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Abstract We investigate the sparse functional identification of complex cells and
the decoding of spatio-temporal visual stimuli encoded by an ensemble of complex
cells. The reconstruction algorithm is formulated as a rank minimization problem
that significantly reduces the number of sampling measurements (spikes) required
for decoding. We also establish the duality between sparse decoding and functional
identification and provide algorithms for identification of low-rank dendritic stimulus
processors. The duality enables us to efficiently evaluate our functional identification
algorithms by reconstructing novel stimuli in the input space. Finally, we demonstrate
that our identification algorithms substantially outperform the generalized quadratic
model, the nonlinear input model, and the widely used spike-triggered covariance
algorithm.
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BSG Biophysical Spike Generator
CIM Channel Identification Machine
DSP Dendritic Stimulus Processor
GPGPU General Purpose Graphics Processing Unit
GQM Generalized Quadratic Model
IAF Integrate-and-Fire
NIM Nonlinear Input Model
RK Reproducing Kernel
RKHS Reproducing Kernel Hilbert Space
SDP Semidefinite Programming
SNR Signal-to-Noise Ratio
STC Spike-Triggered Covariance
TEM Time Encoding Machine
TDM Time Decoding Machine
V1 Primary Visual Cortex

1 Introduction

It is widely accepted that the early mammalian visual system employs a series of
neural circuits to extract elementary visual features, such as edges and motion [1,
2]. Feature extraction capabilities of simple and complex cells arising in the primary
visual cortex (V1) have been extensively investigated. Layer IV simple cells receive
direct input from the Lateral Geniculate Nucleus [3]. Each simple cell consists of a
linear receptive field cascaded with a highly nonlinear spike generator. Complex cells
in layer II/III of V1 sum the output of a pool of simple cells having similar orienta-
tion selectivity and spatial extent [4] and are thereby selective to oriented edges/lines
over a spatially restricted region of the visual field [1]. Whereas simple cells respond
maximally to a particular phase of the edge, complex cells are largely phase invariant
[5, 6]. Therefore, the receptive fields of complex cells cannot be simply mapped into
excitatory and inhibitory regions [1]. Receptive fields of simple cells are often mod-
eled as spatio-temporal linear filters with a spatial impulse response that resemble
Gabor functions [7], whereas the receptive fields of complex cells are often modeled
as sums of squared linear filters [8]. For simplicity, a quadrature pair of space-time
Gabor filters has been employed in an energy model of complex cells [9–11]. Neural
circuits comprising complex cells constitute a highly nonlinear circuit as illustrated
in Fig. 1.

Feedforward projections from V1 to other cortical areas mainly originate from
layer II/III [12], suggesting that complex cells play a critical role in relaying visual
information processed in V1 to higher brain areas. Whereas tuning properties of in-
dividual complex cells have been characterized [13, 14], the information about visual
stimuli that an ensemble of complex cells can provide and how efficiently they can
represent such information has yet to be elucidated.

Under the modeling framework of time encoding machines (TEMs) [15, 16], it
has been shown that decoding of stimuli and functional identification of linear recep-
tive fields of simple cells are dual to each other [17]. This led to mathematically
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Fig. 1 A neural circuit consisting of a population of complex cells

rigorous identification algorithms for identifying linear receptive fields of simple
cells [17]. By modeling the nonlinear processing in complex cells as Volterra den-
dritic stimulus processors (DSPs) [18, 19], the representation of stimuli encoded by
spike times generated by neural circuits with complex cells was also exhaustively an-
alyzed. Functional identification of a complex cell DSP was possible again thanks to
the demonstrated duality between decoding and functional identification. Although
these theoretical methods exhibit deep structural properties, they have been shown to
be tractable only for decoding and functional identification problems of small dimen-
sions. In their current form, they are not tractable due to the ‘curse of dimensionality’
[20].

The nonlinear transformations taking place in the DSP of complex cells lead to
loss of phase information. Previous work has empirically found that static images
recovered from the magnitude response of Gabor wavelets are perceptually recog-
nizable, albeit they exhibit significant errors in their pixel intensity values [21]. With
this in mind, we formulate the reconstruction of stimuli encoded with complex cells
as a phase retrieval problem [22] and, in search of tractable algorithms, utilize recent
developments in optimization theory of low-rank matrices [22–24]. Applying such
methods, we develop algorithms that are highly effective in decoding visual stimuli
encoded by complex cells. As will be detailed in the next sections, the complex cells,
as defined in this paper, have DSP kernels that are low-rank and include those shown
in Fig. 1 as a particular case.

After demonstrating that the decoding of visual stimuli becomes tractable, we de-
scribe sparse algorithms that functionally identify the DSPs of complex cells using
the spike times they generate. The sparse identification algorithms are based on the
key observation that functional identification can be viewed as the dual problem of
decoding stimuli that are encoded by an ensemble of complex cells. Although a gen-
eralization of the duality results from simple cells to complex cells was already given
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in [18], we show in this paper that these results remain valid under the assumption
of sparsity, that is, for the case of low-rank DSP kernels. This significantly reduces
the time of stimulus presentation that is needed in the identification process. The
sparse duality result also enables us to evaluate the identified circuits in the input
space. We achieve the latter by computing the mean square error or signal-to-noise
ratio (SNR) of novel stimuli decoded using the identified circuits [17]. The sparse de-
coding and functional identification algorithms presented here apply to circuits build
around a wide range of neuron models including integrate-and-fire neurons with ran-
dom thresholds and biophysically realistic conductance-based models with intrinsic
noise.

This paper is organized as follows. In Sect. 2, we first introduce the modeling of
encoding of temporal stimuli with complex cells. We provide a detailed review of
decoding of stimuli and the functional identification of complex cells and point out
the current algorithmic limitations. In Sect. 3, we provide sparse decoding algorithms
that achieve high accuracy and are algorithmically tractable. We then explicate the
dual relationship between sparse functional identification and decoding and provide
examples for the identification of low-rank temporal DSP kernels of complex cells.
In Sect. 4, we extend sparse decoding methodology to spatio-temporal stimuli and
functional identification of spatio-temporal complex cells. Using novel stimuli, we
provide evaluation examples of the identification algorithms in the input space and
compare them with other state-of-the-art methods. Finally, we conclude in Sect. 5
and suggest how the approach advanced in this paper can be applied beyond complex
cells.

2 Neural Circuits with Complex Cells: Encoding, Decoding, and
Functional Identification

In this section, we model the encoding of temporal stimuli by a neural circuit con-
sisting of neurons akin to complex cells. We start by modeling the space of temporal
stimuli in Sect. 2.1. In Sect. 2.2, the model of encoding is formally described. In
Sect. 2.3, we proceed to present a reconstruction algorithm for decoding temporal
stimuli encoded by the neural circuit. A method for functional identification of neu-
rons constituting the neural circuit is provided in Sect. 2.4. The reconstruction algo-
rithm and the functional identification algorithm discussed in this section are based
on [18].

2.1 Modeling Temporal Stimuli

We model the temporal varying stimuli u1 = u1(t), t ∈ D, as real-valued elements of
the space of trigonometric polynomials [15]. The choice of the space of the trigono-
metric polynomials has, as we will see, substantial computational advantages.

Definition 1 The space of trigonometric polynomials H1 is the Hilbert space of
complex-valued functions

u1(t) =
Lt∑

lt=−Lt

clt elt (t) (1)
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over the domain D = [0, St ], where

elt (t) = 1√
St

exp

(
j ltΩt

Lt

t

)
,

and clt , lt = −Lt , . . . ,Lt , are the coefficients of u1 in H1. Here Ωt denotes the band-
width, and Lt is the order of the space. Stimuli u1 ∈ H1 are extended to be periodic
over R with period St = 2πLt /Ωt .

We denote the dimension of H1 by dim(H1), and dim(H1) = 2Lt + 1.

Definition 2 The tensor product space H2 = H1 ⊗ H1 is the Hilbert space of
complex-valued functions

u2(t1; t2) =
Lt∑

lt1=−Lt

Lt∑

lt2 =−Lt

dlt1 lt2
elt1

(t1) · elt2
(t2) (2)

over the domain D
2 = [0, St ] × [0, St ], where dlt1 lt2

, lt1 lt2 ∈ D
2, are the coefficients

of u2 in H2.

Note that dim(H2) = dim(H1)
2.

2.2 Encoding of Temporal Stimuli by a Population of Complex Cells

We consider a neural circuit consisting of M neurons as shown in Fig. 2A. For the
ith neuron, input stimulus u1(t) (u1 ∈ H1) is first processed by two linear filters with
impulse responses gi1

1 (t) and gi2
1 (t), the outputs of which are individually squared

and then summed together. These processing elements are integral part of the DSP
of neuron i [18, 19]. The output of the DSP i, denoted by vi(t), is then fed into
the biological spike generator (BSG) of neuron i. The BSG i encodes the output of
DSP i into the spike train (t ik)k∈Ii . Here I

i is the spike train index set of neuron i. We
notice the similarity between the overall structure of neural circuits in Figs. 2A and 1.
In what follows, we refer to the neurons in the neural circuit in Fig. 2A as complex
cells.

The output of the DSP of the ith neuron in Fig. 2A amounts to

vi(t) =
[∫

D

gi1
1 (t − s1)u1(s1) ds1

]2

+
[∫

D

gi2
1 (t − s2)u1(s2) ds2

]2

(3)

for all i = 1,2, . . . ,M .
With

hi
2(t1; t2) = gi1

1 (t1)g
i1
1 (t2) + gi2

1 (t1)g
i2
1 (t2), (4)

(3) can be rewritten as

vi(t) =
∫

D2
hi

2(t − s1; t − s2)u1(s1)u1(s2) ds1 ds2, (5)
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Fig. 2 The encoding of temporal stimuli by a neural circuit modeling an ensemble of complex cells.
(A) The ith neuron in the model processes the input u1(t) by two parallel linear filters with impulse
responses gi1

1 (t) and gi2
1 (t), respectively, followed by squaring. The outputs are summed and then fed

into a spike generator. (B) An equivalent representation of the encoding circuit in which the DSPs are
represented as second-order Volterra kernels

where hi
2(t1; t2) is interpreted as a second-order Volterra kernel [25]. We assume that

hi
2(t1; t2) is real, bounded-input bounded-output (BIBO) stable, causal, and of finite

memory. The I/O of the neural circuit shown in Fig. 2A can be equivalently outlined
as in Fig. 2B, in which each neuron processes the input u1(t) nonlinearly by a second-
order kernel hi

2(t1; t2) followed by a BSG.

Remark 1 Note that the BSG models the spike generation mechanism of the axon
hillock of a biological neuron, whereas the DSP is an equivalent model of processing
of the stimuli by a sophisticated neural network that proceeds the spike generation.
Therefore, stimulus processing and the spike generation mechanism are naturally sep-
arated in the neuron model considered here.

For simplicity, we first formulate the spike generation mechanism of the encoder
as an ideal integrate-and-fire (IAF) (point) neuron (see, e.g., [17]). The integration
constant, bias, and threshold of the IAF neuron i = 1,2, . . . ,M are denoted by κi ,
bi , and δi , respectively. The mapping of the input amplitude waveform vi(t) into
the time sequence (t ik)k∈Ii is called the t-transform [15]. For the ith neuron, the t-
transform is given by [15, 16]

∫ t ik+1

t ik

vi(t) dt = κiδi − bi
(
t ik+1 − t ik

)
, k ∈ I

i . (6)

Lemma 1 The encoding of the temporal stimulus u1 ∈ H1 into the spike train se-
quence (t ik), k ∈ I

i , i = 1,2, . . . ,M , by a neural circuit with complex cells is given in
functional form by

T i
k u2 = qi

k, k ∈ I
i , i = 1, . . . ,M, (7)

where M is the total number of neurons, ni + 1 is the number of spikes generated by
neuron i, and T i

k : H2 → R are bounded linear functionals defined by

T i
k u2 =

∫ t ik+1

t ik

∫

D2
hi

2(t − s1; t − s2)u2(s1; s2) ds1 ds2 dt (8)

with u2(t1; t2) = u1(t1)u1(t2). Finally, qi
k = κiδi − bi(t ik+1 − t ik).
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Proof Relationship (7) follows by replacing the functional form of vi(t) given in (5)
in equation (6). �

Remark 2 The function u2(t1, t2) = u1(t1) · u1(t2) can be interpreted as a nonlinear
map of the stimulus u1 into u2 defined in a higher-dimensional space. The operation
performed by the second-order Volterra kernel on u2 in (8) is linear. Thus, (7) shows
that the encoding of temporal stimuli can be viewed as generalized sampling [18].

The above formalism for encoding stimuli with complex cells can be extended
in several ways. First, conductance-based BSGs, such as the Hodgkin–Huxley and
Morris–Lecar neuron models, and Izhikevich point neuron models, can be employed
[26–29]. The encoding can be similarly formulated as generalized sampling [16].
Second, to capture the stochastic nature of spiking neurons, intrinsic noise can be
added into the BSG models. For example, an IAF neuron with random thresholds
can be used [15, 30]. It is also natural to consider intrinsic noise in the conductance-
based BSGs [19]. For both models, it has been shown that the encoding of stimuli
can be viewed as generalized sampling with noisy measurements [15, 19], that is, the
t-transform is of the form

T i
k u2 = qi

k + εi
k, k ∈ I

i , i = 1, . . . ,M, (9)

where T i
k are bounded linear functionals defined according to the neuron model of

choice, and εi
k represents random noise in the measurements.

In what follows, we will mainly focus on encoding circuits consisting of complex
cells whose spiking mechanism is modeled by a deterministic IAF neuron. The results
obtained can be extended to the above two cases, and we will provide examples for
both of these.

2.3 Decoding of Temporal Stimuli Encoded by a Population of Complex Cells

Assuming that the spike times (t ik), k ∈ I
i , i = 1,2, . . . ,M , are known, by Lemma 1

the neural circuit with complex cells encodes the stimulus via a set of linear function-
als acting on u2 (see equation (7)). Thus, the reconstruction of u2 can in principle be
obtained by inverting the set of linear equations (7) [18].

Theorem 1 The coefficients of u2 ∈ H2 in (2) satisfy the following system of linear
equations:

Ξd = q, where Ξ = [(
Ξ1)T

, . . . ,
(
ΞM

)T ]T
and q = [(

q1)T
, . . . ,

(
qM

)T ]T

(10)
with [qi]k = qi

k, [d]lt1 lt2
= dlt1 lt2

, and

[
Ξ i

]
k;lt1 lt2

=
∫ t ik+1

t ik

elt1 +lt2
(t) dt

∫

D2
hi

2(s1; s2)e−lt1
(s1)e−lt2

(s2) ds1 ds2.
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This result can be obtained by plugging (2) into (7). We refer readers to Theorem 1
in [18] for a detailed proof.

We formulate the reconstruction of u2 as the following optimization problem:

û2(t1; t2) = arg min
u2∈H2

M∑

i=1

∑

k∈Ii

(
T i

k u2 − qi
k

)2
. (11)

Algorithm 1 The solution to (11) is given by

û2(t1; t2) =
Lt∑

lt1 =−Lt

Lt∑

lt2=−Lt

d̂lt1 lt2
elt1

(t1) · elt2
(t2), (12)

where d̂ = [d̂−Lt ,−Lt , . . . , d̂−Lt ,Lt , . . . , . . . , d̂Lt ,−Lt , . . . , d̂Lt ,Lt ]T is obtained by

d̂ = Ξ†q (13)

with † denoting the pseudoinverse operator.

We note that a necessary condition for perfect recovery is that the total number of
spikes exceeds dim(H1)(dim(H1)+1)/2+M [19]. Therefore, the complexity of the
decoding algorithm is of order dim(H1)

2.
Following [18, 19], the decoding algorithm is called a Volterra time decoding ma-

chine (Volterra TDM).

2.4 Functional Identification of DSPs of Complex Cells

In this section, we formulate the functional identification of a single complex cell
in the neural circuit described in Fig. 2A. We perform M experimental trials. In
trial i, i = 1, . . . ,M , we present a controlled stimulus ui

1(t) to the cell and ob-
serve the spike times (t ik)k∈Ii . We assume that the cell has a DSP of the form
h2(t1; t2) = g1

1(t1)g
1
1(t2) + g2

1(t1)g
2
1(t2) and an integrate-and-fire BSG with integra-

tion constant, bias, and threshold denoted by κ, b, and δ, respectively. The objective is
to functionally identify h2 from the knowledge of ui

1 and the observed spikes (t ik)k∈Ii ,
i = 1, . . . ,M . This is a standard practice in neurophysiology for inferring the func-
tional form of a component of a sensory system [1].

Definition 3 Let hp ∈ L
1(Dp), p = 1,2, where L

1 denotes the space of Lebesgue-
integrable functions. The operator P1 : L1(D) → H1 given by

(P1h1)(t) =
∫

D

h1
(
t ′
)
K1

(
t; t ′)dt ′ (14)

is called the projection operator from L
1(D) to H1. Similarly, the operator P2 :

L1(D
2) → H2 given by

(P2h2)(t1; t2) =
∫

D2
h2

(
t ′1; t ′2

)
K2

(
t1, t2; t ′1, t ′2

)
dt ′1 dt ′2 (15)

is called the projection operator from L
1(D2) to H2.
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Note, that P1u
i
1 = ui

1 for ui
1 ∈ H1. Moreover, for ui

2(t1, t2) = ui
1(t1)u

i
1(t2),

P2u
i
2 = ui

2.

Lemma 2 With M trials of stimuli ui
2(t1; t2) = ui

1(t1)u
i
1(t2), i = 1, . . . ,M , presented

to a complex cell having DSP h2(t1, t2), we have

Li
k(P2h2) = qi

k, k ∈ I
i , i = 1, . . . ,M, (16)

where

Li
k(P2h2) =

∫ t ik+1

t ik

∫

D2
ui

2(t − s1; t − s2)(Ph2)(t − s1; t − s2) ds1 ds2 dt (17)

and

qi
k = κiδi − bi

(
t ik+1 − t ik

)
. (18)

Proof See Appendix 1. �

Remark 3 The similarity between equations (7) and (72) suggests that the identi-
fication of a complex cell DSP by presenting multiple stimuli is dual to decoding
a stimulus encoded by a population of complex cells. This duality is schematically
shown in Fig. 3.

Theorem 2 Let P2h2 ∈H2 be of the form

P2h2(t1; t2) =
Lt∑

lt1 =−Lt

Lt∑

lt2 =−Lt

hlt1 lt2
elt1

(t1) · elt2
(t2). (19)

Then, [h]lt1 lt2
= hlt1 lt2

with lt1 = −Lt , . . . ,Lt , lt2 = −Lt , . . . ,Lt , satisfies the follow-
ing system of linear equations:

Θh = q, (20)

Fig. 3 Duality between decoding and identification. (A) The stimulus u1(t) is encoded with a population
of complex cells. (B) The projection of the second-order Volterra DSP of an arbitrary neuron on the input
space generates the same spike trains if the impulse responses of the DSPs are the same as the input stimuli
in repeated trials
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where Θ = [(Θ1)T , . . . , (ΘM)T ]T and q = [(q1)T , . . . , (qM)T ]T with [qi]k = qi
k

and

[
Θ i

]
k;lt1 lt2

=
∫ t ik+1

t ik

elt1+lt2
(t) dt

∫

D2
ui

2(s1; s2)e−lt1
(s1)e−lt2

(s2) ds1 ds2. (21)

Thus, to identify P2h2, we can follow the same methodology as in Algorithm 1
and formulate the functional identification of P2h2 as

P̂2h2 = arg min
P2h2∈H2

M∑

i=1

∑

k∈Ii

(
Li

k(P2h2) − qi
k

)2
. (22)

For a detailed proof, we refer the reader to the proof of Theorem 1 in [18].

Algorithm 2 The solution to (22) is given by

P̂2h2(t1; t2) =
Lt∑

lt1=−Lt

Lt∑

lt2=−Lt

ĥlt1 lt2
elt1

(t1) · elt2
(t2), (23)

where ĥ = [ĥ−Lt ,−Lt , . . . , ĥ−Lt ,Lt , . . . , . . . , ĥLt ,−Lt , . . . , ĥLt ,Lt ]T is obtained by

ĥ = Θ†q. (24)

The methodology described in Algorithm 2 to identify the nonlinear DSP is called
the Volterra channel identification machine (Volterra CIM) [18, 19].

Remark 4 Formulating the decoding and identification problems in the tensor product
space H2 allows the identification of nonlinear processing by solving a set of linear
equations. However, due to the increased dimensionality, the algorithm requires for
decoding O(dim(H1)

2) measurements.

3 Low-Rank Decoding and Functional Identification

As shown in Sect. 2.3, a reconstruction of the signal u2 is in principle possible by
solving a set of linear equations. However, the complexity of the algorithm is pro-
hibitive. We show in this section that an efficient decoding algorithm can be con-
structed that exploits the structure of encoding circuits with complex cells. Based on
the duality between decoding and functional identification, functional identification
algorithms that exploit the structure of the DSP of complex cells are presented. These
algorithms largely reduce the complexity of decoding of temporal stimuli encoded by
an ensemble of complex cells and that of functional identification of their DSPs.
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3.1 Low-Rank Decoding of Stimuli

3.1.1 Exploiting the Structure of Complex Cell Encoding

In Theorem 1, we introduced a vector notation for the coefficients of u2,

d = [d−Lt ,−Lt , . . . , d−Lt ,Lt , . . . , . . . , dLt ,−Lt , . . . , dLt ,Lt ]T . (25)

We introduce here the matrix notation of the coefficients for u2 ∈H2:

D =
⎡

⎢⎣
d−Lt ,Lt . . . d−Lt ,−Lt

...
. . .

...

dLt ,Lt . . . dLt ,−Lt

⎤

⎥⎦ . (26)

We notice the following: (i) since u2 is assumed to be real, dlt1 ,lt2
= d−lt1 ,−lt2

,
and (ii) since u2(t1; t2) = u1(t1)u1(t2) = u1(t2)u1(t1) = u2(t2; t1), we have dlt1 ,lt2

=
dlt2 ,lt1

. These properties imply that D is a Hermitian matrix. Moreover, we note that
u2 in (7) is the ‘outer’ product of the stimuli u1, that is,

D = ccH , (27)

where

c = [c−Lt , . . . , cLt ]T (28)

are the coefficients of the basis functions of u1. Therefore, D is a rank-1 Hermitian
positive semidefinite matrix. This property will be exploited in stimulus decoding
(reconstruction).

Theorem 3 Encoding the stimulus u1 ∈ H1 with the neural circuit with complex cells
given in (6) into the spike train sequence (t ik), k ∈ I

i , i = 1,2, . . . ,M , satisfies the set
of equations

Tr
(
Φi

kD
) = qi

k, k ∈ I
i , i = 1, . . . ,M, (29)

where Tr(·) is the trace operator, D is the rank-1 positive semidefinite Hermitian ma-
trix D = ccH , qi

k = κiδi −bi(t ik+1 − t ik) and (Φi
k), k ∈ I

i , i = 1, . . . ,M , are Hermitian
matrices with entries in the (lt2 +Lt + 1)th row and (lt1 +Lt + 1)th column given by

[
Φi

k

]
lt2 ,lt1

=
∫ t ik+1

t ik

elt1−lt2
(t) dt

∫

D2
hi

2(s1; s2)e−lt1
(s1)elt2

(s2) ds1 ds2. (30)

Proof Plugging in the general form of u2 in (2) into (8), the left-hand side of (7)
amounts to

Lt∑

lt1=−Lt

Lt∑

lt2=−Lt

dlt1 ,−lt2

∫ t ik+1

t ik

elt1−lt2
(t) dt

∫

D2
hi

2(s1; s2)e−lt1
(s1)elt2

(s2) ds1 ds2.
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It is easy to verify that this expression can be written as

Lt∑

lt1 =−Lt

Lt∑

lt2=−Lt

dlt1 ,−lt2

[
Φi

k

]
lt2 ,lt1

= Tr
(
Φi

kD
)
. (31)

Finally, we note that since hi
2, i = 1, . . . ,M , are assumed to be real valued, (Φ i

k),
k ∈ I

i , i = 1, . . . ,M , are Hermitian. �

Remark 5 We note that equation (29) in Theorem 3 and equation (10) in Theorem 1
are the same. These equations represent the t-transform of a complex cell in (rank-
1) matrix and vector form, respectively. The (rank-1) matrix representation is made
possible by the equality u2(t1; t2) = u1(t1)u1(t2).

3.1.2 Reconstruction Algorithms

Solving the systems of equations (29) and (10) requires at least dim(H1)(dim(H1) +
1)/2 + M measurements. Consequently, practical solutions become quickly in-
tractable. Fortunately, the encoded stimulus is of the form u2(t1; t2) = u1(t1)u2(t2).
This guarantees that D is a rank-1 matrix, and thus the reconstructed stimulus belongs
to a small subset of H2. Therefore, we can cast the problem of reconstructing tem-
poral stimuli encoded by neural circuits with complex cells as a feasibility problem,
that is, finding all positive semidefinite Hermitian matrices that satisfy (29) and have
rank 1. As we will demonstrate, the latter condition can be satisfied with substantially
fewer measurements.

Recently, there is an increasing interest in low-rank optimizations such as matrix
factorization, matrix completion, and rank minimization, both from a theoretical and
from a practical standpoint [24, 31, 32]. For example, rank minimization has recently
been applied to phase retrieval problems [22].

Our objective here is to find rank-1, positive semidefinite matrices that satisfy
the t-transform (29). Since there always exists at least one rank-1 solution, this is
equivalent to the following optimization problem [33]:

minimize Rank (D)

s.t. Tr
(
Φi

kD
) = qi

k, k ∈ I
i , i = 1, . . . ,M,

D � 0.

(32)

The rank minimization problem in (32) is NP-hard. A well-known heuristic is to
relax problem (32) to a trace minimization problem [32], that is, instead of solving
(32), we reconstruct u2 using Algorithm 3.

Algorithm 3 The reconstruction of u2 from the spike times generated by the neural
circuit with complex cells is given by

û2(t1; t2) =
Lt∑

lt1 =−Lt

Lt∑

lt2=−Lt

d̂lt1 lt2
elt1

(t1) · elt2
(t2), (33)
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where

D̂ =
⎡

⎢⎣
d̂−Lt ,Lt . . . d̂−Lt ,−Lt

...
. . .

...

d̂Lt ,Lt . . . d̂Lt ,−Lt

⎤

⎥⎦ (34)

is the solution to the semidefinite programming (SDP) problem

minimize Tr (D)

s.t. Tr
(
Φi

kD
) = qi

k, k ∈ I
i , i = 1, . . . ,M,

D � 0.

(35)

When the matrices (Φ i
k), k ∈ I

i , i = 1, . . . ,M , satisfy the rank restricted isometry
property [24], the trace norm relaxation converges to the true solution of (32), pro-
vided that the number of measurements is of order O(dim(H1) log(dim(H1))) [24].
These results suggest that stimuli encoded by complex cells can be decoded with a
significantly lower number of measurements than that required by Algorithm 1. To
investigate this further, we applied the algorithm to decode a large number of stim-
uli encoded by complex cells while varying the number of measurements (spikes)
used by the decoding algorithm. The results show that the number of spikes required
to faithfully represent a stimulus by a neural circuits consisting of complex cells is
quasilinearly rather than quadratically proportional to the dimension of the stimulus
space. These results are presented in the subsequent sections.

The matrix of weights D̂ obtained from the algorithm can be further decomposed
to extract the signal u1 (up to a sign) as follows.

(i) Perform the eigen-decomposition of D̂. Denote the largest eigenvalue by λ and
the corresponding eigenvector by v. If (35) does not exactly return a rank-1 matrix,
then choose the largest eigenvalue and disregard the rest. Let w = √

λv.
(ii) The reconstructed stimulus û1 is given by (up to a sign)

û1(t) =
Lt∑

lt=−Lt

ĉlt elt (t),

where

ĉ =
{

w · |[w]Lt +1|
[w]Lt +1

if [w]Lt+1 �= 0,

w otherwise,
(36)

with ĉ = [ĉ−Lt , . . . , ĉLt ]T , and [w]Lt+1 is the (Lt + 1)th entry of w, which corre-
sponds to the coefficient ĉ0.

If D̂ is rank 1, step (i) decomposes D̂ as an ‘outer’ product of a vector and itself
(see (27)). The resulting vector w differs from the actual coefficient vector of the
stimulus u1 by up to a complex-valued scaling factor. This factor is corrected in step
(ii). Since u1 is assumed to be real valued, the ‘DC’ component must be real valued.
Therefore, we rotate w to remove any imaginary part. In practice, this also ensures
ĉ−lt = ĉlt .
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Remark 6 Note that we can reconstruct u1(t) up to a sign, since D = ccH and D =
(−c)(−cH ) are equally possible. For clarity, in all examples given in this paper, the
sign of the recovered stimulus was matched to the original stimulus.

Remark 7 Note that (32) can be alternatively solved by replacing the objective with
the log-det heuristic [32], that is,

minimize log det(D + λI)
s.t. Tr

(
Φi

kD
) = qi

k, k ∈ I
i , i = 1, . . . ,M,

D � 0,

(37)

where λ > 0 is a small regularization constant. This optimization may further reduce
the rank of D̂ when Algorithm 3 fails to progress to an exact rank-1 solution [32].

Remark 8 When intrinsic noise is present in the BSG, the encoding of stimuli can
be formulated as generalized sampling with noisy measurements. We modify (35) as
follows:

minimize Tr (D) + λ

(
M∑

i=1

∑

k∈Ii

(
Tr

(
Φi

kD
) − qi

k

)2

)

s.t. D � 0,

(38)

where λ can be chosen based on the noise estimate. Here, the recovered D may no
longer be rank-1. The largest rank-1 component is used for the reconstruction of
stimuli.

Although the SDP in (35) provides an elegant way for relaxing the rank minimiza-
tion problem, it is limited in practice by the need of large amounts of computer mem-
ory for numerical calculations. The optimization problem (32) can also be solved
using an alternating minimization scheme [34] as further outlined in Algorithm 4.
The alternating minimization approach is more tractable when the dimension of the
space is very large. Algorithm 4 uses an initialization step (step 1) that provides an
initial iterate whose distance from D is bounded. It then alternately solves for the left
and right singular vectors of the rank-1 matrix D while keeping the other one fixed
(step 2). The resulting subproblems admit a straightforward least squares solution,
which can be much more efficiently solved than the SDP in Algorithm 3. Moreover,
the algorithm is amenable to parallel computation using general purpose graphics
processing units (GPGPUs). The latter property makes it even more attractive when
the dimension of the stimulus space is large.

Algorithm 4

1. Initialize ĉ1 and ĉ2 to top left and right singular vectors, respectively, of
∑M

i=1
∑

k∈Ii qi
kΦ

i
k normalized to

√
1
σ

∑M
i=1

∑
k∈Ii (qi

k)
2, where σ is the top singu-

lar value of
∑M

i=1
∑

k∈Ii qi
kΦ

i
k .

2. Solve alternately the following two minimization problems:
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(a) solve for ĉ1 by fixing ĉ2

ĉ1 = arg min
c1

M∑

i=1

∑

k∈Ii

(
Tr

(
Φi

kc1ĉH
2

) − qi
k

)2; (39)

(b) solve for ĉ2 by fixing ĉ1

ĉ2 = arg min
c2

M∑

i=1

∑

k∈Ii

(
Tr

(
Φi

k ĉ1cH
2

) − qi
k

)2 (40)

until
∑M

i=1
∑

∈Ii (Tr(Φi
k ĉ1ĉH

2 )−qi
k)

2 ≤ ε, where ε > 0 is the error tolerance level;

3. compute D̂ = ĉ1ĉH
2 .

The matrix D̂ approximates the coefficients of u2 ∈ H2 as in (33). We can recon-
struct u1 using the (appropriately scaled) top eigenvector of 1

2 (D̂ + D̂H ). This can be
obtained directly from ĉ1 and ĉ2 as follows. Let

k =
ĉH

1 ĉ2 − ĉH
2 ĉ1 +

√
(ĉH

1 ĉ2 − ĉH
2 ĉ1)2 + 4ĉH

1 ĉ1ĉH
2 ĉ2

2ĉH
2 ĉ2

(41)

and

w =
√

1

2
ĉH

2 ĉ1 + kĉH
2 ĉ2

ĉ1 + kĉ2

‖ĉ1 + kĉ2‖ . (42)

The reconstructed stimulus û1 is given by (up to a sign)

û1(t) =
Lt∑

lt=−Lt

ĉlt elt (t)

with ĉ given by equation (36).
We point out that we made the decoding manageable by exploiting the structure

of u2. Therefore, no constraint is imposed on the form that hi(t1; t2) takes, and the
decoding algorithms can be applied to neural circuits with neurons whose DSPs take
the form of any second-order Volterra kernel.

3.1.3 Example: Decoding Temporal Stimuli Encoded with a Population of Complex
Cells

Here, the neural circuit we consider consists of 19 complex cells. The DSPs of the
complex cells are of the form

hi
2(t1; t2) = gi1

1 (t1)g
i1
1 (t2) + gi2

1 (t1)g
i2
1 (t2), (43)
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where gi1
1 (t) and gi2

1 (t) are quadrature pairs of temporal Gabor filters, and i =
1, . . . ,19. The Gabor filters are constructed using a dyadic grid of dilations and trans-
lations of the mother wavelets. The mother functions are given by

g1
1(t) = exp

(
−

(
t2

0.001

))
cos(40πt) (44)

and

g2
1(t) = exp

(
−

(
t2

0.001

))
sin(40πt). (45)

The ensemble of Gabor filters spans the frequency range of the input space. The
BSG of the complex cells are point IAF neurons with bias bi = 2 and integration
constant κi = 1, i = 1, . . . ,M . These two parameters are kept the same for all stimuli.
Different threshold values are chosen for the IAF neurons to vary the total number
of spikes, which can be used to evaluate how many measurements are required for
perfectly reconstructing the input stimuli.

The domain of the input space H1 is D = [0,1] [sec], and Lt = 20, Ωt = 20 · 2π

[rad/sec]. Thus, we have dim(H1) = 41. The stimuli were generated by randomly
choosing their basis coefficients from an i.i.d. Gaussian distribution.

We tested the encoding and subsequent decoding of 6570 stimuli. The total num-
ber of spikes produced for each stimulus ranged from 20 to 220. Reconstructions
of the stimuli were performed using Algorithm 3, and the SDPs were solved using
SDPT3 [35].

We show the SNR of all reconstructions in the scatter plot of Fig. 4A. Here solid
dots represent exact rank 1 solutions (the largest eigenvalue is at least 100 times
larger than the sum of the rest of the eigenvalues), and crosses indicate that the trace
minimization found a higher rank solution that has a smaller trace. The percentage
of exact rank 1 solutions is shown in Fig. 4B. A relatively sharp transition from very
low probability of recovery to very high rate of perfect reconstruction can be seen,
similar to phase transition phenomena in other sparse recovery algorithms [36]. It can
also be seen that the number of measurements that are needed for perfect recovery is
substantially lower than the 861 spikes required by decoding based on Theorem 1.

Fig. 4 Example of low-rank decoding. (A) Effect of number of measurements (spikes) on reconstruction
quality. (B) Percentage of rank 1 reconstructions
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3.1.4 Example: IAF Spike Generators with Random Thresholds

Next, for the circuit presented in Sect. 3.1.3, we assumed the IAF neurons to have
random thresholds [15]. More specifically, during the interval [t ik, t ik+1), the threshold
of the ith neuron was δi

k , where δi
k are i.i.d. Gaussian random variables with mean δ

and variance σ 2. Since the thresholds are random, the spike times generated by the
circuit are no longer deterministic.

We chose five different values for δ and four different values for σ . For each (δ, σ )

pair, we presented 50 stimuli to the circuit and subsequently decoded these by solving
(38). We found that the SNR of the recovery degrades linearly with log(σ ). Figure 5
depicts the average SNR of recovery as a function of σ for various δ. Note that a lower
δ corresponds to a higher number of spikes; the inset in the figure provides the average
number of spikes produced by the circuit for each δ. The results demonstrate that the
low-rank decoding algorithm is stable to noise and applicable to non-deterministic
encoding paradigms.

3.1.5 Example: Hodgkin–Huxley Neurons as Biophysical Spike Generators

Here, we evaluate the decoding of stimuli encoded by complex cells with BSGs mod-
eled as Hodgkin–Huxley neurons. The space of the input stimuli and the structure of
the DSPs of the neurons are the same as in Sects. 3.1.3 and 3.1.4. However, as the
Hodgkin–Huxley point neurons generate significantly more spikes than the IAF neu-
rons considered in the previous examples, we only use here a total of five neurons.

Fig. 5 Robust reconstruction of temporal stimuli encoded by complex cells. The BSGs of the complex
cells are modeled as ideal IAF neurons with random thresholds. The thresholds of the IAF neurons were
independently drawn from N (δ, σ 2). The inset shows the average number of spikes generated by the entire
circuit for each choice of the threshold δ
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Fig. 6 Histogram of reconstruction SNRs of stimuli encoded by complex cells. The BSGs of the complex
cells are modeled as Hodgkin–Huxley point neurons. Insets show the original (blue) and recovered (green)
stimuli for various SNR values

Again, the DSPs of these five neurons span the frequency range of the input space.
We presented the circuit with 1000 stimuli and subsequently performed their sparse
decoding. The average number of spikes generated by the circuit across all stimuli
was 215. Figure 6 shows the histogram of the SNRs of the decoded stimuli, with the
insets depicting the original and decoded waveforms of a few representative stimuli.
These results demonstrate that the low-rank decoding framework presented in this
section can also be applied to stimuli encoded with a wide range of spike generators,
including the biophysically realistic conductance-based models.

3.1.6 Example: Hodgkin–Huxley Neurons with Stochastic Ion Channels

Finally, we again consider the same circuit as in Sect. 3.1.5. However, intrinsic ion
channel noise is added to the Hodgkin–Huxley point neurons. For a detailed mathe-
matical treatment of Hodgkin–Huxley point neuron with stochastic ion channels, we
refer the reader to [19]. Here, independent Brownian motion processes respectively
drive each of the gating variables of the Hodgkin–Huxley neuron, that is, n (activa-
tion of potassium channels), m (activation of sodium channels), and h (inactivation
of sodium channels). The variances of the Brownian motion processes denoted by
σ 2

1 , σ 2
2 , and σ 2

3 were respectively chosen to be 10σ1 = σ2 = σ3 = σ . We presented
50 stimuli to the circuit and repeated the encoding for eight choices of σ . For each
stimulus presentation, the spike times generated by the circuit were then utilized to
recover the stimulus using the sparse reconstruction algorithm. The results are pre-
sented in Fig. 7. The points in the figure correspond to the average SNR of the 50
reconstructions for each value of the chosen σ , and the shaded area represents their
standard deviation. As can be seen from the results, the low-rank decoding frame-
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Fig. 7 Robust reconstruction of stimuli encoded by complex cells with stochastic ion channels. The BSGs
are modeled as Hodgkin–Huxley point neurons with stochastic ion channels. For each noise level σ , we set
10σ1 = σ2 = σ3 = σ where σ 2

i
, i = 1,2,3, are the variances of the independent Brownian motion process

driving the gating variables n, m, and h, respectively. A larger σ represents a higher intrinsic noise strength

work is robust to intrinsic noise in conductance-based spiking models up to a certain
noise level.

3.2 Low-Rank Functional Identification of Complex Cells

3.2.1 Duality Between Low-Rank Functional Identification and Decoding

As discussed in Sect. 2.4, the complexity of identification using Algorithm 2 can
be prohibitively high. Often, a very large number of stimulus presentation trials are
required to fully identify the DSP of biological neurons. To mitigate this, we consider
exploiting the structure of the DSP of complex cells as motivated by the tractability
of the low rank decoding algorithm.

We consider a single complex cell whose DSP is of the form

h2(t1; t2) =
N∑

n=1

gn
1 (t1)g

n
1 (t2), (46)

where gn
1 (t), n = 1, . . . ,N , are impulse responses of linear filters, and N 
 dim(H1).

We note that a complex cell described in Fig. 2A is a particular case of (46) with N =
2. A natural question here is whether, by assuming such a structure, the functional
identification of complex cell DSPs is tractable.

Remark 9 It is well known that a second-order Volterra kernel has infinitely many
equivalent forms but has a unique symmetric form [25].

We have shown that the low-rank structure of u2 leads to a reduction of complexity
in the reconstruction of temporal stimuli encoded by an ensemble of complex cells.
We also described the duality between decoding and functional identification. If we
can show that the functional identification formalism for complex cell DSP is the
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dual to decoding of low-rank stimuli, then it is straightforward to provide tractable
algorithms for identifying h2(t1; t2) of the form (46).

Since P1g
n
1 (t) ∈ H1, n = 1, . . . ,N , there is a set of coefficients (gn

lt
), lt =

−Lt , . . . ,Lt , n = 1,2, . . . ,N , such that

P1g
n
1 (t) =

Lt∑

lt=−Lt

gn
lt
elt (t). (47)

In what follows, we denote coefficients in vector form as

gn = [
gn

−Lt
, . . . , gn

Lt

]T
. (48)

Similarly, we denote the coefficients of P1h2(t1; t2) in (19) in matrix form as

H =
⎡

⎢⎣
h−Lt ,Lt . . . h−Lt ,−Lt

...
. . .

...

hLt ,Lt . . . hLt ,−Lt

⎤

⎥⎦ . (49)

Then

H =
N∑

n=1

gn
(
gn

)H
, (50)

and thus H is a Hermitian positive semidefinite matrix with rank at most N .

Theorem 4 By presenting M trials of stimuli ui
2(t1; t2) = ui

1(t1)u
i
1(t2), i = 1, . . . ,M ,

to a complex cell its coefficients satisfy the set of equations

Tr
(
Ψ i

kH
) = qi

k, k ∈ I
i , i = 1, . . . ,M, (51)

where ni + 1, i = 1, . . . ,M , is the number of spikes generated by the complex cell
in trial i, H is a Hermitian positive semidefinite matrix with rank(H) ≤ N given
by H = ∑N

n=1 gn(gn)H with gn = [gn
−Lt

, . . . , gn
Lt

]T , (Ψ i
k), k ∈ I

i , i = 1, . . . ,M , are
Hermitian matrices with entry at the (lt2 +Lt + 1)th row and (lt1 +Lt + 1)th column
given by

[
Ψ i

k

]
lt2 ;lt1 =

∫ t ik+1

t ik

elt1 −lt2
(t) dt

∫

D2
ui

2(s1; s2)e−lt1
(s1)elt2

(s2) ds1 ds2. (52)

Proof From Lemma 2 we have

Li
k(P2h2) = qi

k, k ∈ I
i , i = 1, . . . ,M, (53)

where

Li
k(P2h2) =

∫ t ik+1

t ik

∫

D2
ui

2(t − s1; t − s2)(P2h2)(s1; s2) ds1 ds2 dt. (54)

Equations (51) can be obtained following the steps of the proof of Theorem 3. �
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Fig. 8 Duality between low-rank decoding and low-rank functional identification. Duality between
low-rank decoding of a stimulus encoded by a population of complex cells and low-rank functional iden-
tification of complex cells. (A) The low-rank decoding algorithm assumes that the encoded stimulus can
be written as u2(t1; t2) = u1(t1)u1(t2). (B) Functional identification of a complex cell assumes that the
structure of the DSP is low rank, that is, P2h2(t1; t2) = ∑N

n=1 P1gn
1 (t1)P1gn

1 (t2)

Remark 10 As in Sect. 3.2, we note that the similarity in (51) and (29) indicates the
duality between low-rank functional identification of complex cells and low-rank de-
coding of stimuli encoded by a population of complex cells. The duality is illustrated
in Fig. 8.

3.2.2 Functional Identification Algorithms

To functionally identify the complex cell DSP, we again employ a rank minimization
problem

minimize Rank(H)

s.t. Tr
(
Ψ i

kH
) = qi

k, k ∈ I
i , i = 1, . . . ,M,

H � 0.

(55)

We relax the problem to a trace minimization problem similarly to the approach in
the low-rank reconstruction algorithm. Here, the optimal solution will have rank N ,
however. Algorithm 5 is considered for low-rank functional identification of complex
cells.

Algorithm 5 The functional identification of complex cell DSP from the spike times
generated by the neuron in M stimulus trials is given by

P̂2h2(t1; t2) =
Lt∑

lt1=−Lt

Lt∑

lt2=−Lt

ĥlt1 lt2
elt1

(t1) · elt2
(t2), (56)

where

Ĥ =
⎡

⎢⎣
ĥ−Lt ,Lt . . . ĥ−Lt ,−Lt

...
. . .

...

ĥLt ,Lt . . . ĥLt ,−Lt

⎤

⎥⎦ . (57)
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is the solution to the SDP problem

minimize Tr (H)

s.t. Tr
(
Ψ i

kH
) = qi

k, k ∈ I
i , i = 1, . . . ,M,

H � 0.

(58)

Based on the results for decoding using Algorithm 3 and provided that h2 is of the
form (46), we intuitively inferred that the number of measurements for the perfect
identification of P2h2 is much smaller than O(dim(H1)

2) . We demonstrate that this
is the case for a large number of identification examples in the subsequent sections.

This suggests that even if the dimension of the input space becomes large, the
functional identification of the DSP of complex cells is still tractable. This result
has critical implication for performing neurobiological experiments to functionally
identify complex cells. First, it suggests that a much smaller number of stimulus trials
is needed for perfect identification. Second, the total number of spikes/measurements
that needs to be recorded can be significantly reduced. Both mean that the duration
of experiment can be shortened.

Remark 11 Note that only the projection of the DSP h2 onto the space of input stimuli
can be identified.

Remark 12 We can use the largest N eigenvalues and their respective eigenvectors of

Ĥ to obtain the projection of individual linear filter components P̂1g
n
1 , n = 1, . . . ,N .

However, these components may not directly correspond to P1g
n
1 , n = 1, . . . ,N , in

that the original projections may not be ‘orthogonal’, whereas the eigenvalue decom-
position imposes orthogonality.

As in Algorithm 4, when applied for solving the decoding problem, the rank min-
imization problem above can be solved using alternating minimization, as further de-
scribed in Algorithm 6. Here, we solve for the top N left and right singular vectors of
H alternately, where N is the rank of the second-order Volterra DSP. We note that the
initialization step is akin to running an algorithm very similar to the spike-triggered
covariance (STC) algorithm widely used in neuroscience [37–41]. The subsequent
steps then improve upon this initial estimate.

Algorithm 6

1. Initialize Ĥ1 and Ĥ2 to top N left and right singular vectors, respectively, of∑M
i=1

∑ni

k=1 qi
kΨ

i
k with the nth singular vector normalized to 1

N
×√

1
σn

∑M
i=1

∑ni

k=1(q
i
k)

2, where σn is the top nth singular value of
∑M

i=1
∑ni

k=1 qi
k ×

Ψ i
k .

2. Solve the following two minimization problems:
(a) solve for Ĥ1 by fixing Ĥ2

Ĥ1 = arg min
H1∈Cdim(H1)×N

M∑

i=1

∑

k∈Ii

(
Tr

(
Ψ i

kH1ĤH
2

) − qi
k

)2; (59)
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(b) solve for Ĥ2 by fixing Ĥ1

Ĥ2 = arg min
H2∈Cdim(H1)×N

M∑

i=1

∑

k∈Ii

(
Tr

(
Ψ i

kĤ1HH
2

) − qi
k

)2 (60)

until
∑M

i=1
∑

∈Ii (Tr(Ψ i
kĤ1ĤH

2 ) − qi
k)

2 ≤ ε, where ε > 0 is the error tolerance
level;

3. compute Ĥ = 1
2 (Ĥ1ĤH

2 + Ĥ2ĤH
1 ).

3.2.3 Example: Identification of Complex Cell DSPs from Spike Times

In this example, we consider identifying a single complex cell having the following
Volterra DSP:

h2(t1, t2) = g1
1(t1)g

1
1(t1) + g2

1(t1)g
2
1(t2), (61)

where

g1
1(t) = 50 exp

(
− (t − 0.3)2

0.002

)
cos(40πt), (62)

g2
1(t) = 50 exp

(
− (t − 0.3)2

0.002

)
sin(40πt). (63)

In repeated trials, we presented to the complex cell 1-second long stimuli cho-
sen from the input space. The domain of the input space H1

1 is D = [0,1] (sec) and
Lt = 20, Ωt = 20 · 2π (rad/sec), and thus dim(H1

1) = 41. The stimuli were generated
by independently choosing their basis coefficients from the same Gaussian distribu-
tion. We presented a total of 16,600 different stimuli in the repeated trials. We then
randomly selected between 30–80 trial subsets such that the total number of spikes
in each subset was between 60 and 160. We performed the identification process on
each subset using Algorithm 5. The optimization problem was solved using SDPT3.

For each instantiation of the identification algorithm, we recorded whether the
optimization process resulted in a rank-2 solution and also the SNR of the identified
DSP with respect to the original one. For the purpose of demonstration, we binned
these results based on number of spikes used into bins of width 10. The percentage of
rank-2 solutions is shown in Fig. 9A as a function of number of measurements. The
mean SNR is shown in Fig. 9B.

It can be seen from Fig. 9B that the identification algorithm presented here is
able to recover the underlying DSP with exceptional accuracy using a reasonable and
tractable number of measurements.

3.3 Evaluation of Functional Identification of a Neural Circuit of Complex
Cells by Decoding

In Sect. 3.1, we have shown that the sparse decoding algorithm requires much less
number of neurons and measurements (spikes) in the reconstruction of stimuli en-
coded by a neural circuit of complex cells. We have also demonstrated in Sect. 3.2
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Fig. 9 Example of low-rank functional identification. (A) Percentage of successful rank-2 recovery in
identification. (B) Mean SNR of identified second-order DSP kernel

that the proposed sparse functional identification algorithm enables the identification
of complex cells with a tractable number of measurements. Together, the two algo-
rithms afford us tractable functional identification of an entire neural circuit of com-
plex cells that is capable of fully representing stimuli information, in that (i) the size
of the neural circuit is tractable and (ii) the requirement for functional identification
is tractable.

Decoding of visual stimuli by identified linear filters has previously been consid-
ered in [42]. In [17], it was shown that the evaluation of functional identification of an
entire neural circuit can be more intuitively performed in the input space by decoding
the stimuli with identified circuit parameters. Here, we extend the previous results and
apply such evaluation procedure on the sparse decoding and sparse functional identi-
fication algorithms. The procedure is described as follows. First, each complex cell is
functionally identified using Algorithm 5 or Algorithm 6. Second, novel stimuli are
presented to the neural circuit. Third, the spike trains observed are used to reconstruct
the encoded novel stimuli by the sparse decoding algorithm, assuming that the circuit
parameters take the identified values. Finally, SNR of the reconstruction can be ob-
tained. A high SNR indicates a well-identified circuit, whereas a low number implies
that the functional identification of the neural circuit is not of good quality. The latter
can be caused by a lack of number of measurements used in functional identification
or by a lack of complex cells in the neural circuit.

We performed the functional identification of all 19 complex cells in the neural
circuit given in the example in Sect. 3.1.3. We first identified all complex cells by
presenting to the neural circuit M temporal stimuli. We repeated the identification of
the entire circuit using eight different values of M . We then presented to the same
circuit (with the original DSPs as in Sect. 3.1.3) and 100 novel stimuli drawn from
the input space and used the spike times generated by the neural circuit to decode
the stimuli. In the decoding process, however, we assumed that the DSPs of the set
of complex cells are as identified for all eight values of M . The mean reconstruction
SNR of the 100 stimuli is shown in Fig. 10. As shown, the quality of reconstruction
is low until enough trials were used in identification. When more than 19 trials were
performed, perfect reconstruction of the entire neural circuit was achieved. The di-
mension of the stimulus space was 41, and the average number of spikes per neuron
used for identification varied from 44 for 6 trials to 202 for 28 trials.
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Fig. 10 Evaluating
identification quality in the input
space. Identification quality was
evaluated by plotting the average
SNR of reconstruction of novel
stimuli assumed to be encoded
with the identified DSPs

4 Low-Rank Decoding and Functional Identification of Complex Cells
with Spatio-Temporal Stimuli

The framework introduced in Sect. 3 can be extended to the sparse decoding of
spatio-temporal stimuli and the sparse identification of spatio-temporal DSPs of com-
plex cells. Details of the extension to the spatio-temporal case are provided in Ap-
pendixes 2–4. In what follows, we present spatio-temporal examples of sparse decod-
ing and identification.

4.1 Low-Rank Decoding of Spatio-Temporal Visual Stimuli

The stimuli u1 considered here have p spatial dimensions and a single temporal di-
mension, that is, u1 = u1(x1, x2, . . . , xp, t). For simplicity of notation, we use a com-
pact vector notation and denote the spatial variables as x = (x1, x2, . . . , xp). When
p = 2, u1 is the usual 2D visual stimulus. The definition of the space of input stimuli
is provided in Appendix 2.

The encoding of spatiotemporal stimuli by a population of complex cells and the
sparse decoding of spatiotemporal stimuli are formally described in Appendix 3. Note
that the output of the DSP of each neuron i = 1,2, . . . ,M , can be expressed as

vi(t) =
∫

D2
hi

2(x1, t − s1;x2, t − s2)u1(x1, s1)u1(x2, s2)dx1 dx2 ds1 ds2, (64)

where

hi
2(x1, t1;x2, t2) = gi1

1 (x1, t1)g
i1
1 (x2, t2) + gi2

1 (x1, t1)g
i2
1 (x2, t2) (65)

has low-rank [18].
In this section, we provide examples that demonstrate the tractability of sparse de-

coding of spatio-temporal stimuli encoded with complex cells using a small number
of spikes.

4.1.1 Example: Decoding of 2D Spatio-Temporal Stimuli

We first present an example in which x is one-dimensional, that is, x = x1. In this
example, our main focus is to illustrate how the number of spikes affects the recon-
struction of stimuli encoded by complex cells.

The neural circuit we consider here consists of 62 direction selective complex
cells. The low-rank DSPs of the complex cells are of the form

hi
2(x1, t1;x2, t2) = gi1

1 (x1, t1)g
i1
1 (x2, t2) + gi2

1 (x1, t1)g
i2
1 (x2, t2), (66)
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where gi1
1 (x, t) and gi2

1 (x, t) are quadrature pairs of spatio-temporal Gabor filters,
and i = 1, . . . ,M . The Gabor filters are constructed from dilations and translations
of the mother wavelets on a dyadic grid, where the mother functions are expressed as

g1
1(x, t) = exp

(
−

(
x2

1

8
+ t2

0.001

))
cos(1.5x1 + 20πt) (67)

and

g2
1(x, t) = exp

(
−

(
x2

1

8
+ t2

0.001

))
sin(1.5x1 + 20πt). (68)

The BSG of the complex cells are IAF neurons with bias bi = 10 and integration
constant κ = 1 for i = 1, . . . ,M . These two parameters are kept the same for all
stimuli. Different threshold values are chosen for the IAF neurons to vary the total
number of spikes in a larger range to evaluate how many measurements are required
for a perfect reconstruction of input stimuli.

The domain of the input space H1
1 is D = [0,32] × [0,0.4] ([a.u.] and [sec], re-

spectively) and Lx1 = 6,Lt = 4,Ωx1 = 0.1875 · 2π,Ωt = 10 · 2π [rad/sec]. Thus,
dim(H1

1) = 117. Stimuli were randomly generated by choosing the basis coefficients
to be i.i.d. Gaussian random variables.

We tested the encoding of 1416 stimuli. Each time, a different number of spikes
was generated. The reconstruction of stimuli was performed in MATLAB using the
extended Algorithm 3, and the SDPs were solved using SDPT3 [35].

The SNR of all reconstructions is depicted in the scatter plot of Fig. 11A. Here
solid dots represent exact rank 1 solutions (largest eigenvalue is at least 100 times
larger than the sum of the rest of the eigenvalues), and crosses indicate that the trace
minimization found a higher rank solution with a smaller trace. The percentage of
exact rank 1 solutions is shown in Fig. 11B. Similar to phase transition phenom-
ena in other sparse recovery algorithms [36], a relatively sharp transition (around 50
spikes) from very low probability of recovery to very high probability of perfect re-
construction can be seen. It can also be seen that the number of measurements that
are needed for perfect recovery is substantially lower than the 6965 spikes required
by Algorithm 1.

Fig. 11 Example of low-rank decoding of spatio-temporal stimuli. (A) Effect of number of measurements
(spikes) on reconstruction quality. (B) Percentage of rank 1 reconstructions
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4.1.2 Example: Decoding of 3D Spatio-Temporal Stimuli

Next, we present two examples of decoding of spatio-temporal visual stimuli encoded
by a population of complex cells. Here, x = (x1, x2) and the Volterra DSPs of the
complex cells are of the form

hi
2(x1, t1;x2, t2) = gi1

1 (x1, t1)g
i1
1 (x2, t2) + gi2

1 (x1, t1)g
i2
1 (x2, t2), (69)

where gi1
1 (x, t) and gi2

1 (x, t) are, for simplicity, quadrature pairs of spatial-only Ga-
bor filters, and i = 1, . . . ,M . The Gabor filters are constructed using a dyadic grid of
dilations, translations, and rotations of the following pair of mother wavelets [15]:

g1
1(x, t) = exp

(
−1

8

(
4x2

1 + 2x2
2

))
cos(2.5x1) (70)

and

g2
1(x, t) = exp

(
−1

8

(
4x2

1 + 2x2
2

))
sin(2.5x1). (71)

The ensemble of Gabor filters forms a frame in the spatial domain of the input space
[43].

For the first example, a 0.4-second-long synthetically generated video sequence
is encoded by the neural circuit. The order of the input space was chosen to be
Lx1 = Lx2 = 3,Lt = 4. Thus, the dimension of the input space is 441. The input
stimulus was created by choosing its basis coefficients to be i.i.d. Gaussian random
variables. The stimulus was encoded by a neural circuit consisting of 318 complex
cells. A total of 1374 spikes were generated by the encoding circuit. The stimulus was
decoded using the extended Algorithm 3. As shown in Fig. 12, the video sequence
can be perfectly reconstructed with a fairly small number of spikes (A snapshot of the
video is shown; see also Supplementary Video S1 for full video). The SNR of the re-
constructed video was 92.8 [dB], thereby reaching almost perfect reconstruction with
machine precision. Note that without the reconstruction algorithm employed here,
97,461 measurements would be required from at least 5733 complex cells to achieve
perfect reconstruction.

Fig. 12 Example of reconstruction of synthesized visual stimuli. A synthetically generated visual stimulus
was encoded by 318 Complex Cells that generated some 1374 spikes. A snapshot of the original video is
shown on the left. The reconstruction is shown in the middle and the error on the right. SNR 92.8 [dB].
(See also Supplementary Video S1)
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We then performed encoding and subsequent reconstructions of 2-second long nat-
ural video sequences that had a resolution of 72×128 pixels. The videos had temporal
bandwidth of 10 [Hz] and spatial bandwidth of 0.375 cycles per pixel. Additionally,
the spatial bandwidth was restricted to a circular area to make it isotropically ban-
dlimited. The videos were encoded by a neural circuit consisting of 21,776 complex
cells, whose DSPs were modeled as spatial-only quadrature pair of Gabor filters. The
Gabor filters formed a frame in the spatial dimension of the space.

The decoding was performed using six NVIDIA P100 GPUs on a single computer
node. Despite of their computational power, the amount of memory required by the
algorithm for decoding the whole video sequence exceeded the memory capacity of
the six GPUs. Therefore, the reconstruction of the entire video was performed by
decoding 0.2-second-long segments of the video independently and then stitching
them together [16]. The overlap between consecutive segments was 0.1 second. We
chose the order of the space to be Lx1 = 27,Lx2 = 48,Lt = 3, and the bandwidth
of the space to be Ωx1 = Ωx2 = 0.75π [rads/pixel] and Ωt = 20π [rads/s]. We also
restricted the spectral lines in the spatial dimension to be inside a circular area instead
of a square area as defined in (73), that is, we considered only lx1 and lx2 that are in the
set {(lx1 , lx2)|l2

x1
L2

x2
+ l2

x2
L2

x1
≤ L2

x1
L2

x2
}. This allowed the bandwidth of the stimuli to

be covered with minimal number of spectral lines [16]. Note that, by the construction
of input space, the decoded video must be periodic in time. However, an arbitrary
0.2-second video may not be periodic. Therefore, we chose the decoding space to
have a temporal period of 0.3 seconds and retained only the middle 0.2 seconds of
the reconstructed segments. The total dimension of the decoding space was 28,413.
The extended Algorithm 4 was used in decoding.

For the example depicted in Fig. 13A, a total of 980,730 spikes were generated by
the neural circuit. About 76,000 to 86,500 measurements were used in reconstructing
the video in each time segment. This is approximately 2.67 to 3.04 times of the di-
mension of the space. In contrast, a total of 403,663,491 measurements would have
been required by Algorithm 1 to reconstruct the same video. In Fig. 13A, snapshots
of the original video sequence, the reconstructed video sequence and the error are
shown (see also Supplementary Video S2) The SNR of the reconstructed video was
48.85 [dB] (the first and last 20 milliseconds were removed from the SNR calculation
due to boundary conditions).

Additional examples of reconstructed natural video encoded by the same neural
circuit are shown in Fig. 13B–E (see also Supplementary Video S3–S6).

4.2 Low-Rank Functional Identification of Spatio-Temporal Complex Cells

The low-rank functional identification described in Sect. 3.2 can be extended to iden-
tify DSPs of spatio-temporal complex cells. The functional identification for the
spatio-temporal case is formally described in Appendix 4.

In this section, we first provide an example of identification of spatio-temporal
DSPs of complex cells. We then evaluate the identified low-rank spatio-temporal
DSPs by decoding novel stimuli encoded with the original neural circuit. The decod-
ing uses the identified filters. Finally, we compare the performance of the low-rank
identification methodology with other identification algorithms.
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Fig. 13 Examples of reconstruction of natural visual stimuli. Snapshots of the original videos encoded
by a neural circuit with complex cells are shown on the left. The reconstructions from the spike times are
shown in the middle and the error on the right. Note that the color bar indicating the magnitude of the error
was set to 10% of the input range. SNR: (A) 48.85 [dB]. (B) 46.92 [dB]. (C) 48.61 [dB]. (D) 50.76 [dB].
(E) 48.11 [dB]. (See also Supplementary Videos S2–S6)

4.2.1 Example: Low-Rank Functional Identification of Complex Cell DSP from
Spike Times in Response to Spatio-Temporal Stimuli

In this example, we first consider identifying the DSP of a single complex cell in the
neural circuit used in Sect. 4.1.1. As a reminder, the neural circuit used in the example
in Sect. 4.1.1 encodes spatio-temporal stimuli of the form u1(x1, t).

We presented to the population of M complex cells 0.4-second stimuli, where
M varied from 40 to 80. The stimuli were generated by choosing their basis coeffi-
cients as i.i.d. Gaussian random variables. For each M , we repeated the functional
identification process for 200 times, each with different stimuli. Identification was
essentially based on the extended Algorithm 3, where the SDPs were again solved by
SDPT3.
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Fig. 14 Example of low-rank functional identification of spatio-temporal complex cells. (A) Percentage
of successful rank 2 recovery in identification. (B) Mean SNR of identified second-order DSP kernel

The percentage of rank 2 solutions is shown in Fig. 14A as a function of the
number of experimental trials. The mean SNR is shown in Fig. 14B. Figure 14A
suggests that if the number of trials is larger than 70, then the solution to the trace
minimization coincides with high probability with the rank minimization problem.
In contrast, identification of the complex cell DSP using Algorithm 2 would have
required at least 407 trials.

It can be easily seen that the identification process does not require a large num-
ber of trials to achieve perfect identification, thereby enabling the identification of
nonlinear dendritic processing of cells similar in structure to complex cells with a
tractable amount of physiological recordings.

4.2.2 Example: Evaluation of Functional Identification of Neural Circuit of
Complex Cells Using Decoding

We then performed the functional identification of all 62 complex cells in the neural
circuit used of the example in Sect. 4.1.1. Here, our goal is to evaluate the identifica-
tion quality using decoding.

We first identified all complex cells by presenting to the neural circuit M spatio-
temporal stimuli. We also performed the identification of the entire circuit using eight
different values of M . We then presented to the same circuit 100 novel stimuli drawn
from the input space and used the spike times generated by the neural circuit to de-
code the stimuli. In the decoding process, we assumed that the DSPs of the set of
complex cells are as identified for all eight values of M . The mean reconstruction
SNR of the 100 stimuli is shown in Fig. 15. As shown, the quality of reconstruction
was kept at low SNR until enough trials were used in identification. When more than
70 trials were performed, perfect reconstruction was achieved, and thereby the entire
neural circuit has been identified with a very high quality.

4.2.3 Comparison with STC, GQM, and NIM

We compared the performance of the low-rank functional identification algorithm
introduced here with the widely used Spike-Triggered Covariance (STC) algorithm
[39]. As in Sect. 4.2.1, a complex cell with a pair of orthogonal Gabor filters was
chosen for identification. However, the filters had different norms.

Figure 16A shows the quality of identification (SNR) as the number of spikes
used in identification increases. Note that the low-rank functional identification algo-
rithm reached perfect identification using only 746 spikes, whereas the performance
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Fig. 15 Evaluating
identification quality in the input
space. SNR of reconstruction of
novel stimuli assumed to be
encoded with the identified
DSPs

of the STC algorithm saturated at ∼17 [dB] after almost 40,000 spikes were used.
Figure 16B shows the identified individual Gabor filters of the complex cells using
both algorithms. The number of spikes used are indicated at the top of each column.

We also evaluated the identification performance of the generalized quadratic
model (GQM) [44] and the nonlinear input model (NIM) [45] with quadratic up-
stream filters to the same example. The results (not shown) were similar to those
obtained with the STC algorithm.

We note that whereas the low-rank functional identification algorithm is for-
mulated as nonlinear sampling using TEMs and solved using recent advances in
low-rank matrix sensing, the other algorithms tested here rely on moment-based or
likelihood-based methods that require a large number of samples to converge.

5 Conclusions

In this paper, we presented sparse algorithms for the reconstruction of temporal and
spatio-temporal stimuli from spike times generated by neural circuits consisting of
complex cells. We formulated the encoding as generalized sampling in a tensor space
and exploited the low-rank structure of the stimulus in this space, leading to tractable
reconstruction algorithms. For neural circuits consisting of complex cells, this sug-
gests that, in addition to each complex cell extracting visual features, a biologically
plausible number of complex cells are capable of faithfully representing visual stim-
uli. In particular, the examples with natural video sequences provided in this paper
demonstrate that neural circuits with nonlinear receptive fields and highly nonlinear
spike generating mechanisms are able to faithfully represent natural visual stimuli.
The number of spikes that increases just quasi-linearly with the bandwidth or resolu-
tion of the stimuli.

Based on duality between sparse decoding and functional identification, we
showed that functional identification of complex cells DSPs can be efficiently
achieved by exploiting their low-rank structure and using similar algorithms as used
in decoding. These algorithms make the functional identification of complex cells
tractable, allowing guaranteed high quality identification using a much smaller set of
testing stimuli and shorter time duration.

The mathematical treatment presented here, however, is not limited to the com-
plex cells in V1. It can be applied to other neural circuits of interest. For example,
early olfactory coding in fruit flies [46] and auditory encoding in grasshoppers [47]
have also been shown to have the structure of low-rank DSP kernels. Moreover, the
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Fig. 16 Comparison of the low-rank functional identification with STC. (A) SNR of identified quadrature
pairs of Gabor filters in a complex cell, as a function of number of spikes used in identification. Low-rank
functional identification reaches nearly machine precision with about 746 spikes, which corresponds to
about 70 stimulus trials (see also Figure 14). STC reaches about 17 [dB] SNR with ∼30,000 spikes.
(B) Quadrature pair Gabor filters (1st column) identified with low-rank functional identification algorithm
with 746 spikes (2nd column, SNR: 128.48 [dB], 130.84 [dB]), and with STC using 39,769 spikes (3rd
column, SNR: 16.79 [dB], 17.88 [dB]) and using 746 spikes (4th column, SNR: 0.20 [dB], 0.60 [dB])

Hassenstein–Reichardt detector [48], a popular model for elementary motion detec-
tors in fruit flies, is also I/O equivalent to low-rank DSP kernels.
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Appendix 1: Proof of Lemma 2

Proof With (18), the t-transform for the ith stimulus is given by

∫ t ik+1

t ik

∫

D2
h2(t − s1; t − s2)u

i
2(s1; s2) ds1 ds2 dt = qi

k.

Since P2u
i
2 = ui

2, we have

∫ t ik+1

t ik

∫

D2
h2(t − s1; t − s2)

(
P2u

i
2

)
(s1; s2) ds1 ds2 dt = qi

k

or

∫ t ik+1

t ik

∫

D2

∫

D2
h2(t − s1; t − s2)K2

(
s1, s2; s′

1, s
′
2

)
ui

2

(
s′

1; s′
2

)
ds′

1 ds′
2 ds1 ds2 dt = qi

k

or

∫ t ik+1

t ik

∫

D2

∫

D2
h2(t − s1; t − s2)

× K2
(
t − s1, t − s2; t − s′

1, t − s′
2

)
ds1 ds2u

i
2

(
s′

1; s′
2

)
ds′

1 ds′
2 dt = qi

k

or

∫ t ik+1

t ik

∫

D2
(P2h2)(t − s1; t − s2)u

i
2(s1; s2) ds1 ds2 dt = qi

k.

Finally, with (17), we obtain

Li
k(P2h2) = qi

k, k ∈ I
i , i = 1, . . . ,M. (72)

�
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Appendix 2: Modeling of Spatio-Temporal Stimuli

Definition 4 The space of trigonometric polynomials Hp

1 is the Hilbert space of
complex-valued functions

u1(x, t) =
∑

lx

∑

lt

clxlt elxlt (x, t), (73)

where

lx ∈ {
(lx1 , lx2, . . . , lxp ) ∈ Z

p|−Lx1 ≤ lx1 ≤ Lx1 ,−Lx2 ≤ lx2 ≤ Lx2 , . . . ,

−Lxp ≤ lxp ≤ Lxp

}
,

lt ∈ {k ∈ Z|−Lt ≤ k ≤ Lt }

over the domain D, where, by abuse of notation, D = [0, Sx1 ] × [0, Sx2 ] × · · · ×
[0, Sxp ] × [0, St ] and St = 2πLt

Ωt
, Sx1 = 2πLx1

Ωx1
, Sx2 = 2πLx2

Ωx2
, . . . , Sxp = 2πLxp

Ωxp
. In ad-

dition, elxlt (x, t) = elx(x)elt (t), where

elx(x) = 1√∏p

i=1 Si

exp
(
jωx

T x
)
, ωx =

(
lx1Ωx1

Lx1

,
lx2Ωx2

Lx2

, . . . ,
lxpΩxp

Lxp

)
,

and

elt (t) = 1√
St

exp

(
j ltΩt

Lt

t

)
.

Here Ωt denotes the bandwidth, and Lt denotes the order of the space in the temporal
domain, whereas Ωxi

and Lxi
denote the bandwidth and order of the space in the ith

spatial variable. Stimuli u1 ∈Hp

1 are periodic with periods St , Sx1, . . . , Sxp .

We denote the temporal dimension of Hp

1 by dimt (Hp

1 ) = 2Lt + 1 and the total
dimension by dim(Hp

1 ) = (2Lt + 1)
∏p

i=1(2Lxi
+ 1).

Definition 5 The tensor product space Hp

2 = Hp

1 ⊗ Hp

1 is the Hilbert space of
complex-valued functions

u2(x1, t1;x2, t2) =
∑

lx1

∑

lt1

∑

lx2

∑

lt2

dlx1 lt1 lx2 lt2
elx1

(x1)elt1
(t1)elx2

(x2)elt2
(t2) (74)

over the domain D
2.

Note that dim(Hp

2 ) = (dim(Hp

1 ))2.
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Appendix 3: Encoding of Spatiotemporal Stimuli with a Population of
Complex Cells

We consider again a neural circuit consisting of a population of M neurons modeling
a population of complex cells as illustrated in Fig. 1. The input to the neural circuit
is the spatiotemporal stimulus as defined in Sect. 2.

The input stimulus u1(x, t) to neuron i is first processed by two spatio-temporal
linear filters whose impulse responses are denoted, by abuse of notation, as gi1

1 (x, t)

and gi2
1 (x, t), respectively. The output of the linear filters are squared and summed.

The sum vi(t), as the output of the DSP, is then fed into the BSG of neuron i. The
BSG encodes the DSP output into the spike train (t ik)k∈Ii . Here I

i is the spike train
index set of neuron i.

Similarly to the temporal case, the neural circuit is equivalent to that shown in
Fig. 17A. Here, the output of the DSP for each neuron i = 1,2, . . . ,M can be ex-
pressed as

vi(t) =
∫

D2
hi

2(x1, t − s1;x2, t − s2)u1(x1, s1)u1(x2, s2)dx1 dx2 ds1 ds2, (75)

where

hi
2(x1, t1;x2, t2) = gi1

1 (x1, t1)g
i1
1 (x2, t2) + gi2

1 (x1, t1)g
i2
1 (x2, t2) (76)

is the low-rank DSP [18]. The encoding of stimulus by the neural circuit with com-
plex cells is a particular case of the low-rank DSP of the form given in (76). When
using IAF point neurons as models of the BSGs, we have the following theorem de-
scribing the encoding of stimuli.

Lemma 3 The encoding of stimulus u1 ∈ Hp

1 into the spike train sequence (t ik), k ∈
I
i , i = 1,2, . . . ,M , by a neural circuit of spatio-temporal complex cells is given in

functional form by

T i
k u2 = qi

k, k ∈ I
i , i = 1, . . . ,M, (77)

where T i
k : Hp

2 → R are bounded linear functionals defined by

T i
k u2 =

∫ t ik+1

t ik

∫

D2
hi

2(x1, t − s1;x2, t − s2)u2(x1, s1;x2, s2)dx1 dx2 ds1 ds2 dt (78)

Fig. 17 Duality between low-rank decoding and low-rank functional identification for spatio-temporal
complex cells. (A) decoding of spatio-temporal stimuli encoded by a neural circuit of M complex cells
and (B) functional identification of spatio-temporal complex cells by presenting M trials of stimuli



Page 36 of 40 A.A. Lazar et al.

with u2(x1, t1;x2, t2) = u1(x1, t1)u1(x2, t2). Finally, qi
k = κiδi − bi(t ik+1 − t ik).

Proof As in Lemma 1, the t-transform of the ith IAF neuron is given by (6).
Relationship (77) follows after replacing vi(t) given in (75) in equation (6). �

Similarly to Remark 2, equation (77) shows that the encoding of a stimuli by the
neural circuit with low-rank DSPs can be viewed as generalized sampling.

By abuse of notation, we denote by c the vector representing the coefficients of
u1 in (73), and D as the matrix representing the coefficients of u2 in (74). We skip
here the detailed entries of c and D due to the complexity of the indices, but their
construction follows closely with (28) and (26), respectively, and D = ccH .

Theorem 5 Encoding the stimulus u1 ∈ Hp

1 with the neural circuit with complex
cells given in (75) into the spike train sequence (t ik), k ∈ I

i , i = 1,2, . . . ,M , satisfies
the set of equations

Tr
(
Φi

kD
) = qi

k, k ∈ I
i , i = 1, . . . ,M, (79)

where D = ccH is a rank-1 Hermitian matrix, and (Φ i
k), k ∈ I

i , i = 1, . . . ,M ,
are Hermitian matrices; [Φ i

k]lx2 lt2 ;lx1 lt1
denotes the entry at the ((lt2 + Lt2 +

1)
∏p

i=1(Lxi2 + 1) + ∑p

j=1(lxj2 + Lxj2 + 1)
∏j−1

i=1 (2Lxi2 + 1))th row and the

((lt1 +Lt1 +1)
∏p

i=1(Lxi1 +1)+∑p

j=1(lxj1 +Lxj1 +1)
∏j−1

i=1 (2Lxi1 +1))th column,
and

[
Φi

k

]
lx2 lt2 ;lx1 lt1

=
∫ t ik+1

t ik

elt1 −lt2
(t) dt

×
∫

D2
hi

2(x1, s1;x2, s2)elx1 ,−lt1
(x1, s1)e−lx2 ,lt2

(x2, s2)dx1 ds1 dx2 ds2, (80)

where lxi = (lx1i
, lx2i

, . . . , lxpi
), i = 1,2.

Proof Plugging u2 in the general form (74) into (78), the left-hand side of (77)
amounts to

∑

lx1

∑

lt1

∑

lx2

∑

lt2

dlx1 ,lt1 ,−lx2 ,−lt2

∫ t ik+1

t ik

elt1 −lt2
(t) dt

×
∫

D2
hi

2(x1, s1;x2, s2)elx1 ,−lt1
(x1, s1)e−lx2 ,lt2

(x2, s2)dx1 dx2 ds1 ds2.

It is easy to verify that this expression can be written as
∑

lx1

∑

lt1

∑

lx2

∑

lt2

dlx1 ,lt1 ,−lx2 ,−lt2

[
Φi

k

]
lx2 lt2 ;lx1 lt1

= Tr
(
Φi

kD
)
, (81)
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where the ((lt1 + Lt1 + 1)
∏p

i=1(Lxi1 + 1) + ∑p

j=1(lxj1 + Lxj1 + 1)
∏j−1

i=1 (2Lxi1 +
1))th row ((lt2 +Lt2 +1)

∏p

i=1(Lxi2 +1)+∑p

j=1(lxj2 +Lxj2 +1)
∏j−1

i=1 (2Lxi2 +1))th
column entry of D amounts to [D]lx1 lt1 ;lx2 lt2

= dlx1 ,lt1 ,−lx2 ,−lt2
.

Since u2(x1, t1;x2, t2) = u1(x1, t1)u1(x2, t2) and dlx1 ,lt1 ,−lx2 ,−lt2
= clx1 ,lt1

cH
lx2 ,lt2

,

thereby D = ccH . We also note that since hi
2, i = 1, . . . ,M , are assumed to be real

valued, (Φ i
k), k ∈ I

i , i = 1, . . . ,M , are Hermitian. �

Low-Rank Decoding of Spatio-Temporal Visual Stimuli

When using an algorithm similar to Algorithm 1 to reconstruct spatio-temporal stim-
uli encoded by a neural circuit with complex cells, at least dim(Hp

1 )(dim(Hp

1 )+1)/2
measurements are required. In addition, at least dim(Hp

1 )(dim(Hp

1 ) + 1)/(4Lt + 1)

neurons are required, a number that can become unrealistically high with an increas-
ing dimension of the input space.

With the observation that D = ccH is a rank-one matrix, we can apply algorithms
similar to those described in Sect. 3.1.2 to recover spatio-temporal stimuli encoded
by a population of spiking neurons with low-rank DSPs.

Appendix 4: Low-Rank Functional Identification of Spatio-Temporal
Complex Cells

Similarly to Sect. 3.2, we consider here the identification of low-rank DSP of complex
cells from spike times generated when multiple stimulus trials are presented. We first
define the projection operators in Hp

1 . Then, based on (75), we show that the duality
between decoding and functional identification also holds in the spatio-temporal case.

Definition 6 Let hn ∈ L
1(Dn), n = 1,2, where L

1 denotes the space of Lebesgue-
integrable functions. The operator Pp

1 : L1(D) → Hp

1 given by

(
Pp

1 h1
)
(x, t) =

∫

D

h1
(
x′, t ′

)
K

p

1

(
x, t;x′, t ′

)
dx′ dt ′ (82)

is called the projection operator from L
1(D) to Hp

1 . Similarly, the operator Pp

2 :
L1(D

2) → H2 given by
(
Pp

2 h2
)
(x1, t1;x2, t2)

=
∫

D2
h2

(
x′

1, t
′
1;x′

2, t
′
2

)
K

p

2

(
x1,x2, t1, t2;x′

1,x′
2, t

′
1, t

′
2

)
dx′

1 dx′
2 dt ′1 dt ′2 (83)

is called the projection operator from L
1(D2) to H2.

We consider here complex cells whose low-rank DSP can be expressed more gen-
erally as

h2(x1, t1;x2, t2) =
N∑

n=1

gn
1 (x1, t1)g

n
1 (x2, t2), (84)
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where, by abuse of notation, gn
1 (x, t), n = 1, . . . ,N , are impulse responses of spatio-

temporal linear filters, and N 
 dim(Hp

1 ). Similarly to the approach we take in
Sect. 3.2, this particular structure can be exploited to identify the projection of h2

using tractable algorithms.
By abuse of notation, we denote by gn the vector representing the coefficients of

Pp

1 gn
1 and by H the matrix representing the coefficients of Pp

2 h2. The detailed entries
of gn and H are constructed similarly to (48) and (49), respectively. In addition, we
have H = ∑N

n=1 gn(gn)H .

Theorem 6 By presenting M trials with stimuli ui
2(x1, t1;x2, t2) = ui

1(x1, t1)u
i
1(x2,

t2), i = 1, . . . ,M , to a complex cell and observing the spike trains t ik, k ∈ I
i , i =

1,2, . . . ,M , the coefficients of the projections Pp

2 h2 of the DSP of the complex cell
satisfy the set of equations

Tr
(
Ψ i

kH
) = qi

k, k ∈ I
i , i = 1, . . . ,M, (85)

where H is a rank-N positive semidefinite Hermitian matrix, and (Ψ i
k), k ∈

I
i , i = 1, . . . ,M , are Hermitian matrices with the entry at the ((lt2 + Lt2 +

1)
∏p

i=1(Lxi2 + 1) + ∑p

j=1(lxj2 + Lxj2 + 1)
∏j−1

i=1 (2Lxi2 + 1))th row and the

((lt1 +Lt1 +1)
∏p

i=1(Lxi1 +1)+∑p

j=1(lxj1 +Lxj1 +1)
∏j−1

i=1 (2Lxi1 +1))th column
given by

[
Ψ i

k

]
lx2 lt2 ;lx1 lt1

=
∫ t ik+1

t ik

elt1 ,−lt2
(t) dt

×
∫

D2
ui

2(x1, s1;x2, s2)elx1 ,−lt1
(x1, s1)e−lx2 ,lt2

(x2, s2)dx1 ds1 dx2 ds2, (86)

where lxi = (lx1i
, lx2i

, . . . , lxpi
), i = 1,2.

Proof Essentially similar to the proof of Theorem 4. �

Remark 13 Theorems 5 and 6 suggest that decoding of spatio-temporal stimuli en-
coded by a population of complex cells is dual to the functional identification of the
DSP of complex cells presented with multiple stimulus trials. This is further illus-
trated in Fig. 17. Note that in identification only the projection of the complex cell
DSP onto the stimulus space can be identified.

Based on Theorem 6, we can formulate functional identification algorithms for
complex cell DSPs of the form (84) with a significant reduction in the number of
required trials and spikes. The algorithms are similar to those presented in Sect. 3.2.2.
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