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Abstract The structure of spiking activity in cortical networks has important im-
plications for how the brain ultimately codes sensory signals. However, our under-
standing of how network and intrinsic cellular mechanisms affect spiking is still in-
complete. In particular, whether cell pairs in a neural network show a positive (or
no) relationship between pairwise spike count correlation and average firing rate is
generally unknown. This relationship is important because it has been observed ex-
perimentally in some sensory systems, and it can enhance information in a common
population code. Here we extend our prior work in developing mathematical tools to
succinctly characterize the correlation and firing rate relationship in heterogeneous
coupled networks. We find that very modest changes in how heterogeneous networks
occupy parameter space can dramatically alter the correlation–firing rate relationship.
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1 Introduction

One prominent goal of theoretical neuroscience is to understand how spiking statis-
tics of cortical networks are modulated by network attributes [9, 28, 42]. This un-
derstanding is essential to the larger question of how sensory information is encoded
and transmitted, because the statistics of neural activity impact population coding [7,
15–17, 37]. One family of statistics that is implicated in nearly all population coding
studies is trial-to-trial variability (and co-variability) in spike counts; there is now a
rich history of studying how these statistics arise, and how they effect coding of stim-
uli [1, 10, 18, 25, 33]. Recent work has demonstrated that the information content
of spiking neural activity depends on spike count correlations and its relationship (if
any) with stimulus tuning [1, 6, 18, 25, 44].

An important relationship observed in many experimental studies is that pairwise
correlations on average increase with firing rates. This has been observed in vitro [8]
and in several visual areas: area MT [2], V4 [5] (when measured between cells in the
same attentional state), V1 [19, 36], and notably, in ON–OFF directionally sensitive
retinal ganglion cells [11, 44]. The retinal studies involved cells with a clearly identi-
fied function, and therefore allowed investigation of the coding consequences of the
observed correlation–firing rate relationship. These studies found that the stimulus-
dependent correlation structure observed compared favorably to a structure in which
stimulus-independent correlations were matched to their (stimulus-)averaged levels.
This finding reflects a general principle articulated in other studies [18, 25], that
stimulus-dependent correlations are beneficial when they serve to spread the neural
response in a direction orthogonal to the signal space.

These findings thus provide strong motivation for understanding what network
mechanisms can produce this positive (and perhaps beneficial) correlation–firing rate
relationship. This correlation–firing rate trend has been explained theoretically in
feedforward networks driven by common input [8, 26, 38]; however, many corti-
cal networks are known to be dominated by strong recurrent activity [24, 34, 39].
On the other hand, theoretical studies of the mechanisms for correlations in recurrent
networks have largely analyzed homogeneous networks (i.e., identical cells, aside
from excitatory/inhibitory cell identity) [9, 13, 27, 28, 40, 41], and have not con-
sidered how correlations vary with firing rates with realistic intrinsic heterogeneity.
Thus, how spike count correlations can vary across a population of heterogeneously-
tuned, recurrently connected neurons is not yet well understood despite its possible
implications for coding.

In a previous paper, we addressed this gap by developing a mathematical method
to compactly describe how second-order spike count statistics vary with both intrinsic
and network attributes [4]. Specifically, we adapted network linear response theory
[14, 27, 43] to account for heterogeneous and recurrent networks, which in turn al-
lows us to identify important network connections that contribute to correlations via
a single-cell susceptibility function [8]. Here, we will use this method to survey a
broad family of recurrent networks to understand how three factors influence the re-
lationship between correlations and firing rates; how the neurons occupy parameter
space, the strength of recurrent excitation, and the strength of background noise. This
work thus provides a more complete picture of how even modest changes in important
circuit parameters can alter the correlation–firing rate relationship.
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2 Results

First, we summarize how a network linear response theory allows us to use the single-
neuron firing rate function to approximate correlations. We then apply this theory
to examine three factors that can modulate the correlation–firing rate relationship:
direction in effective parameter space, strength of recurrent excitation, and strength
of background noise.

2.1 Using the Single-Neuron Firing Rate Function to Characterize Correlation
Susceptibility

The response of a neuron is generally a nonlinear function of model parameters.
However, background noise linearizes this response, so that we can use a linear theory
to describe the change in response to small changes in parameters. We assume we
have some way to approximate the change in firing rate which occurs as a result of a
change in parameter X:

νi(t) = νi,0 + (AX,i ∗ Xi)(t); (1)

νi,0 is the baseline rate (when X = 0) and AX,i(t) is a susceptibility function that
characterizes the firing rate response [8, 20, 41]. The parameter which is modulated
has often been chosen to be a current bias μ [8, 41]; however, it could also be the
mean or variance of a conductance, a time constant, or a spike generation parameter
[29, 30].

In a coupled network, the parameter change Xi arises from inter-neuron coupling;
substituting Xi(t) → ∑

j (JX,ij ∗ νj ) and moving to the spectral domain, we find

〈
ỹ(ω)ỹ∗(ω)

〉 = (
I − K̃(ω)

)−1〈
ỹ0(ω)ỹ0∗(ω)

〉(
I − K̃∗(ω)

)−1
, (2)

where ỹi = F[yi − νi] is the Fourier transform of the mean-shifted process (νi is
the average firing rate of cell i) and f̃ = F[f ] for all other quantities; K̃ij (ω) =
ÃX,i(ω)J̃X,ij (ω) is the interaction matrix in the frequency domain (which may de-
pend on the parameter being varied, i.e. X); 〈ỹ0(ω)ỹ0∗(ω)〉 is the power spectrum of
the uncoupled neural response. Using the usual series expansion for (I−K̃(ω))−1, we
see that the covariance C̃(ω) ≡ 〈ỹ(ω)ỹ∗(ω)〉 naturally decomposes into contributions
from different graph motifs:

C̃(ω) = (
I − K̃(ω)

)−1C̃0(ω)
(
I − K̃∗(ω)

)−1

= C̃0(ω) + K̃(ω)C̃0(ω) + C̃0(ω)K̃∗(ω) + K̃(ω)C̃0(ω)K̃∗(ω) + · · · . (3)

Each instance of K̃ includes the susceptibility function in the spectral domain,
AX(ω), which modulates the effect of each directed connection by the responsive-
ness of the target neuron to the parameter of interest. As noted by previous authors
[27], the validity of the expansion in Eq. (3) relies on the spectral radius of K̃ , ρ(K̃),
remaining less than one. We checked that this remains true for all networks we ex-
amined in this paper, with a maximum of ρ(K̃) = 0.9564.
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We next justify why—at least for long-time correlations—we can estimate each of
these terms using the single-neuron firing rate function. First, in the small frequency
limit, AX,i(ω) will coincide with the derivative of the firing rate with respect to the
parameter:

lim
ω→0

ÃX,i(ω) = dνi

dX
.

For the common input motif, K̃(ω)C̃0(ω)K̃∗(ω), we can write

(
K̃C̃0K̃∗)

ij
=

∑

k→i,k→j

K̃ikC̃0
kkK̃jk (4)

=
∑

k→(i,j),k∈E

(ÃgE,i J̃ik)C̃0
kk(ÃgE,j J̃jk)

+
∑

k→(i,j),k∈I

(ÃgI ,i J̃ik)C̃0
kk(ÃgI ,j J̃jk) (5)

= |J̃E |2
∑

k→(i,j),k∈E

ÃgE,iÃgE,j C̃0
kk

+ |J̃I |2
∑

k→(i,j),k∈I

ÃgI ,i ÃgI ,j C̃0
kk (6)

= |J̃E |2ÃgE,iÃgE,j

∑

k→(i,j),k∈E

C̃0
kk

+ |J̃I |2ÃgI ,i ÃgI ,j

∑

k→(i,j),k∈I

C̃0
kk, (7)

where we have separated excitatory (E) and inhibitory (I) contributions, using gE

and gI to denote the mean conductance of each type, and assumed that the synaptic
coupling kernels, J̃jk , depend only on E/I cell identity (and have thus dropped the
first subscript, which adds no additional information).

This provides a formula for the long-time covariance, but we are typically inter-
ested in the correlation; fortunately, the small frequency limit also allows us to obtain
a normalized correlation measure from the cross-spectrum, because

lim
T →∞ρT,ij = lim

T →∞
CovT (ni, nj )

√
VarT (ni)VarT (nj )

= C̃ij (0)
√

C̃ii (0)C̃jj (0)

, (8)

where CovT (ni, nj ) and VarT (ni) denote covariance and variance of spike counts in
a time window T ; that is, ρT,ij is the Pearson correlation coefficient (which varies
between −1 and 1).

Finally, letting ω → 0 and normalizing with the assumption that spiking is close
to a Poisson process, as expected for an asynchronously firing network, so that
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C̃kk ≈ νk :

(K̃C̃0K̃∗)ij
√

C̃iiC̃jj

= 1√
νiνj

dνi

dgE

dνj

dgE
︸ ︷︷ ︸

modulation by
firing rate function

|J̃E |2
[ ∑

k→(i,j),
k∈E

C̃0
kk

]

︸ ︷︷ ︸
total E common input

+ 1√
νiνj

dνi

dgI

dνj

dgI
︸ ︷︷ ︸

modulation by
firing rate function

|J̃I |2
[ ∑

k→(i,j),
k∈I

C̃0
kk

]

︸ ︷︷ ︸
total I common input

. (9)

The above expression summarizes how the impact of excitatory and inhibitory com-
mon input are modulated by the single-neuron firing rate function, ν, and its deriva-
tives.

Thus far, we have presented results previously obtained by others [27, 40, 41]. We
now depart from these authors by focusing specifically on the behavior of the term
in Eq. (9); and for simplicity, the behavior of this modulating factor for two identical
neurons; e.g.

1√
νiνj

dνi

dgI

dνj

dgI

→ 1

ν

(
dν

dgI

)2

. (10)

In principle, analogous expressions govern larger motifs, such as chains, that in-
volve additional evaluations of ν and its derivatives; for example, excitatory length-3
chains arising from K̃3C̃0 would be:

(K̃3C̃0)ij
√

C̃iiC̃jj

=
[

1√
νiνj

dνi

dgE

dνl

dgE

dνk

dgE

]

︸ ︷︷ ︸
modulation by firing rate function

×|J̃E |3 ×
[∑

l→i

∑

k→l,
l∈E

∑

j→k,
k∈E

C̃0
jj

]

︸ ︷︷ ︸
all E → E → E → E paths

. (11)

However, we found that, for a wide range of networks, direct common input—and
inhibitory common input in particular—was the dominant contributor to pairwise
correlations (Fig. 6(A)).

We now examine how different network mechanisms modulate the correlation–
firing rate relationship, focusing on three factors: direction in effective parameter
space, strength of recurrent excitation, and strength of background noise.

2.2 Direction in Parameter Space Modulates the Correlation–Firing Rate
Relationship

Suppose we have a firing rate function of one or more intrinsic parameters (for expo-
sition purposes, assume a function of two parameters (x1, x2)), i.e.

ν = F(x1, x2).
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The parameters xj might include input bias, membrane time constant, ionic/synaptic
reversal potentials, or a spiking threshold. Based on our arguments from the previous
section, we will approximate correlation susceptibility by the quantity

Ŝ = 1

F

(
∂F

∂x1

)2

,

where x1 is an appropriately chosen parameter. Specifically, we will find, empirically,
that the inhibitory common input is the dominant term, and therefore will use x1 = gI ,
the mean inhibitory conductance. Thus, the units of Ŝ in all figures are Hz/[g2

I ], where
gI is dimensionless (see Eq. (17)).

Heterogeneous firing rates can arise when each neuron occupies a different loca-
tion in parameter space (i.e. a different (x1, x2) point), thus causing both firing rate F

and susceptibility Ŝ to vary from neuron to neuron. We now ask: how does Ŝ change
with firing rate?

Note that this question, as stated, is ill-posed because F and Ŝ are both functions
of two parameters (x1 and x2): there is not necessarily a one-to-one or even a func-
tional relationship between these quantities. Suppose that, locally, a population of
neurons can be described as lying along a parameterized path in the (x1, x2) plane:
i.e., (x1(s), x2(s)), for smin < s < smax. Then we can compute the directional deriva-
tive:

dŜ

dF
= dŜ/ds

dF/ds
= ∇Ŝ · dx

∇F · dx
, (12)

where we have expressed the directional derivatives in terms of the local direction of
the path: i.e. dx = ( dx1

ds
, dx2

ds
) and the gradients of F and Ŝ. However, this depends

not only on the functions F and Ŝ, but also on the direction dx.
To gain some intuition for why (and when) direction in (x1, x2) space matters, we

consider the networks studied in [4]. Previously, we simplified the firing rate function
by setting all but two parameters (inhibitory conductance, 〈gI,i〉, and threshold, θi )
to their population average; i.e.

F
(〈gI,i〉, θi

) ≡ f
(〈gI,i〉, 〈σgI ,i〉p,

〈〈gE,i〉
〉
p
, 〈σgE,i〉p, 〈σi〉p, θi

)
, (13)

and 〈·〉p denotes the population average. In Figs. 1(A) and (B), we show F and Ŝ ≡
( ∂F
∂x1

)2/F thus computed, for the asynchronous network studied in that paper. We then
surveyed a sequence of diagonal paths through the center (i.e., midpoint of the ranges
of threshold and inhibitory conductance), with each path plotted in a different color.
In Fig. 1(C) we plot firing rate (solid lines) and susceptibility (dashed-dotted lines)
along each curve. Finally, in Fig. 1(D) we plot the susceptibility versus the firing rate,
along each path.

This last panel shows that there is striking variability in the susceptibility-firing
rate relationship, depending on the direction the path takes through the center of
the (θ, 〈gI 〉) plane. Any given firing rate (below ∼ 15 Hz) is consistent with either
increase or decrease of susceptibility. All curves go through a single point in the
(θ, 〈gI 〉) plane, and therefore a single point in the (F, Ŝ) plane; here the direction
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Fig. 1 Firing rate and susceptibility (Ŝ), computed for the asynchronous (Asyn) network studied in [4],
with all other parameters besides threshold θ and mean inhibitory conductance 〈gI 〉 set to their average
values (thereby leaving a two-dimensional parameter space). Here, we traverse the plane on straight-line
paths defined by their angle through the origin. Although the units of gI are dimensionless, they are shown
as the units for Ŝ for completeness. The units of θ (i.e., voltage) are also scaled to be dimensionless

of the Ŝ–F relationship (i.e., whether Ŝ increases or decreases with F ) can change
rapidly with angle, as for the red, orange, and yellow curves.

We then extended these observations by traversing the phase space with two
additional families of straight-line paths (Fig. 2); the radial paths are repeated in
Figs. 2(A) and (B). For horizontal (Figs. 2(C) and (D)) and vertical (Figs. 2(E) and
(F)) families, paths no longer intersect at a single point; nevertheless, a given firing
rate is consistent with both increases and decreases in susceptibility. This is pro-
nounced in Fig. 2(F), where at 15 Hz susceptibility decreases with firing rate in the
orange, yellow and light green paths, but increases for the light blue, medium blue,
royal blue, and indigo paths.

We performed the same computations on the strong asynchronous network studied
in [4] that has larger excitatory coupling strength: results are shown in Fig. 3. A given
firing rate could be consistent with either increase or decrease of susceptibility; we see
this in the radial paths (Figs. 3(A) and (B)) and horizontal paths (Figs. 3(C) and (D))
for rates between 5–10 Hz. However, vertical paths (Figs. 3(E) and (F)) always have
susceptibility increasing with firing rate (except perhaps at the highest firing rates).
As in the asynchronous network, direction of susceptibility (increase vs. decrease)
can change rapidly with angle, for paths that intersect a single point; see Figs. 3(A)–
(B), red to orange to yellow.
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Fig. 2 Susceptibility (Ŝ) vs. firing rate, computed for the asynchronous network studied in [4], with
all other parameters besides threshold θ and mean inhibitory conductance 〈gI 〉 set to their aver-
age values (thereby leaving a two-dimensional parameter space: the other (averaged) parameters are
〈σgI ,i 〉p = 0.6602 (see Eq. (30)), 〈σgE,i 〉p = 0.0026 (see Eq. (29)), 〈σi 〉p = 6.3246, 〈〈gE, i〉〉p = 0.0053
(see Eq. (17)). Here, we traverse the plane on three different families of straight-line paths. The dashed
lines show paths visualized in [4]: θ = 1 (vertical, aqua blue) and 〈gI 〉 = 1.83 (horizontal, orange/yellow)

2.3 Quantifying the Likelihood of a Positive Correlation–Firing Rate
Relationship

In the previous section, we saw that the path a network occupies in effective parameter
space can have a dramatic effect on the correlation–firing rate relationship: we next
seek to formalize these observations. Let dx be the local direction in which we want to
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Fig. 3 Susceptibility (Ŝ) vs. firing rate, computed for the strong asynchronous (Strong Asyn) network
studied in [4], with all other parameters besides threshold θ and mean inhibitory conductance 〈gI 〉
set to their average values (thereby leaving a two-dimensional parameter space: the other (averaged)
parameters are 〈σgI ,i 〉p = 0.5884 (see Eq. (30)), 〈σgE,i 〉p = 0.0378 (see Eq. (29)), 〈σi 〉p = 4.7434,
〈〈gE, i〉〉p = 0.0611, see Eq. (17)). Here, we traverse the plane on three different families of straight-line
paths. Dashed lines show paths visualized in [4]: θ = 1 (vertical, aqua blue) and 〈gI 〉 = 1.46 (horizontal,
yellow/green)

consider the behavior of F and Ŝ. If ∇Ŝ · dx and ∇F · dx are of the same sign, then Ŝ

increases with F ; if ∇Ŝ ·dx and ∇F ·dx have opposite signs, then Ŝ decreases with F .

The more aligned ∇Ŝ and ∇F , the more paths lead to dŜ
dF

> 0; the more anti-aligned

∇Ŝ and ∇F , the more paths lead to dŜ
dF

< 0. For example, consider the limiting

cases where: (i) if ∇Ŝ and ∇F point exactly in the same direction, then ∇Ŝ · dx and
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Fig. 4 Where ∇Ŝ and ∇F are similarly aligned, Ŝ and F will both increase along most paths through that

point. In each panel, gray shows the part of the x-plane where dŜ
dF

= ∇Ŝ·dx
∇F ·dx > 0, black where dŜ

dF
< 0.

From left to right: ∇Ŝ and ∇F positively aligned; ∇Ŝ and ∇F orthogonal; ∇Ŝ and ∇F negatively aligned

∇F · dx are always same-signed for any dx; (ii) if ∇Ŝ and ∇F point in opposite
directions, then ∇Ŝ · dx and ∇F · dx are never same-signed. Figure 4 illustrates how
the alignment of these two quantities alters the region where correlation increases
with firing rate.

To examine the utility of this idea, we reconsider the radial paths along which
we previously computed susceptibility. The paths all go through a single point, so
we can check the sign((∇Ŝ · x)(∇F · x)) for all directions through this point. In
Figs. 5(A) and (C), white indicates positive and black negative. Figures 5(B) and
(D) repeat the susceptibility-firing rate curves from Fig. 2(B) and Fig. 3(B). For the
asynchronous network (Fig. 5(A)), the red, indigo, and royal blue paths are predicted
to have negative dŜ/dF , as we can confirm in Fig. 5(B). Yellow, green, and light blue
curves are predicted to have positive dŜ/dF . The orange curve is close to dF = 0;
the true blue curve is close to dS = 0. For the strong asynchronous network, only
the red curve is in the negative region of Fig. 5(C); this is also the only path with
dŜ/dF < 0 in Fig. 5(D).

Of course, this prediction only applies to portions of the path near the point at
which we computed the gradients; away from this point, gradients will change along
with the direction of the Ŝ vs. F curve. For example, the royal blue curve in Fig. 5(B)
increases with firing rate for small firing rates, and the light blue, true blue, and royal
blue curves in Fig. 5(D) decrease with firing rate, (for large firing rates).

This motivates a direction-independent measure to quantify the fraction of paths
that lead to an increase of correlation with firing rate. This is given exactly in terms
of the angle between ∇Ŝ and ∇F :

cos θ = ∇Ŝ · ∇F

‖∇Ŝ‖‖∇F‖ (14)

and in particular the fraction of x directions in which Ŝ increases with F is given by

1

π

(

π − cos−1
( ∇Ŝ · ∇F

‖∇Ŝ‖‖∇F‖
))

. (15)
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Fig. 5 Using a single number to predict dŜ/dF . (A) Paths through parameter space for the asynchronous

network: white shows the part of the x-plane where dŜ
dF

= ∇Ŝ·dx
∇F ·dx > 0, black where dŜ

dF
< 0, where ∇Ŝ

and ∇F are computed at the center of the diagram. (B) Correlation susceptibility vs. firing rate, for each
path illustrated in (A). (C)–(D) As in (A)–(B), but for the strong asynchronous network

Because cos−1 has range [0,π], this varies between 0 and 1. The more aligned ∇Ŝ

and ∇F , the more paths lead to dŜ
dF

> 0; the more anti-aligned ∇Ŝ and ∇F , the more

paths lead to dŜ
dF

< 0.

2.4 Strength of Recurrent Excitation Modulates the Correlation–Firing Rate
Relationship

Our use of inhibitory susceptibility (i.e. Eq. (10)) to characterize the relationship
between correlations and firing rates relied on intermediate assumptions, specifically:

• Second-order motifs dominate pairwise correlations.
• Inhibitory common input is the dominant second-order motif.
• Asynchronous spiking assumption: VarT (ni) = T νi ⇒ C̃ii = νi .
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Here, we check that these conditions are still satisfied for a range of neural network
models.

In [4], we examined two spiking regimes achieved by varying the strength of ex-
citation: both recurrent excitation WEE and excitatory input into the inhibitory pop-
ulation WIE . We next applied our theory to a dense grid of parameters (different
networks), each identified by its location on the (WEE,WIE) plane. Both excitatory
strengths were varied from a minimum of their values for the asynchronous network
(WEE = 0.5 and WIE = 5) to a maximum of 1.4 times their value in the strong asyn-
chronous network (to WEE = 12.6 and WIE = 11.2). The parameter WXY is a dimen-
sionless scale factor (see Eqs. (17)–(20)); for example in an all-to-all homogeneous
network, WXY = 1 is when the presynaptic input is exactly the average population
firing rate (filtered by the synapse).

To quantify the importance of paths of different length through the network, we
can define the contributions at any specific order k by using the interaction net-
work K:

R̃k
ij = (

∑k
l=0 K̃lC̃0(K̃∗)k−l )ij

√
C̃iiC̃jj

. (16)

Then we regressed the total correlation (C̃ij /

√
C̃iiC̃jj ) against the contributions at

each specific order (R̃k
ij ); the corresponding fraction of variance explained (R2 value)

gives a quantitative measure of how well the total correlation can be predicted from
each term.

Similarly, we quantity the importance of specific second-order motif types, by
regressing the total contribution from second-order motifs (R̃2

ij ) against the contribu-
tion from specific motifs. We performed this computation for each network (a total
of 225 networks), and summarize the results in Fig. 6; to present the data compactly,
we collapse R2 values (all values are ∈ [0,1]) for a fixed WEE and varying WIE by
showing mean and standard deviation only (standard deviation as error bars). Second-
order contributions dominate for small to moderate WEE (Fig. 6(A)); other orders
only compete when WEE has already exceeded the level of the strong asynchronous
network (where the network is close to the edge of instability, and at the limit of
validity for mean-field, asynchronous assumptions).

To illustrate the meaning of this statistic, in Fig. 6(B) we show contributions up to

fourth order (R̃k
ij , for k = 1, . . . ,4) vs. total correlation (C̃ij /

√
C̃iiC̃jj ) for all E–E

cell pairs in a network, for two individual networks included in the summary panel.
Note that the second-order contributions cluster near the unity line in both cases,
indicating that second-order contributions are the best predictor of total correlations,
consistent with the R2 values stated.

Of the second-order motifs, inhibitory common input is the dominant contribution
at any value of WEE , except perhaps the last, at which point the excitatory population
has unrealistically high firing rates (Fig. 6(C)). To summarize, we have confirmed
that far from being limited to a few examples, the conditions we identified in [4] as
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Fig. 6 Second-order motifs dominate pairwise correlations in a wide range of networks; inhibitory com-
mon input is the dominant second-order motif. (A) Fraction of variance explained (R2) from linear re-

gressions of total correlation (C̃ij /

√
C̃ii C̃jj ) against contributions from first order (blue), second order

(red), third-order (green), and fourth-order (magenta) motifs. (B) Contributions up to fourth order (R̃k
ij

,

for k = 1, . . . ,4) vs. total correlation (C̃ij /

√
C̃ii C̃jj ) for all E-E cell pairs in a network, for two individual

networks included in panel A. (C) Fraction of variance explained (R2) from linear regressions of con-
tributions to pairwise correlations from second-order motifs (R̃2

ij
) against contributions from the distinct

types of second-order motifs: inhibitory common input (magenta), excitatory common input (red), decor-
relating chains (green), and correlating chains (blue). Both (A,C): Each data point represents the mean
value from 15 networks with WIE between 5 and 11.2; error bars show standard deviation across these
values. WXY = 1 is when the presynaptic input is exactly the average population firing rate (filtered by the
synapse) in an all-to-all homogeneous network

allowing us to focus on susceptibility to inhibition to explain pairwise correlations,
appear to hold up for a variety of networks.

We note that our findings about the relative magnitudes of terms of different orders
are purely empirical; that is, they are based on concrete numerical observations, rather
than a priori estimates. Thus, it should be reassessed if anything about the parame-
ters or network connectivity is changed. In particular, a likely reason for the relative
weakness of first-order terms is that in these networks excitation is almost always
weaker than inhibition; while first-order terms are always excitatory, second-order
terms can involve excitation and/or (comparatively strong) inhibition.

Having confirmed the validity of our approach, we computed the susceptibility
with respect to inhibition, for each of the networks examined in the previous section
(because of instability, we restricted these computations to excitatory strengths ×1.2
the values used in [4]). Because background noise values varied slightly, we actually
examined two network families; one in which we chose σ values as in the asyn-
chronous network, another in which we chose σ values as in the strong asynchronous
network. Also as in [4], we estimated susceptibility using network-averaged values
of gE , gI , σgE

, and σgI
.

Surprisingly, the difference in background noise dwarfed the recurrent excitation
strengths, at least in accessing the relationship between Ŝ and firing rate. In Fig. 7,
we show Ŝ vs. F curves, for a set of representative networks, on a single plot. Color
indicates WEE (shade of blue) and WIE (shade of red); values of WEE are 0.50 (as
in the asynchronous network from [4]), 6.45, 9 (as in the strong asynchronous net-
work from [4]), and 10.7, values of WIE are 5 (as in the asynchronous network from
[4]), 7.1, 8 (as in the strong asynchronous network from [4]), and 8.6. For reference,
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Fig. 7 Firing rate vs. susceptibility (Ŝ), computed for a family of networks generated by modulating the
strength of excitation (WEE and WIE ). (A) Background noise values σE , σI set as in the asynchronous
network from [4]. (B) Background noise values σE , σI set as in the strong asynchronous network from
[4]. Sixteen curves are chosen, for a survey of the range of networks achievable by varying strength of
recurrent excitation. Values of WEE are 0.50 (as in the asynchronous network from [4]), 6.45, 9 (as in the
strong asynchronous network from [4]), and 10.7. Values of WIE are 5 (as in the asynchronous network
from [4]), 7.1, 8 (as in the strong asynchronous network from [4]), and 8.6. Again, WXY = 1 is when
the presynaptic input is exactly the average population firing rate (filtered by the synapse) in an all-to-all
homogeneous network, so the coupling strengths vary significantly

WXY = 1 is when the presynaptic input is exactly the average population firing rate
(filtered by the synapse) in an all-to-tall homogeneous network, so these coupling
strengths vary significantly. We see that, for the full range of recurrent excitation val-
ues, Ŝ vs. F curves in Fig. 7(A) are mostly decreasing; Ŝ vs. F curves in Fig. 7(B)
are mostly increasing for low F , and saturating for high F .

2.5 Background Noise Modulates the Correlation–Firing Rate Relationship

To further explore the role of background noise, we repeated the susceptibility calcu-
lation on additional families of networks, now allowing background noise strengths
σE and σI (i.e. to the excitatory and inhibitory populations) to vary separately. Input
to excitatory cells was varied between σE = 1.5 and 2.5; input to inhibitory cells was
varied between σI = 1.5 and 3. These noise values are relatively large; see Eq. (17)
and note that voltage is of order 1. In Fig. 8(A) we display susceptibility vs. firing rate
curves for 12 (σE,σI ) pairs; asterisks indicate σE and σI by color (green intensity
for σE and blue intensity for σI ). Within each panel curves are colored as in Fig. 7:
red intensity for WIE and blue intensity for WEE .

Surprisingly, most network families (i.e. (σE,σI )) were associated with a de-
crease in correlation with firing rate. The exceptions are (0.15,0.25) (as in the strong
asynchronous network in [4]) and (0.15,0.3). This latter was most robustly associ-
ated with a positive correlation–firing rate relationship. Furthermore, the shape of
susceptibility-firing curves did not appear to vary much with the strength of recurrent
excitation (i.e., curves within each panel are similar).
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Fig. 8 The strength of background noise modulates the correlation–firing rate relationship. (A) Each panel
shows firing rate vs. susceptibility (Ŝ), computed for a family of networks generated by modulating the
strength of excitation (WEE and WIE ) with various background noise levels (see Eq. (17) for σE and σI

definitions). (B) Population-averaged effective parameters 〈gI 〉 and Erev, for each network displayed in
(A); see Eq. (28) for Erev

We next sought to investigate possible mechanisms for a positive correlation–firing
rate relationship, by examining the effective parameters that govern the neural re-
sponse: in essence, the network’s “operating point” (see Eq. (26)). Possible choices
include gI , gE , σgE

, σgI
, and the effective reversal potential Erev; we found σgE

and
σgI

to be largely functions of gE and gI , while Erev has a (nonlinear) functional re-
lationship with gE and gI . Thus two parameters suffice, and here we chose to use
gI and Erev. In Fig. 8(B), we plot average parameter values for each curve, color-
coded by (σE,σI ). Any given color is consistent with a relatively tight range of gI

and (comparatively) broad range of Erev. As σI increases (increasing blue intensity),
inhibitory conductance gI increases and reversal potential Erev decreases. However,
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it was not apparent that any particular region in (gI ,Erev) parameter space was as-
sociated with a positive correlation–firing rate relationship, in that the values of gI

and Erev that supported a positive relationship supported negative relationships as
well.

3 Discussion

In this paper, we showed that using a single-cell firing rate function to examine the
relationship between correlations and firing rates is feasible for a wide range of het-
erogeneous, recurrent networks. We focused on three factors that can modulate the
correlation–firing rate relationship: how the network occupies effective parameter
space, strength of recurrent excitation, and strength of background noise. Although
there are many sets of parameters known to vary within a heterogeneous network of
neurons, we have already demonstrated vastly different correlation–firing rate rela-
tionships with our methods, with a theory that can be readily applied to other model
networks.

One possible application of this work is in designing neural networks for com-
putational experimentation; just as modelers now modify cortical networks to obey
experimental constraints on firing rates [3, 35], we could also include a constraint on
the desired correlation–firing rate relationship. Here we showed that we can quickly
assess a wide range of possible network configurations for a positive correlation–
firing rate relationship: in Sect. 2.5, for example, we performed calculations on
15 × 15 × 12 = 2700 heterogeneous networks, with a nominal amount of comput-
ing time.

One surprising finding in our computations was the relative insensitivity of the
slope of the correlation–firing rate relationship to recurrent excitation (WEE , WIE),
as demonstrated in Figs. 7 and 8. This is striking in contrast to the strong sensitivity on
display in Figs. 2(B) and 3(B). This difference is explained as follows: in every case
where we computed the susceptibility for a self-consistent network (i.e. a solution
of Eqs. (26)–(30) and (32)–(33)), the source of heterogeneous firing rates was neural
excitability, set via a spiking threshold θ . The resulting effective parameters, such
as inhibitory conductance 〈gI 〉, did not deviate strongly from their population mean
values. In essence, all of these networks took a horizontal path through (θ, 〈gI 〉)
parameter space, as in Figs. 2(C), (D) and Figs. 3(C), (D). If we were to generate
networks where heterogeneity arises from another source—such as the strength or
frequency of inhibitory connections [23]—we might see different results. We look
forward to exploring this in future work.

A priori, there is no reason to expect that the correlation–firing rate relationship
in these recurrent networks can be simplified to a feedforward motif based on shared
inhibitory input; this was purely an empirical observation (see Fig. 6(B)). We remark
that others have shown that the effective input correlation can be canceled to have
near zero input (and thus output) correlation on average in balanced networks [28,
40], in contrast to some of the models considered here (i.e., strong asynchronous
regime with more net excitation). The conditions for correlation cancellation in these
model networks is beyond the scope of this study, but note that others have shown
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correlation cancellation does not always hold ([21, 22] via altering connection prob-
abilities). The studies that demonstrate correlation cancellation often have faster (or
equal) inhibitory synaptic time scales than excitatory: τI ≤ τE [21, 28, 32] ([40] used
current-based instantaneous synapses or τI = τE = 10 ms) while in our networks
the inhibitory synapses have longer time scales (Table 1). Note that Fig. S4 of [28]
shows that having effectively zero input correlation does not hold as the inhibitory
time scales increase beyond the excitatory time scales. Finally, system size is another
key parameter that could certainly affect the magnitude of the recurrent feedback. In
contrast to [28, 40], we did not account for how system size would affect correlation
cancellation in these heterogeneous networks.

Although affirmative answers to whether correlations increase with firing rate in
experiments were cited in the Introduction [2, 5, 8, 11, 19, 36, 44] we also note that
many experiments have shown that the average correlation across a population can
decrease with firing rate when a global state changes or a stimulus is presented. A re-
cent review [9] shows that stimulus-induced decorrelation (with increased firing rate)
occurs in a variety of brain regions and animals. This is slightly different from the
situation we examine here, where we consider the relationship between correlations
and firing rates within a stimulus condition. Regardless, the fact that the relationship
between correlation and firing rate is not obvious points to the continued need for
theoretical studies into the mechanisms of spike statistics modulation.

Finally, our finding that correlations often decrease, rather than increase, with fir-
ing rate stands in apparent contradiction to earlier work on feedforward networks
[8, 38]. On closer inspection, we can identify several reasons why our results dif-
fer; with conductance inputs (rather than currents) we have a quantitatively different
relationship between input parameters and firing rates; furthermore with more ad-
justable single-neuron parameters, the same sets of firing rates may be observed with
single-neuron parameters set in different ways. While the current clamp experiments
described in [8] found a consistent increase of correlations with firing rates, we can
hypothesize that the parallel dynamic clamp experiments in which pairwise correla-
tions arise from common inhibitory input, would in fact show a decrease with firing
rate. However, we also predict that whether an increase or decrease with firing rate is
observed would depend on whether firing rates are modulated by varying the level of
inhibitory input, or by otherwise varying the excitability of the cells (perhaps phar-
macologically).

4 Methods

4.1 Neuron Model and Network Setup

We considered randomly connected networks of excitatory and inhibitory neurons.
Each cell is a linear integrate-and-fire model with second-order alpha-conductances,
i.e. membrane voltage vi was modeled with a stochastic differential equation, as long
as the voltage is below threshold θi :

τm

dvi

dt
= −vi − gE,i(t)(vi − EE) − gI,i(t)(vi − EI ) + σi

√
τmξi(t). (17)
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Table 1 Intrinsic parameters that are fixed throughout

Parameter

τm EE EI τref αE αI τr,E τd,E τr,I τd,I

Value 20 ms 6.5 −0.5 2 ms 1 2 1 ms 5 ms 2 ms 10 ms

Fixed parameters for model networks; see Eqs. (17)–(20). All are dimensionless except the time scales.

When vi reaches θi , a spike is recorded and voltage is reset to 0 following a refractory
period:

vi(t) ≥ θi ⇒ vi(t + τref) = 0, (18)

Each neuron receives Gaussian white background noise with magnitude σi depending
only on the cell type; that is, 〈ξi(t)〉 = 0 and 〈ξi(t)ξi(t + s)〉 = δ(s). The membrane
time constant, τm, and excitatory and inhibitory synaptic reversal potentials, EE and
EI , are the same for every cell in the network (see Table 1). The thresholds θi are a
significant source of heterogeneity, and they are selected from a log–normal distri-
bution with mean 1 and variance e(0.2)2 − 1; since the system size is moderate, the
θi ’s were set to have C.D.F. (cumulative distribution function) values equally spaced
from 0.05 to 0.95 for both E and I cells.

Each cell responds to synaptic input through conductance terms, gE,i and gI,i ,
which are each governed by a pair of differential equations:

τd,X

dgX,i

dt
= −gX,i + g

(1)
X,i , (19)

τr,X

dg
(1)
X,i

dt
= −g

(1)
X,i + τr,XαX

(
WYX

NYX

) ∑

j∈X,j→i

∑

k

δ(t − tj,k), (20)

where Y = {E,I } denotes the type of cell i and X = {E,I } denotes the type of the
source neuron j . Each spike is modeled as a delta-function that impacts the auxiliary
variable g

(1)
X,i ; here tj,k is the kth spike of cell j . The rise and decay time constants

τr,X and τd,X and pulse amplitude αX depend only on the type of the source neuron,
that is they are otherwise the same across the population. The parameter WYX denotes
the strength of X → Y synaptic connections, which are (once given the type of source
and target neurons) identical across the population. The “raw” synaptic weight (listed
in Table 2) is divided by NYX , the total number of X → Y connections received by
each Y -type cell.

Table 2 show connectivity parameters for the two example networks we discuss in
Sect. 2.2. For Figs. 1–3, five parameters are set as stated in this table. In Sect. 2.4 and
Figs. 6–7, WEE was varied between 0.5 and 12.6 and WIE between 5 and 11.2. In
Sect. 2.5 and Fig. 8, WEE was varied between 0.5 and 10.8 and WIE between 5 and
9.6; σE was varied between 1.5 and 2.5 and σI between 1.5 and 3.
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Table 2 Excitatory connection strengths mediate different firing regimes

Parameter

WEI (I → E) WIE (E → I ) WEE WII σE σI Figures

Asynchronous 10 5 0.5 5 2/
√

2 3/
√

2 Figs. 1, 2, 5(A) and (B)

Str. Asynch. 10 8 9 5 1.5/
√

2 2.5/
√

2 Figs. 3, 5(C) and (D)

% connectivity 35 % 20 % 40 % 40 %

Connectivity details for networks examined in Sect. 2.2. Here WYX denotes X → Y connections; e.g.
WIE denotes the strength of excitatory connections onto inhibitory neurons. The parameter σi denotes
the strength of background noise in units of (scaled) voltage, and depends only on cell type (E or I ).
The parameters WEE , WIE , σE and σI will vary in Sects. 2.4 and 2.5; see text for details. For refer-
ence, WXY = 1 is when the presynaptic input is exactly the average population firing rate (filtered by the
synapse) in an all-to-tall homogeneous network.

4.2 Linear Response Theory

In general, computing the response of even a single neuron to an input requires solv-
ing a complicated, nonlinear stochastic process. However, it often happens that the
presence of background noise linearizes the response of the neuron, so that we can
describe this response as a perturbation from a background state. This response is
furthermore linear in the perturbing input and thus referred to as linear response the-
ory [31]. The approach can be generalized to yield the dominant terms in the coupled
network response as well. We will use the theory to predict the covariance matrix of
spiking activity. The derivation is presented in full in [20, 29, 30]; here, we present
only the main points.

We assume we have some way to approximate the change in firing rate which
occurs as a result of a change in parameter:

νi(t) = νi,0 + (AX,i ∗ εXi)(t); (21)

νi,0 is the baseline rate (when X = 0) and AX,i(t) is a susceptibility function that
characterizes this firing rate response up to order ε [8, 20, 41].

In order to consider joint statistics, we need the trial-by-trial response of the cell.
First, we propose to approximate the response of each neuron by

yi(t) ≈ y0
i (t) +

(

AX,i ∗
∑

j

(JX,ij ∗ yj )

)

(t); (22)

that is, each input Xi has been replaced by a filtered version of the presynaptic firing
rates yj .

In the frequency domain this becomes

ỹi (ω) = ỹ0
i + ÃX,i(ω)

(∑

j

J̃X,ij (ω)ỹj (ω)

)

, (23)
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where ỹi = F[yi − νi] is the Fourier transform of the mean-shifted process (νi is the
average firing rate of cell i) and f̃ = F[f ] for all other quantities. In matrix form,
this yields a self-consistent equation for ỹ in terms of ỹ0:

(
I − K̃(ω)

)
ỹ = ỹ0 ⇒ ỹ = (

I − K̃(ω)
)−1

ỹ0, (24)

where K̃ij (ω) = ÃX,i(ω)J̃X,ij (ω) is the interaction matrix in the frequency domain.
The cross-spectrum is then computed via

〈
ỹ(ω)ỹ∗(ω)

〉 = (
I − K̃(ω)

)−1〈
ỹ0(ω)ỹ0∗(ω)

〉(
I − K̃∗(ω)

)−1
. (25)

To compute the interaction matrix for a network of conductance-based neurons, we
use the effective time constant approximation (as in the supplemental for [41]). We
first separate each conductance into mean and fluctuating parts, e.g., gE,i → 〈gE,i〉+
(gE,i −〈gE,i〉) (see the discussion in [12]). Next we identify an effective conductance
g0,i and potential Erev,i , and treat the fluctuating part of the conductances as noise,
i.e. gE,i − 〈gE,i〉 → σgE,iξE,i(t), so that Eq. (17) becomes

τm

dvi

dt
= −g0,i (vi − Erev,i ) + σgE,iξE,i(t)(vi − EE)

+ σgI ,iξI,i(t)(vi − EI ) +
√

σ 2
i τmξi(t), (26)

where

g0,i = 1 + 〈gE,i〉 + 〈gI,i〉, (27)

Erev,i = 〈gE,i〉EE + 〈gI,i〉EI

g0,i

, (28)

σ 2
gE,i = Var

[
gE,i(t)

] = E
[(

gE,i(t) − 〈gE,i〉
)2]

, (29)

σ 2
gI ,i = Var

[
gI,i(t)

] = E
[(

gI,i(t) − 〈gI,i〉
)2]

. (30)

The parameters which govern the firing rate response will now be the conductance
mean and variance, e.g. 〈gE,i〉 and σ 2

gE,i ; we next compute how these depend on
incoming firing rates for second-order α-function synapses (Eqs. (19) and (20)). We
first simplify the equation for the auxiliary variable (Eq. (20)):

τr,X

dg
(1)
X,i

dt
= −g

(1)
X,i + τr,Xα̂X,i

∑

k

δ(t − tk) (31)

so that α̂X,i includes all factors that contribute to the pulse size in Eq. (20), including
synapse strength and pulse amplitude. The time constants τr,X , τd,X and synapse
jump sizes α̂X,i generally depend on cell type. Then assuming that each spike train
is a Poisson process with a constant mean firing rate: i.e., each spike train is modeled
as a stochastic process S(t) with

〈
S(t)

〉 = ν; 〈
S(t)S(t + τ)

〉 − ν2 = νδ(τ ),
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a straightforward but lengthy calculation shows that

〈
gX,i(t)

〉 = α̂X,iνX,iτr,X, (32)

Var
[
gX,i(t)

] =
(

1

2
α̂2

X,iνX,iτr,X

)(
τr,X

τr,X + τd,X

)

= 〈
gX,i(t)

〉 × α̂

2
×

(
τr,X

τr,X + τd,X

)

, (33)

where νX,i is the total rate of type-X spikes incoming to cell i. Notice that modulating
the rate of an incoming spike train will impact both the mean and variance of the input
to the effective equation, Eq. (26) (via Erev,i and σgX,i ). Furthermore, this impact may
differ for excitatory and inhibitory neurons, giving us a total of four parameters that
can be varied in the effective equation.

Therefore, we have four susceptibility functions to compute, Ã〈gE〉,i (ω),
Ã〈gI 〉,i (ω), Ãσ 2

gE
,i(ω), and Ãσ 2

gI
,i (ω). The first two capture the change in firing rate

as a result of a change in mean conductance—〈gE,i〉 → 〈gE,i〉0 + 〈gE,i〉1 exp(ıωt)

or 〈gI,i〉 → 〈gI,i〉0 + 〈gI,i〉1 exp(ıωt)—while the final two address a change in
variance—σ 2

gE,i → (σ 2
gE,i)0 + (σ 2

gE,i)1 exp(ıωt) or σ 2
gI ,i → (σ 2

gI ,i )0 +
(σ 2

gI ,i )1 exp(ıωt). Since the corresponding Fokker–Planck equation required to ob-
tained these entities is linear, we can compute both susceptibilities separately and
combine them to get the net effect. With these pieces, we now have the interaction
matrix:

K̃ij (ω) =
{

Ã〈gE〉,i (ω)J̃ij (ω) + Ãσ 2
gE

,i(ω)L̃ij (ω), j excitatory,

Ã〈gI 〉,i (ω)J̃ij (ω) + Ãσ 2
gI

,i (ω)L̃ij (ω), j inhibitory,
(34)

where L̃(ω) plays a similar role as J̃, but for the effect of incoming spikes on the
variance of conductance. Its relationship to J̃ (either in the frequency or time domain)
is given by the same simple scaling shown in Eq. (33): i.e., for j excitatory,

L̃ij (ω) = J̃ij (ω) ×
(

α̂E,i

2

)

×
(

τr,E

τr,E + τd,E

)

, (35)

where the first factor comes from the effective spike amplitude α̂E,i (and is the scale
factor proposed in [29], Eq. (64)), and the second arises from using second-order (vs.
first-order) alpha-functions.

To implement this calculation, we first solve for a self-consistent set of firing rates:
that is, νi is the average firing rate of Eq. (26), along with Eqs. (27)–(30) and (32)–
(33). We then apply Richardson’s threshold integration method [29, 30] directly to
Eq. (26) to compute the unperturbed power spectrum (〈ỹ0(ω)ỹ0∗(ω)〉) and suscepti-
bility functions. The software we used to implement this calculation is described more
fully in [4] and can be found at https://github.com/andreakbarreiro/LR_CondBased.

https://github.com/andreakbarreiro/LR_CondBased
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4.3 Computing Statistics from Linear Response Theory

Linear response theory yields the cross-spectrum of the spike train, 〈ỹi (ω)ỹ∗
j (ω)〉, for

each distinct pair of neurons i and j (see Eq. (25)). The cross-correlation function,
Cij (τ ), measures the similarity between two processes at time lag τ , while the cross-
spectrum measures the similarity between two processes at frequency ω:

Cij (τ ) ≡ 〈(
yi(t) − νi

)(
yj (t + τ) − νj

)〉
, (36)

C̃ij (ω) ≡ 〈
ỹi (ω)ỹj (ω)

〉
. (37)

The Weiner–Khinchin theorem [31] implies that {Cij , C̃ij } are a Fourier transform
pair: that is,

C̃ij (ω) =
∫ ∞

−∞
Cij (t)e

−2πıωt dt. (38)

In principle, the cross-correlation C(t) and cross-spectrum C̃(ω) matrices are
functions on the real line, reflecting the fact that correlation can be measured at dif-
ferent time scales. In particular, for a stationary point process the covariance of spike
counts over a window of length T , ni and nj , can be related to the cross-correlation
function Cij by the following formula [17]:

CovT (ni, nj ) =
∫ T

−T

Cij (τ )(T − |τ |) dτ. (39)

The variance of spike counts over a time window of length T , ni , is likewise given
by integrating the autocorrelation function Cii :

VarT (ni) =
∫ T

−T

Cii (τ )(T − |τ |) dτ. (40)

By normalizing by the time window and taking the limit as T → ∞,

lim
T →∞

CovT (ni, nj )

T
= lim

T →∞

∫ T

−T

Cij (τ )

(

1 − |τ |
T

)

dτ

=
∫ ∞

−∞
Cij (τ ) dτ = C̃ij (0), (41)

we can see that, for an integrable cross-correlation function, we can use C̃ij (0) as a
measure of long-time covariance.

Similarly, the long-time limit of the Pearson correlation coefficient of the spike
counts,

lim
T →∞ρT,ij = lim

T →∞
CovT (ni, nj )

√
VarT (ni)VarT (nj )

= C̃ij (0)
√

C̃ii (0)C̃jj (0)

, (42)

gives us a normalized measure of long-time correlation.
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