2

are

c = W · 1
2

(μ1 + μ0) + b,

ηi = W ·μi + b – c,

ζ 2 = W T�W,

with bias term b. The error rate from Eq. (6) then becomes

ε =
1
2

∫ 0

–∞
1√

2ζ 2π
e

–(w–η1)2

2ζ2 dw +
1
2

∫ ∞

0

1√
2ζ 2π

e
–(w–η0)2

2ζ2 dw.

Details of the full integration of error can be found in Section A.3. The final expression
is

ε =
1
2

erf c
(

η1√
2ζ 2

)
.
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This expression is further simplified by introducing the squared Mahalanobis distance
d2

ε =
1
2

erf c
(

1
2
√

2

√
d2

)
, (7)

where

d2 = �μT�–1�μ. (8)

Because of equal class covariance, the above expression has the property that

d(μ0,μ1) = d(μ1,μ0) = d.

Using Eq. (8), we rewrite d2 from the network parameters:

d2 =
1

1 – ρ2

[
1
σ 2

x
�μ2

x +
1
σ 2

y
�μ2

y – 2ρ
1√

σ 2
x σ 2

y

�μx�μy

]
,

=
2

1 – ρ2

[
τx

β2
x αx

�ν2
x +

τy

β2
y αy

�ν2
y – 2ρ

√
τx

β2
x αx

τy

β2
y αy

�νx�νy

]
.

As the ratio �μu/
√

σ 2
u appears often in the above solution, we simplify our notation by

introducing

ru =
�uu√

σ 2
u

= �νu

√
τu

β2
uαu

.

This expression simplifies the Mahalanobis distance to

d2 =
1

1 – ρ2

[
r2

x + r2
y – 2ρrxry

]
.

The full derivation of expected error using Mahalanobis distance is found in Sections
A.3–A.4. The above analysis provides a relationship between classification error and the
network parameters of the population model. In the sections to follow, we explore the
various links between these quantities.

5 Noise correlation
Neurons that are in close physical proximity exhibit correlations in their activity. An exten-
sive body of work has examined the impact of these noise correlations on behavioral tasks
[26] and the activity of brain circuits [27–35]. Noise correlations may be advantageous
or detrimental to cognitive and sensory processing; however, the specific network-level
properties that give rise to these effects have not been fully elucidated.

In the proposed model, the effect of noise correlation on classification error is highly
dependent upon the sensory inputs (ν1 and ν2). We distinguish four main cases that lead
to qualitatively different conclusions on the impact of noise correlations. Details of these
analyses are provided in Sections A.5–A.6.
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Figure 2 Impact of noise correlation on Fisher linear discriminant analysis. (A) Scenario where the tuning
curves are the same for both populations of neurons, leading to rx → ry . Top left: illustration of tuning curves
(black lines) and stimulus orientations (blue and red lines). Top right: example of numerical responses to two
stimuli (red and blue circles), with noise correlation of 0.9. Bottom: solid line, analytical estimate. Filled black
circles, numerical simulations. (B) Scenario where the tuning curves are offset by a fixed orientation. In this
case, rx → -ry . (C) Symmetrical case arising when one of the populations (for instance, x) generates the same
firing rate for a range of stimulus orientations, leading to rx = 0. (D) Case where one population has higher
gain, leading to |rx| �= |ry|

A first case arises when the tuning curves of populations x and y are identical in terms of
both their orientation preference and their gain (Fig. 2(A)). In this case, rx → ry, leading
to monotonically increasing error as a function of correlation. Intuitively, this happens
because correlation forces the firing rate distributions to “stretch” towards each other. We
verified the analytical solution by comparing it to numerical estimates of the error rate
as a function of noise correlation. These numerical estimates were obtained with Eq. (1),
where populations x and y both received inputs ν1 = 11 and ν2 = 14 in order for the model
to mimick a scenario where the two populations have identical tuning properties. The goal
here is not to capture the model’s response to a continuum of stimulus values along the
tuning curves, but rather to illustrate the behavior of the model using discrete stimuli.
We set τ = 1, β = 1, and α = 1 for both populations. We then numerically generated 5000
points per stimulus class. A subset of 80% of the total number of data points were randomly
selected to train the LDA classifier. The proportion of misclassified points was calculated
based on the remaining data points. We found good agreement between the numerical
estimates and analytical solution (Fig. 2(A)).

Note that the range of error may be increased by moving the firing rate distributions
closer to each other without altering the overall shape of the function relating error and
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noise correlation. While the goal here was to show the distribution of readout error across
a broad range of correlation values, we acknowledge that not all combinations of tuning
curves and noise correlations are physiologically plausible. In fact, while noise correlations
in cortex vary across experimental conditions, regions, and behavioral states, they are typ-
ically reported to be on the order of 0.1–0.3 for nearby cells [26]. Therefore, extreme values
(both positive and negative) are unlikely to arise in living circuits.

In a second scenario, the two populations are offset in terms of their orientation pref-
erence (Fig. 2(B)). We examined classification error in this scenario by setting the input
of population x to ν1 = 11 and ν2 = 14, while population y was set to ν1 = 14 and ν2 = 11.
Analytically, this scenario leads to rx → –ry, resulting in a monotonically decreasing error
as correlation increases from –1 to 1. Intuitively, this scenario arises because correlation
stretches the distributions of responses along parallel lines, decreasing the overlap be-
tween them.

A third case arises when the tuning curve of one of the two populations yields the same
response for two stimuli (Fig. 2(C)). This happens if the tuning curve of population x ex-
hibits a broad region where firing rate remains constant despite changes in stimulus orien-
tation. Analytically, this would lead to rx = 0. We illustrate this scenario by setting ν1 = 11
and ν2 = 11 for population x, and ν1 = 11 and ν2 = 14 for population y. This case yields
a “symmetrical” effect of correlation on readout error, where maximum error is found at
ρ∗ = 0 and error tends towards zero as ρ approaches either 1 or –1.

Finally, a fourth scenario occurs when the two populations have tuning curves that are
aligned in terms of orientation preference, but where one population has higher response
gain (Fig. 2(D)). This case is defined by |rx| �= |ry|. Error tends to zero as noise correla-
tion (ρ) goes to either –1 or 1. The correlation associated with maximum error is found
somewhere in between these extremes and is given by

ρ∗ =
min(r2

x , r2
y )

rxry
. (9)

To illustrate this scenario, we set ν1 = 11 and ν2 =13 for population x, and ν1 = 11
and ν2 = 14 for population y. Graphically, this scenario arises when noise correlation
“stretches” the distribution of responses along parallel lines and their centroids do not
align on either dimension. Starting from a correlation of zero, as correlation increases,
the distributions will stretch towards each other, thus increasing overlap and error. After
a maximum overlap defined by ρ∗, further stretching of the distributions will force them
to spread too thinly for them to overlap, until the extreme case of a correlation of one,
where both distributions would appear as perfectly parallel lines, leading to zero error.

A continuum of cases exists between the different scenarios illustrated in Fig. 2(A)–
(D). For instance, the peak error (ρ∗) in Fig. 2(D) can shift to lower correlation values by
offsetting one of the tuning curves, yielding a curve closer to Fig. 2(B).

In sum, the above results show that, depending upon the structure of the input deliv-
ered to the two neural populations, noise correlations produce widely different effects on
classification error. While insights into these results can be obtained without the full for-
malism described here [34], such formalism becomes pivotal when examining the effect
of specific network parameters, as described next.
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6 Impact of noise gain on classification error
To explore the effect of network parameters on error, we first modify Eq. (9) as follows:

ρ∗ =
min(r2

x , r2
y )

rxry
=

⎧⎨
⎩

rx
ry

if |rx| < |ry|,
ry
rx

if |rx| > |ry|,
(10)

where the ratio rx/ry can be expressed using network parameters

rx

ry
=

�νx

�νy

βy
√

τxαy

βx
√

τyαx
.

We define a set containing all network parameters Gu = {αu, τu,βu,�νu}. If g is a subset
of these parameters, we can manipulate them using a function f (g) while setting the other
parameters to a constant cg . In this way, we can rewrite Eq. (10) as

ρ∗ =

⎧⎨
⎩

f (g)cg if |rx| < |ry|,
f (g)–1c–1

g if |rx| > |ry|.

We can investigate the effect of network parameters on ρ∗. For example, the effect of
noise gain (βx and βy) on ρ∗ when keeping all other parameters constant except for the
input is expressed as

ρ∗ = f (βy,βx)cβy ,βx =
βy

βx

(
�νx

�νy

√
τxαy√
τyαx

)

for |rx| < |ry|.
For illustration purposes, we explored the scenario described in Fig. 2(A), where two

populations have equivalent tuning properties. Keeping all parameters constant while al-
tering both βx and βy simultaneously has no effect on ρ∗ (Fig. 3(A)). The main impact is
an increase in the amount of classification error (Fig. 3(B)). This result is not surprising:
increasing the gain of the noise worsens readout performance.

However, markedly different results emerge in a scenario where tuning curves are offset
(Fig. 2(B)) and βx is altered while keeping βy unchanged. In this case, ρ∗ = f (βx)cβx with
cβx given by

cβx =
βy�νx

√
τxαy

�νy
√

τyαx
,

and f (βx) = 1/βx. Alterations in βx impact ρ∗ in a non-monotonic fashion (Fig. 3(C)). A
small increase from βx = 1 to βx =2 shifts ρ∗ towards a more negative value. However,
further increasing to βx = 3 and βx = 4 increases ρ∗ and alters the relationship between
correlation and readout error (Fig. 3(D)).

Hidden in these results is a counter-intuitive finding: under certain circumstances, in-
creasing βx leads to a decrease in classification error. This can be seen with βx = 10 (Fig.
3(D), dashed line), leading to lower error than βx = 3 (green line) and βx = 4 (red line) for
negative correlations. Intuitively, this can happen when increasing βx stretches the distri-
bution of activity for population x along a single dimension away from the classification
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Figure 3 Influence of noise gain on discrimination error. (A) Scenario where the noise gains of both
populations (βx and βy ) are adjusted simultaneously. In this case, the value of noise correlation leading to
maximal error (ρ∗) remains constant. Inset: tuning curves for the two populations. (B) Error as a function of
noise correlation for four different values of noise gain, with colors corresponding to the colored circles in
panel “A”. Filled circles indicate ρ∗ . (C) Impact of modifying the noise gain of population x only. (D) Different
values of noise gain for population x. (E) Scenario taken from panel D of Fig. 2, showing a monotonic decrease
in ρ∗ when increasing βx . (F) Impact of βx on classification error

boundary [13]. Similar findings are borne out of graphical explanations where noise co-
variance stretches the distribution of firing rates [36].

The benefits of noise gain are even more pronounced in a scenario where one population
has higher gain than the other, as in Fig. 2(D). In this case, βx monotonically shifts ρ∗
towards decreasing values (Fig. 3(E)). For a broad range of positive correlation values, a
high noise gain (βx > 1) leads to lower classification error (Fig. 3(F)).

7 Impact of dynamical parameters
The approach described in the previous section can be applied to study the impact of the
model’s dynamical parameters on readout error. The two parameters of interest are the
leak term (α) and the time constant (τ ).

The effect of the time constants τx and τy on ρ∗ can be expressed as

ρ∗ =
τx

τy

(
�νx

�νy

βy
√

αy

βx
√

αx

)
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Figure 4 Mediating role of dynamical parameters. (A) In a scenario where tuning curves are offset by a fixed
orientation, increasing the time constant τx leads to an increase in correlation associated with maximal error
(ρ∗). (B) Different values of τx (colors corresponding to panel “A”) alter the relation between noise correlation
and readout error. Inset: examples of firing rate distributions across two stimuli (shown in blue and red). (C)
Increasing the leak term αx leads to a decrease in ρ∗ . (D) Readout error across different values of αx (see panel
“C” for colors). Inset: examples of firing rate distributions

for |rx| < |ry|. To study the effect of a single term (e.g., τx), we set ρ∗ = f (τx)cτx with cτx given
by

cτx =
βy�νx

√
αy

βx�νy
√

τyαx
,

and f (τx) = τx. Similarly, the role of leak terms αx and αy on ρ∗ is

ρ∗ =
αy

αx

(
�νx

�νy

βy
√

τx

βx
√

τy

)
.

For a single term (αx), we have ρ∗ = f (αx)cαx with

cαx =
βy�νx

√
τxαy

βx�νy
√

τy
,

and f (αx) = 1/αx. Taking one scenario as illustration, we examined the case where tuning
curves are offset by a fixed orientation (rx → -ry). In this case, the time constant affects the
relation between noise correlation and readout error, with larger values of τx shifting ρ∗
towards smaller negative values of correlation (Fig. 4(A)). The reason for this shift follows
from an earlier example (Fig. 2(D)), where an increased correlation resulted in greater
overlap between the firing rate distributions, but only up to a point beyond which these
distributions became too narrow to overlap. With larger values of τx, a given correlation
does not create as much overlap as it would for smaller values of τx, thus leading to a shift
in ρ∗.
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Figure 5 Nonlinear impact of dynamical parameters on classification error. (A) In a scenario where the tuning
curves of the two neural populations are equivalent, τx and ρ∗ have a non-monotonic relation. (B) In a
scenario where the gain of one tuning curve is larger, αx and ρ∗ are non-monotonically related

The overall impact of a larger time constant is a decrease in classification error (Fig.
4(B)): as τx increases, there is less overlap between the distributions of firing rate across
stimuli (Fig. 4(B), inset). By contrast, shifting the leak term αx towards higher values de-
creases ρ∗ (Fig. 4(C)) and increases overall readout error (Fig. 4(D)). The impact of in-
creasing αx on error is due to an increase in the overlap between firing rate distributions
(Fig. 4(D), inset). The inverse effects of τx and αx on these distributions explain their op-
posite impact on ρ∗.

More complex, non-monotonic relations between ρ∗ and values of τx and αx are found
in different scenarios where tuning curves of the two populations are aligned (Fig. 5(A))
or when the gain of one population is larger (Fig. 5(B)).

Together, these results show that the integration time constant and leak term of the pop-
ulation model mediate the impact of noise correlation on classification error by shifting
the value ρ∗ at which correlation reaches maximal error. The impact of network param-
eters on readout error is therefore not straightforward to describe but is brought to light
using a framework that derives error estimates from the dynamical parameters of a pop-
ulation model.

8 Discussion
This work described an analytical framework for performing Fisher linear decoding in a
rate-based neural model. With this formalism, we began by capturing well-documented
findings on the role of noise gain and correlations on discrimination error. Going further,
the framework allowed us to analytically examine the mediating role of dynamical param-
eters (neuronal leak and time constant) on the relation between noise correlation and er-
ror. Overall, this framework suggests that linear decoding is highly sensitive to dynamical
model parameters as well as the characteristics of the sensory input.

One surprising finding was the presence of conditions where increased neuronal noise
led to reduced classification error. This result was especially prominent when the gain
of the two population tuning curves was unmatched (Fig. 3(E)–(F)). Taken together, our
findings cover all possible qualitative scenarios where noise correlations have either a ben-
eficial, detrimental, or null effect on decoding [36].

A related approach termed the leaky competing accumulator model was proposed in
order to account for perceptual decision making [37]. Some key differences exist between
this model and ours. Firstly, our framework assumes a steady-state of neural activity that is
characteristic of a decision point and does not capture the time-course of deliberation. Our
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framework assumes an optimal bound on decision accuracy given a linear decoder, repre-
senting a ceiling in accuracy that would be associated with long response times (typically
>500 ms in human subjects). Secondly, the accumulator model provides explicit connec-
tions, through lateral inhibition, that modulate correlations. These lateral connections,
however, may also impact firing rates. By comparison, our framework isolates analytically
the contribution of firing rates and correlations, and examines their relative role on per-
ceptual discrimination.

It would be challenging to speculate on whether the analytical results provided would
generalize to other classes of neural network models, particularly those that include a non-
linear transfer function [38]. However, our work opens the door to such analyses by de-
scribing a framework for linking neuronal readout and dynamical modeling.

Limitations and future work. While the framework described here strived to cover all
possible scenarios involving firing rates, noise correlations, and network parameters, it
is important to emphasize that not all such scenarios are plausible from a physiological
standpoint. In particular, the framework treats firing rates and noise correlations as inde-
pendent contributors to decoding error and allows for implausible cases where increases
in firing rate would lead to an increase, a decrease, or no impact on correlations. Inter-
actions between stimulus and noise correlations are a crucial factor limiting the coding
capacity of neural circuits [1, 23] and should be considered alongside the dynamical pa-
rameters discussed in this work.

Several future directions based on the proposed framework will be worth exploring.
First, the assumption of equal class covariances in LDA is challenged by experimental
work showing input-dependent neuronal variance [39]. This assumption could be relaxed
by replacing LDA with quadratic discriminant analysis, albeit at the cost of a more complex
solution when relating readout error to model parameters.

An extension of the current framework could consider the impact of pooling more than
two neural populations, as well as more than two stimuli, when performing decoding. This
extension would be helpful in examining the interactions between several populations of
neurons, each with a unique tuning curve. Going further, one could examine decoding
error at the limit of a large number of neurons with heterogeneous tuning curves that
vary in both orientation preference and gain [2].

Conclusion. In summary, this work described a theoretical framework that merges Fisher
linear decoding with a population model of sensory integration. This approach highlighted
the role of correlation, neuronal noise, and network parameters, revealing a broad range of
potential outcomes where different conditions generated either detrimental, beneficial, or
null impacts on classification performance. These results motivate further developments
in theoretical work that systematically link neural network models to optimal decoders
in order to reveal the impact of key neurophysiological variables on sensory information
processing.

Appendix
A.1 Solving the integrator model as a linear differential equation
To solve the integrator model, we began by dropping the unit indices to alleviate the no-
tation:

τ
dx
dt

= –αx + νi + βξ (t)
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⇔ dx
dt

= –
α

τ
x +

νi + βξ (t)
τ

⇔ dx
dt

+
α

τ
x =

νi + βξ (t)
τ

⇔ dx
dt

+ p(t)x = r(t)

with p(t) = α/τ and r(t) = (ν + βξ (t))/τ . We defined

u(t) = e
∫

p(t) dt

= e
∫

α
τ dt

= e
α
τ t .

Then,

u(t)
(

dx
dt

+ p(t)x
)

= u(t)r(t)

⇔ e
α
τ t dx

dt
+ e

α
τ t α

τ
x = e

α
τ tr(t).

Applying the chain rule,

d
dt

(
u(t)x

)
= u(t)r(t)

⇔ d
(
u(t)x

)
= u(t)r(t) dt

⇔
∫ t

o
d
(
u(s)x

)
=

∫ t

0
u(s)r(s) ds

⇔ u(s)x|t0 =
∫ t

0
u(s)r(s) ds

⇔ u(t)x – u(0)x0 =
∫ t

0
u(s)r(s) ds

⇔ x = u(t)–1
(

x0 +
∫ t

0
u(s)r(s) ds

)

= e– α
τ t

(
x0 +

∫ t

0
e

α
τ s νi + βξ (s)

τ
ds

)

= e– α
τ t

(
x0 +

1
τ

∫ t

0
e

α
τ s(νi + βξ (s)

)
ds

)

= e– α
τ t

(
x0 +

1
τ

∫ t

0
e

α
τ sνi ds +

1
τ

∫ t

o
e

α
τ sβξ (s) ds

)

= e– α
τ t

(
x0 +

1
τ

τνi

α
e

α
τ s|t0 +

β

τ

∫ t

o
e

α
τ sξ (s) ds

)

= e– α
τ t

(
x0 +

νi

α

[
1 – e

α
τ s] +

β

τ

∫ t

o
e

α
τ sξ (s) ds

)

= x0e– α
τ t –

νi

α

[
1 – e– α

τ t] + e– α
τ t β

τ

∫ t

o
e

α
τ sξ (s) ds,
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x =
νi

α
+

[
x0 –

νi

α

]
e– α

τ t +
β

τ

∫ t

o
e– α

τ (t–s)ξ (s) ds.

A.2 Expected value and variance
We sought to find the expected mean and variance of the random variable x such that

x = μ + (xo – μ)e–θ t + σ

∫ t

0
e–θ (t–s) dBs.

The expected mean is

E[x] = E
[
μ + (x0 – μ)e–θ t + σ

∫ t

0
e–θ (t–s) dBs

]

= E[μ] + E
[
(x0 – μ)e–θ t] + E

[
σ

∫ t

0
e–θ (t–s) dBs

]
.

Given the zero-mean property of Ito integrals,

E
[
σ

∫ t

0
e–θ (t–s) dBs

]
= 0,

we have

E[x] = μ + (x0 – μ)e–θ t . (11)

The expected variance is

var(x) = var

(
μ + (x0 – μ)e–θ t + σ

∫ t

0
e–θ (t–s) dBs

)

= σ 2 var

(∫ t

0
e–θ (t–s) dBs

)

= σ 2
(

E
[(∫ t

0
e–θ (t–s) dBt

)2]
– E

[∫ t

0
e–θ (t–s) dBs

]2)

= σ 2E
[(∫ t

0
e–θ (t–s) dBs

)2]
.

By Ito isometry,

σ 2E
[(∫ t

0
e–θ (t–s) dBt

)2]
= σ 2E

[∫ t

0

(
e–θ (t–s))2 ds

]
.

Hence, the expected variance can be concisely written as

var(x) = σ 2
∫ t

0
e–2θ (t–s) ds

= σ 2
[

–
e–2θ (t–s)

–2θ

]t

0

=
σ 2

2θ

[
e–2θ (t–t)e–2θ (t–0)]
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=
σ 2

2θ

[
1 – e–2θ t].

A.3 Classification error
The classification error as a function of neural activity is given by

ε =
1
2

∫ 0

–∞
1√

2ζ 2π
e

–(w–η1)2

2ζ2 dw +
1
2

∫ ∞

0

1√
2ζ 2π

e
–(w–η0)2

2ζ2 dw

=
1
2

1√
2ζ 2π

[√
πζ 2

2
erf c

(
η1√
2ζ 2

)
+

√
π

2

(√
ζ 2 erf

(
η0√
2ζ 2

)
+

√
ζ 2

)]

=
1
2

1√
2ζ 2π

√
πζ 2

2

[
erf c

(
η1√
2ζ 2

)
+ erf

(
η0√
2ζ 2

)
+ 1

]

=
1
4

[
1 – erf

(
η1√
2ζ 2

)
+ erf

(
η0√
2ζ 2

)
+ 1

]

=
1
4

[
2 – erf

(
η1√
2ζ 2

)
+ erf

(
–η1√
2ζ 2

)]

=
1
2

[
1 – erf

(
η1√
2ζ 2

)]

=
1
2

erf c
(

η1√
2ζ 2

)
.

Substituting the mean and variance from the previous section, this becomes

ε =
1
2

erf c
(

2
d2

4
√

2 d2

)

=
1
2

erf c
(

1
2
√

2

√
d2

)
.

A.4 Mahalanobis distance
We began with the following definitions:

W = (2�)–1�μ,

c = W · 1
2

(μ1 + μ0) + b,

ηi = W ·μi + b – c,

ς2 = W T�W.

Expanding ηi yields

ηi = W ·μi + b –
(

W · 1
2

(μ1 + μ0) + b
)

= W ·
(

μi –
1
2

(μ1 + μ0)
)

.
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Given

η1 =
1
2

W · (μ1 + μ0)

=
1
2

W ·�μ

= –η0,

we expanded W using the property u ·υ = uTυ ,

η1 =
1
2
[
(2�)–1�μ

] ·�μ

=
1
4
[
�–1�μ

]T
�μ

=
1
4
�μT(

�–1)T
�μ

=
1
4
�μT�–1�μ.

Hence, the squared Mahalanobis distance between means is

d2 = �μT�–1�μ.

We can rewrite ηi as

η1 =
1
4

d2 = –η0.

Similarly, for the variance ς2,

ς2 =
[
(2�)–1�μ

]T
�(2�)–1�μ

=
1
4
�μT�–1��–1�μ

=
1
4
�μT�–1�μ

=
1
4

d2.

A.5 Derivation of error
We analyzed the extrema of the error function in relation to noise correlation by taking
its first derivative through the chain rule

dε

dρ
=

d
dρ

(
1
2

erf c
(

1
2
√

2

√
d2

))

=
1
2

d
dρ

(
erf c(z)

)

=
1
2

d
dz

(
erf c(z)

) dz
dd2

dd2

dρ
, (12)
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with

d2 =
1

1 – ρ2

[
r2

x + r2
y – 2ρrxry

]
. (13)

The first derivative is given by

d
dz

(
erf c(z)

)
=

–2e–z2

√
π

=
–2e–( 1

2
√

2

√
d2)2

√
π

=
–2e– 1

8 d2

√
π

. (14)

The second derivative is

dz
dd2 =

d
dd2

1
2
√

2

√
d2

=
1

4
√

2d2
. (15)

The third derivative is

dd2

dρ
=

d
dρ

(
1

1 – ρ2

[
r2

x + r2
y – 2ρrxry

])

=
[
r2

x + r2
y – 2ρrxry

] d
dρ

1
1 – ρ2 +

1
1 – ρ2

d
dρ

[
r2

x + r2
y – 2ρrxry

]

=
[
r2

x + r2
y – 2ρrxry

] 2ρ

(1 – ρ2)2 +
1

1 – ρ2 [–2rxry]

=
1

(1 – ρ2)2

[(
r2

x + r2
y – 2ρrxry

)
2ρ +

(
1 – ρ2)(–2rxry)

]

=
1

(1 – ρ2)2

[(
2ρr2

x + 2ρr2
y – 2ρ2ρrxry

)
+

(
–2rxry + 2rxryρ

2)]

=
–2

(1 – ρ2)2

[
ρ2rxry – ρ

(
r2

x + r2
y
)

+ rxry
]
. (16)

A.6 Extrema of error
We evaluated the extrema of error by finding the points where Eqs. (14)–(16) are equal to
zero,

0 =
d
dz

(
erf c(z)

) ⇔ 0 =
–2e– 1

8 d2

√
π

,

d2 → ∞.

(17)

We assumed that the ratios rx and ry are finite and the Euclidean distance between the
distribution means is finite and non-null. In other words, if d2 → ∞ it is exclusively due
to the correlation coefficient. Then,

d2 → ∞ ⇔ |ρ| → 1. (18)
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We proceeded in a similar fashion for the second derivative (Eq. (15)):

0 =
dz

dd2 ⇔ 0 =
1

4
√

2d2

d2 → ∞ ⇔ |ρ| → 1.
(19)

The third derivative (Eq. (16)) is

0 =
dd2

dρ
⇔ 0 =

–2
(1 – ρ2)2

[
ρ2rxry – ρ

(
r2

x + r2
y
)

+ rxry
]
,

⇔ 0 = ρ2rxry – ρ
(
r2

x + r2
y
)

+ rxry.
(20)

Depending on network parameters, two cases are possible. One case arises if one of
the ratios, either rx or ry, is zero. This happens if the mean activity of one population is
equal across inputs. If the mean activity of both units remained unchanged, the resulting
multivariate distributions would overlap, thus breaking the basic assumptions justifying
the choice of LDA. In this first case,

0 =
dd2

dρ
⇐ 0 = ρ if rx = 0 or ry = 0. (21)

The second case occurs when neither rx nor ry is zero:

0 =
dd2

dρ
⇐ 0 = ρ2 – ρ

r2
x + r2

y

rxry
+ 1

⇔ ρ =

r2
x +r2

y
rxry

±
√

(r2
x +r2

y )2

r2
x r2

y
– 4

2

=
r2

x + r2
y ±

√
(r2

x + r2
y )2 – 4r2

xr2
y

2rxry

=
r2

x + r2
y ±

√
r4

x + r4
y – 2r2

xr2
y

2rxry

=
r2

x + r2
y ±

√
(r2

x – r2
y )2

2rxry

=
r2

x + r2
y ± |r2

x – r2
y |

2rxry

=
r2

x + r2
y ± [max(r2

x , r2
y ) – min(r2

x , r2
y )]

2rxry
.

The last expression can be decomposed into four distinct cases. First, when rx → ry,

ρ → r2
y + r2

y

2ryry
→ 1. (22)
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Second, when rx → –ry,

ρ → r2
y + r2

y

–2ryry
→ –1. (23)

Third, when rx �= ry, we examined the positive and negative roots of ρ . The positive root
is

ρ+ =
r2

x + r2
y + max(r2

x , r2
y ) – min(r2

x , r2
y )

2rxry

=
max(r2

x , r2
y )

rxry
. (24)

Because |max(r2
x , r2

y )| > |rxry| from the assumption that one ratio is smaller than the other
(or unequal, non-null), this means that |ρ+| > 1 ∀rx, ry. Since the correlation is bound in the
range ]–1, 1[, the positive root must be rejected. The negative root does not suffer from
the same problem,

ρ– =
r2

x + r2
y – max(r2

x , r2
y ) + min(r2

x , r2
y )

2rxry

=
min(r2

x , r2
y )

rxry
. (25)

Fourth, when either rx = 0 or ry = 0, ρ = 0.

A.7 Minima and maxima
We determined upward and downward trends of the error curve by calculating the sign
of the derivative between the potential maxima (considering that they are mutually exclu-
sive). Taking Eqs. (14)–(16) and substituting into Eq. (12),

dε

dρ
=

1
2

d
dz

(
erf c(z)

) dz
dd2

dd2

dρ

=
1
2

–2e– 1
8 d2

√
π

1
4
√

2d2

–2
(1 – ρ2)2

[
ρ2rxry – ρ

(
r2

x + r2
y
)

+ rxry
]

⇔ sign

(
dε

dρ

)
= sign

(
ρ2rxry – ρ

(
r2

x + r2
y
)

+ rxry
)
. (26)

For the condition where rx → ry,

sign

(
dε

dρ

)
= sign

(
–ρr2

y
)

= – sign(ρ). (27)

For the condition where either rx = 0 or ry = 0, we have already found the zeros of ρ2rxry –
ρ(r2

x + r2
y ) + rxry to be ρ– and ρ+. To determine sign(dε/dρ), we need to know whether the
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extremum of the parabola is a minimum or a maximum,

d2

dρ2

(
ρ2rxry – ρ

(
r2

x + r2
y
)

+ rxry
)

= 2 > 0.

Given ρ+ > 1,

dε

dρ
> 0 ⇔ p ∈ [–1,ρ–] (28)

dε

dρ
< 0 ⇔ p ∈ [ρ–, 1]. (29)

Regardless of the conditions for rx and ry, following Eqs. (27)–(29), the error curve as a
function of correlation increases from ρ = –1 until its maximum, found at a value of ρ∗ = 0
or ρ∗ = ρ–, and then decreases until ρ = 1.
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