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Abstract
In topology optimization the goal is to find the ideal material distribution in a domain
subject to external forces. The structure is optimal if it has the highest possible
stiffness. A volume constraint ensures filigree structures, which are regulated via a
Ginzburg–Landau term. During 3D printing overhangs lead to instabilities. As a
remedy an additive manufacturing constraint is added to the cost functional. First
order optimality conditions are derived using a formal Lagrangian approach. With an
Allen-Cahn interface propagation the optimization problem is solved iteratively. At a
low computational cost the additive manufacturing constraint brings about support
structures, which can be fine tuned according to demands and increase stability
during the printing process.
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1 Introduction
Additive manufacturing or 3D printing is understood as the process of building up a struc-
ture layer by layer. Traditional manufacturing methods, such as injection molding [36],
place constraints on the achievable shapes, whereas with 3D printing the complexity of
the possible forms is much less limited. Traditional methods allow for a cheaper and faster
production in high volume orders. However, as order volumes decrease and need for cus-
tomizability increases, additive manufacturing becomes more attractive. It allows for pro-
duction of parts just in time as they are needed. This reduces the logistical burden tremen-
dously. Some even call 3D printing the next industrial revolution, [10].

According to [6] the industry sector of additive manufacturing has shown remarkable
growth in previous years and is predicted to continue growing at a rate of 15% in the
coming years. The additive manufacturing industry, spanning from machine sales to the
service sector, is anticipated to reach $21.5 billion by 2025. The greatest market potential
is seen in the sectors of consumer electronics, automotive, medical & dental, aerospace,
industrial and architecture.

Additive manufacturing comes with its own constraints and problems. The production
of a single unit takes longer and the surface structure has a rougher finish. This paper
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focuses on eliminating instabilities during the printing process which are caused by over-
hangs. These are problematic, because printing layer by layer can cause sagging of ma-
terial. Avoiding these instabilities is mandatory for a reliable and reproducible printing
process, which is necessary for a safe application of additive manufacturing on an indus-
trial level.

Commonly, external support structures are added to alleviate that problem. On the
downside, this method uses more material and takes longer to print. Removing support
structures after the printing process is both time and labor intensive.

Topology optimization is concerned with the automatic optimal design of structures for
a given physical setting, see [9]. From a mathematical point of view, topology optimization
belongs to the area of optimal control of partial differential equations, [39]. Physical set-
tings could for example include fluid dynamics, heat conduction or, as in the present set-
ting, mechanics. Realizing the resulting designs can be challenging with traditional man-
ufacturing methods, but is possible via additive manfucturing. For a broad overview of
trends in topology optimization for additive manufacturing see [32].

Topology optimization is conducted by solving the arising partial differential equations
and iteratively updating the design to improve a given objective function. Three common
approaches are the SIMP method [8], the level set method [42] and the phase field method.

The phase field method was first introduced for free boundary problems [24] and phase
transformations [31]. It has been widely used in solidification [16, 44], but also for example
to model dendritic growth [28] or crack propagation [34]. It has been applied to topology
optimization in [12, 18, 21, 38, 41, 43] and [13].

The problem of overhangs has been approached in different ways. As long as overhangs
do not extend past an allowable self-supporting angle, they are printable. This is used in
the work of [25] by incorporating projection operations to limit overhang angles. Another
approach is to determine wether enough supporting material is present under a certain
point. This method was developed in [30] and requires regular meshes. The problem of in-
stabilities is here alleviated by incorporating an additive manufacturing constraint (AMC)
in the modeling stage. Rigidness of the structure during the building process is taken into
consideration.

When executing the topology optimization, the AMC is accounted for via a penalty
term. While being printed, the resulting structure shall be stable without relying on man-
ually added supports. This approach is introduced in the work of [2] and results are pre-
sented in [1]. In contrast to the phasefield approach used in the present paper, the au-
thors use a level-set method, where the topology is perturbed by solving a Hamilton-Jacobi
equation with a velocity term derived from the shape gradient.

As a novel approach the AMC is incorporated into the phase field method for topology
optimization. Optimality conditions are derived. The approach is validated numerically
by showing that the AMC increases stability during the manufacturing process.

This paper is structured in the following way: After explaining linear elasticity, the theo-
retical foundation of topology optimization is laid out in Sect. 2.3. The AMC is introduced
in Sect. 2.4 and incorporated into the optimal control problem. First order optimality con-
ditions are derived via a formal Lagrangian approach in Sect. 3. The discretization is ex-
plained in Sect. 4. To examine the influence of the AMC, numerical experiments are done
with and without it in Sect. 5.
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2 Problem setting
The aim of this chapter is to define the optimal control problem. After modeling the me-
chanics, topology optimization is explained and the AMC is formalized. First of all some
notations are introduced.

2.1 Notation
Let � ⊂R

d , d = 2, 3 be a bounded, regular domain and with a piecewise Lipschitz bound-
ary �. Assume there exists a Dirichlet boundary �D ⊂ ∂� with surface area |�D| > 0. The
space of square integrable functions L2(�) is used to define the Sobolev spaces

H1(�) :=
{
ξ ∈ L2(�) : ∂iξ ∈ L2(�), i = 1, . . . , d

}
and

H1
D
(
�,Rd) :=

{
ξ ∈ H1(�,Rd)|ξ = 0 on �D

}
.

For more details see [39]. The Frobenius inner product for the matrices M, N is defined
by the pairwise sum of element-products

M : N :=
d∑

i,j=1

MijNij.

With the fourth order tensor C, the product CM is defined via

[CM]ij :=
d∑

k=1

d∑

l=1

CijklMkl.

2.2 Linear elasticity problem
Using the displacement u : � →R

d , the linearized strain tensor

E(u) :=
1
2
(∇u + ∇uT)

(1)

is defined.
The distribution of material in � is described by a phase field ϕ ∈ L∞(�) with

0 ≤ ϕ ≤ 1 (2)

almost everywhere in �. Here, ϕ = 0 describes void and ϕ = 1 represents areas contain-
ing material. In a physically accurate setting each point in space either does or does not
contain material, i.e. ϕ ∈ {0, 1}, leading to a sharp transition. However, in the realm of op-
timization a smooth transition between material and void is desired in order to calculate
derivatives. This is achieved by explicitly allowing impure phases, i.e. states with 0 < ϕ < 1.
The transition is seen as the interface between material and void.

Consider the symmetric fourth order stiffness tensor C(ϕ) with continuously differen-
tiable entries. It is assumed that the derivative of the stiffness tensor C′(ϕ) is globally Lips-
chitz continuous. A transition function with cubic behavior for ϕ ∈ [0, 1] is employed. This
is not essential in the phase field approach, but empirically leads to a faster convergence.
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For ζ > 0 the transition function is defined via

s(x) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 for x < 0,

x3 for 0 ≤ x ≤ 1,

sr(x) for 1 < x ≤ 1 + ζ ,

1 + ζ for x > 1 + ζ ,

where sr is a monotone C1,1-function such that s is in C1,1.
The elasticity tensor for the whole domain is defined in the following way

C(ϕ) := Cmats(ϕ) + Cvoid
(
1 – s(ϕ)

)
, (3)

where

CmatE := λmat tr(E)I + 2μmatE , (4)

CvoidE := ε2CmatE

for a quadratic matrix E . The constants λmat ≥ 0 and μmat > 0 are called Lamé parameters.
The constant ε > 0 is a small parameter, which will be related later to the interface width
when defining the Ginzburg–Landau term in Equation (8).

A load f is acting on a part of the boundary labeled �f and a volume force g is present
where material ϕ is located. The above definition warrants 0 
= Cvoid � Cmat, which ensures
low stiffness in void, but avoids degeneracy.

With the outer normal vector n, the strong form of the mechanical system is defined via

(MS)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

– div[C(ϕ)E(um)] = ϕg in �,

um = 0 on �D,

[C(ϕ)E(um)]n = 0 on ∂� \ (�D ∪ �f ),

[C(ϕ)E(um)]n = f on �f .

The weak formulation is written as

∫

�

C(ϕ)E
(
um)

: E
(
vm)

dx = F
(
vm,ϕ

) ∀vm ∈ H1
D
(
�,Rd), (5)

where F
(
vm,ϕ

)
:=

∫

�

ϕg · vm dx +
∫

�f

f · vm dω.

Definition 1 (Weak solution of the mechanical system) The function um ∈ H1
D(�,Rd) is

a weak solution of the mechanical system (MS), if it fulfills the weak formulation (5).

The superscript m is used throughout this paper in connection with the mechanical
system. A unique um exists, as proven for the phase field method in [11]. A more general
and thorough discussion on existence theory for elasticity problems can be found in [20].
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2.3 Topology optimization
This section is based on [14]. The aim of topology optimization is to distribute a limited
amount of material in an optimal sense. Without limiting the material usage, the solu-
tion of the optimal control problem defined in Sect. 2.5 would be trivial: ϕ ≡ 1 on �, i.e.
covering the whole domain with material.

An additional constraint makes the problem more interesting. Let m be the mass pa-
rameter with 0 < m < 1. The amount of material is restricted via a volume constraint

∫

�

ϕ dx = m|�|, (6)

where |�| denotes the Lebesque measure of the domain �. The admissible set is defined
as

Gm :=
{
ϕ ∈ H1(�,R)|0 ≤ ϕ(x) ≤ 1 a.e. in � and

∫

�

ϕ dx = m|�|
}

.

The objective is to find a material distribution ϕ ∈ Gm and a corresponding solution of
the elasticity problem u : � → R

d such that the mean compliance

F(u,ϕ) (7)

is minimized. If C(ϕ) would be allowed to become zero for ϕ = 0, boundary forces could be
avoided trivially by not placing material where these forces act. On the other hand, soft sur-
rogate material close to �f leads to large displacements, increasing the compliance. This
ensures that optimal solutions always have material placed where boundary forces act.
However, this minimization problem is not well-posed as explained in [3]. The regularity
of the solution is not ensured. In computational examples this can lead to a checkerboard
solution. Checkerboarding is the frequent occurrence of jumps between material and void,
which is not desirable, see [37]. The algorithm might produce so-called porous solutions,
which can be thought of as sponge-like microstructures. In many industrial cases this type
of material is hard to realize and therefore undesirable. The ill-posedness can be alleviated
by adding a perimeter regularization which was proven in [7]. The paper [38] explains that
the perimeter can be approximated by the Ginzburg–Landau term

Eε(ϕ) :=
∫

�

ε

2
|∇ϕ|2 +

1
ε
ψ(ϕ) dx, (8)

for ε > 0 and ϕ ∈ H1(�,R)∩L∞(�). For convergence properties as the interface parameter
ε approaches zero see [40]. The first term penalizes transitions between material and void
through the gradient of the material distribution. The second term contains a potential
ψ ∈ C1,1(R,R) with ψ ≥ 0. A commonly used potential is the double well potential

ψ(ϕ) =
1
4
(
(ϕ – 1)ϕ

)2 =
1
4
(
ϕ2 – ϕ

)2.

The aim of the potential is to penalize impure phases, which are states where the phase
field ϕ is not equal to 0 or 1.
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Lemma 1 There exist positive constants ¯�, �̄ and �′ such that for all symmetricalM,N ∈
R

d×d \ {0} and all ϕ ∈R the following relationships hold:

¯�|M|2 ≤ C(ϕ)M : M≤ �̄|M|2, (9)
∣∣C′(ϕ)M : N

∣∣ ≤ �′|M||N |. (10)

Proof Follows from construction of C(ϕ). �

Assumption A1 The data lays in L2

f ∈ L2(�f ,Rd), g ∈ L2(�,Rd).

2.4 Additive manufacturing constraint
In additive manufacturing a structure is created in a layer-by-layer approach. Following
[2] the intermediate states are taken into consideration to ensure stability during manu-
facturing. This can be thought of as slicing the final topology into horizontal layers and
leads to the definition of the intermediate shape up to height h > 0

�h := � ∩ {
x = (x1, . . . , xd)T ∈R

d, 0 ≤ xd ≤ h
}

.

With a layer thickness l > 0, the layer from height h – l to height h is defined via

Lh := �h \ �h–l.

The Dirichlet boundary for the AMC problems differs from the Dirichlet boundary of the
mechanical problem. In the mechanical problem it describes areas where the structure
is supported when forces are applied. In the constraint problems the process of additive
manufacturing is simulated. Homogeneous Dirichlet boundary conditions are assumed
for all parts of the geometry touching the building plate �0. Notice that �0 does not change
for different intermediate shapes. During the manufacturing process no surface forces are
applied to the structure. Each intermediate shape �h is only subjected to gravity g. It is
assumed that gravity is the primary opponent to successful 3D printing, which is the case
for example for fused deposition modeling. Other issues, like thermal problems in powder
bed fusion [29], are not considered here.

As opposed to [2], where gravity acts on the whole intermediate structure, it is here
restricted to the newest, upmost layer. Otherwise the compliances of the lower layers of
the structure would be taken into account multiple times, whereas the top layer is only
considered once. This would lead to designs with a heavy bias towards stability during the
beginning of the printing process. Support structures would mainly arise in the lower parts
of the design. Restricting gravity to the upmost layer can also be motivated physically:
Since the lower layers of the structure are already cooled down and hardened, they will
not be displaced much under the influence of gravity. Only applying gravity to the newly
printed layer can be thought of as implicity considering the phase change of molten to
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hardened plastic filament. For a given height h > 0 the AMC system is defined as

(AMCS)

⎧
⎪⎪⎨

⎪⎪⎩

– div[C(ϕ)E(uc
h)] = ϕg1Lh in �h,

uc
h = 0 on �0,

[C(ϕ)E(uc
h)]n = 0 on ∂�h \ �0,

Note that one cannot just define the system on the layer Lh, since the Dirichlet boundary
is not part of that domain. The weak formulation is written as

∫

�h

C(ϕ)E
(
uc

h
)

: E(vh) dx =
∫

�h

ϕg1Lh · vh dx

∀vh ∈ H1
0
(
�h,Rd) :=

{
ξ ∈ H1(�h,Rd)|ξ = 0 on �0

}
. (11)

Definition 2 (Weak solution of the AMC system) The function uc
h ∈ H1

0 (�h,Rd) is a weak
solution of the AMC system (AMCS), if it fulfills the weak formulation (11) on the corre-
sponding space �h.

The mechanical system (MS) describes the load case where a force is acting on the struc-
ture. On the other hand the AMC system (AMCS) models the printing process, where only
gravity is considered. To help distinguish between both systems the superscript c is used
in conjunction with the constraint problems.

In order to judge the stiffness during the manufacturing process, the compliance of the
layer Lh is defined

cLh :=
∫

�h

ϕg1Lh · uc
h dx.

For large overhang angles gravity will cause large displacements and therefore increase
the compliance. Since compliance is the inverse of stiffness, low compliance values are
desirable, because they coincide with high stiffness during the printing process. A penalty
function is defined with H > 0 via

P
(
uc,ϕ

)
:=

∫ H

0

1
h

∫

�h

ϕg1Lh · uc
h dx dh.

The idea is to slice the domain � into N layers and define successively growing domains
�h with �hi ⊆ �hj for hi ≤ hj.

A test geometry is created to show the effect of the weighting term 1
h . In Fig. 1(a) the

material is represented by the red areas. Two vertical beams are connected via eight hor-
izontal beams, which have large overhangs. The bottom beam touches the building plate
and is therefore not critical. Each of the other horizontal beams would lead to problems
during additive manfucturing. However, Fig. 1(b) shows that without weighting, the AMC
penalty term Pd increases for higher layers. This is caused by a linearly growing amount of
material beneath the current layer, which is also subject to displacement. The algorithm
would focus on decreasing overhangs towards the top of the domain. With weighting the
AMC penalty term is more evenly distributed independent of layer height. As desired, the
algorithm would decrease overhangs everywhere in the domain.
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Figure 1 Weighting leads to a more even focus of the AMC penalty term

Up to this point, the height h has been a continuous parameter. To avoid double sub-
scripts it is now used as an index of the domain. For example, uc

h is the displacement of
the structure up to the h-th layer. The layer Lh corresponds to �h \ �h–1. The following
notation is used:

uc :=
{

uc
h
}N

h=1 ∈ H1
0
(
�1,Rd) × · · · × H1

0
(
�N ,Rd) =: Hc.

The outer integral of P(uc,ϕ) is approximated via a Riemann sum. For the discretized
penalty function the constant factor H

N is dropped, yielding

Pd(uc,ϕ
)

:=
N∑

h=1

1
h

∫

�h

ϕg1Lh · uc
h dx.

Not only the final structure shall bend as little as possible, but also all intermediate struc-
tures. Towards calculating the penalty function an additional N elasticity problems have
to be solved.

2.5 Optimal control problem
With β ,γ > 0 all ingredients have been gathered to write down the optimization problem

(
Pε

)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min Jε(um, uc,ϕ) := F(um,ϕ) + βPd(uc,ϕ) + γ Eε(ϕ),

over (um, uc,ϕ) ∈ H1
D(�,Rd) × Hc × H1(�,R) ∩ L∞(�),

s.t. (um,ϕ) fulfills (5) on �,

(uc
h,ϕ) fulfills (11) on �h, h = 1, . . . , N ,

and ϕ ∈ Gm.

3 Formal derivation of optimality conditions
The aim of this chapter is to derive optimality conditions. A rigorous mathematical anal-
ysis was conducted in [11], where the AMC could be incorporated. Here, only the formal
Lagrange approach is covered, see [39].
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With the weak formulation of the mechanical system (5) and the weak forms of the AMC
systems (11) the Lagrange functional can be defined via

L
(
um, uc,ϕ, vm, vc) := F

(
um,ϕ

)
+ βPd(uc,ϕ

)
+ γ Eε(ϕ)

–
∫

�

C(ϕ)E
(
um)

: E
(
vm)

dx + F
(
vm,ϕ

)

– β

N∑

h=1

1
h

[∫

�h

C(ϕ)E
(
uc

h
)

: E(vh) dx –
∫

�h

ϕg1Lh · vh dx
]

– λ

∫

�

(ϕ – m) dx.

The Gâteaux derivatives of the Lagrange function with respect to the states um, uc
h, h =

1, . . . , N in the directions qm, qh, h = 1, . . . , N respectively are calculated. This results in the
adjoint equations

∂L
∂um

[
qm]

= –
∫

�

C(ϕ)E
(
qm)

: E
(
vm)

dx +
∫

�f

f · qm dω +
∫

�

ϕg · qm dx != 0,

∂L
∂uc

h
[qh] = –

β

h

∫

�h

C(ϕ)E(qh) : E(vh) dx +
β

h

∫

�h

ϕg1Lh · qh dx != 0,

for h = 1, . . . , N . Note that these adjoint equations match the state equations (5), (11) for
h = 1, . . . , N respectively. With |�D| > 0, |�0| > 0 one can deduce

vm ≡ um, (12)

vh ≡ uc
h, h = 1, . . . , N . (13)

The derivative of the Lagrange function with respect to ϕ in direction ω is

∂L
∂ϕ

[ω] = γ

∫

�

ε∇ϕ · ∇ω +
1
ε
ψ ′(ϕ)ω dx

–
∫

�

C′(ϕ)ωE
(
um)

: E
(
um)

dx + 2
∫

�

ωg · um dx

– β

N∑

h=1

1
h

[∫

�h

C′(ϕ)ωE
(
uc

h
)

: E
(
uc

h
)

dx – 2
∫

�h

ωg1Lh · uc
h dx

]

– λ

∫

�

ω dx.

(14)

Since Gm is convex, any optimal control satisfies the corresponding variational inequality,
see [39, Thm. 1.2.]. The results are summarized in the following theorem.

Theorem 1 Let ϕ̄ ∈ Gm be a local solution of the optimality problem (Pε). The following
first order necessary optimality conditions hold

State Equations

∫

�

C(ϕ̄)E
(
um)

: E
(
vm)

dx = F
(
vm, ϕ̄

) ∀vm ∈ H1
D
(
�,Rd),
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∫

�

C(ϕ̄)E
(
uc

h
)

: E(vh) dx =
∫

�h

ϕ̄g1Lh · vh dx ∀vh ∈ H1
0
(
�h,Rd),

h = 1, . . . , N

Variational Inequality

γ

∫

�

ε∇ϕ · ∇(ϕ – ϕ̄) +
1
ε
ψ ′(ϕ)(ϕ – ϕ̄) dx

–
∫

�

C′(ϕ)(ϕ – ϕ̄)E
(
um)

: E
(
um)

dx + 2
∫

�

(ϕ – ϕ̄)g · um dx

– β

N∑

h=1

1
h

[∫

�h

C′(ϕ)(ϕ – ϕ̄)E
(
uc

h
)

: E
(
uc

h
)

dx – 2
∫

�h

(ϕ – ϕ̄)g1Lh · uc
h dx

]

– λ

∫

�

(ϕ – ϕ̄) dx

≥ 0 ∀ϕ ∈ Gm.

4 Discretization
Observations and theoretical derivations of linear elasticity take place in the three-
dimensional space. However, two-dimensional models are computationally less demand-
ing and will therefore be studied here. An Allen-Cahn interface propagation is explained,
which allows stationary problems to be solved iteratively. The Primal-Dual Active-Set
Method is presented to solve the optimal control problem.

The goal is to construct a thin, 3D-printable structure. The plane stress model is feasible
since it assumes that the z-dimension is very small in comparison to the other dimensions.
The Lamé parameters have to be adjusted, as explained in [22].

The goal is to iteratively solve the stationary problem. The idea of a phase field interface
propagations stems from the work of [19] and [4]. After an initial material distribution ϕ0

is set, pseudo timestepping is used to evolve the solution. The negative derivative of the
reduced cost functional is chosen as the direction of interface movement, thus

–j′(ϕ)ω = –
∂L
∂ϕ

[ω] =
∫

�

∂ϕ

∂t
ω dx ≈

∫

�

ϕk+1 – ϕk

τ
ω dx, (15)

where τ is the length of a pseudo time-step. Thus

∫

�

∂ϕ

∂t
ω dx = – γ ε

∫

�

∇ϕ · ∇ω dx –
γ

ε

∫

�

ψ ′(ϕ)ω dx

+
∫

�

C′(ϕ)ωE
(
um)

: E
(
um)

dx – 2
∫

�

ωg · um dx

+ β

N∑

h=1

1
h

[∫

�h

C′(ϕ)ωE
(
uc

h
)

: E
(
uc

h
)

dx – 2
∫

�h

ωg1Lh · uc
h dx

]
.

+ λ

∫

�

ω dx

(16)
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Towards better stability the equation is discretized in time using a semi-implicit approach

1
τ

∫

�

ϕk+1ω dx + γ ε

∫

�

∇ϕk+1 · ∇ω dx

≈ 1
τ

∫

�

ϕkω dx –
γ

ε

∫

�

ψ ′(ϕk)ω dx

+
∫

�

C′(ϕk)ωE
(
um)

: E
(
um)

dx – 2
∫

�

ωg · um dx

+ β

N∑

h=1

1
h

[∫

�h

C′(ϕk)ωE
(
uc

h
)

: E
(
uc

h
)

dx – 2
∫

�h

ωg1Lh · uc
h dx

]

+ λk
∫

�

ω dx.

(17)

Note that the time-step τ is just a numerical construct and does not represent a physically
relevant time, hence the word pseudo.

When formulating the optimality system the box constraint 0 ≤ ϕ ≤ 1 was taken into
account via the space Gm. In accordance with [39] Karush–Kuhn–Tucker multipliers
μ+,μ– ∈ Lp(�) with 1 < p � 2 are introduced such that

0 ≤ ϕ ≤ 1 a.e. in �,

μ+ ≥ 0, μ– ≥ 0 in �, (18)

(μ+,ϕ – 1)Lp = (μ–, –ϕ)Lp = 0 in �.

The box constraint for the phase field is made up of the two inequalities –ϕ(x) ≤ 0 and
ϕ(x) – 1 ≤ 0. For example the second inequality is called active in x ∈ � if ϕ(x) – 1 = 0 and
inactive if ϕ(x) – 1 < 0. Adding the equations of (18) to the Lagrange function yields

L := L – (μ+,ϕ – 1)Lp – (μ–, –ϕ)Lp ,

which leads to the unconstrained optimality problem

min
ϕ∈H1(�,R)

sup
μ–,μ+∈Lp(�)+,λ>0

L(ϕ,μ–,μ+,λ),

where

Lp(�)+ :=
{
ξ ∈ Lp(�)|ξ ≥ 0 a.e. in �

}
.

In an optimum the following holds:

∂L

∂ϕ
[ω] =

∂L
∂ϕ

[ω] – (μ+,ω)Lp + (μ–,ω)Lp = 0. (19)

If 0 < ϕ < 1, then μ– = μ+ = 0. Otherwise,

if ϕ = 1 solve (μ+,ω)Lp =
∂L
∂ϕ

[ω] ∀ω ∈ H1(�,R) ∩ L∞(�). (20)
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if ϕ = 0 solve (μ–,ω)Lp = –
∂L
∂ϕ

[ω] ∀ω ∈ H1(�,R) ∩ L∞(�), (21)

The regularity of μ–, μ+ follows from standard arguments by making use of the regu-
larity of ∂L

∂ϕ
, see [26]. This incorporation of the box constraint via Karush–Kuhn–Tucker-

multipliers leads to the Primal-Dual Active-Set Method, see [14]. In each step the active
sets are updated using the result from the previous iteration. If there are no further changes
in these sets, the algorithm has converged and terminates. The pseudocode is displayed
in Algorithm 1.

Intuitively one can think of material flowing to the areas where it has the largest impact
on decreasing the Lagrange functional. Notice that ϕ is not constrained per se and thus
might end up being significantly smaller than 0 or larger than 1 in parts of the domain. The
idea behind this algorithm is to enforce the box constraints. Start with a ϕ0 that does fulfill
all constraints and μ0

+,μ0
– ≡ 0, leading to A1

+ and A1
– being empty and thus μ1

+,μ1
– ≡ 0.

Eventually ϕk will exceed 1 or fall below 0 in parts of the domain. Then the corresponding
active set Ak+1

+ or Ak+1
– will be nonempty and in turn ϕ set to 1 or 0, respectively. This

ensures that the box constraints are met.
The potential ψ introduced in Sect. 2.3 has a local maximum in ϕ = 0.5. As an initializa-

tion ϕ0 ≡ 0.5 is used throughout our numerical experiments. In [14] it is explained why
numerical oscillations can occurr if the active set parameter c is chosen too small with
respect to the mesh resolution. In our numerical experiments we did not observe oscilla-
tions when setting c = 2

h2
min

, with hmin being the minimum mesh size. The elasticity equa-
tions and the gradient equation are solved via the Finite Element Method. According to
the work of [27] the Primal-Dual Active-Set-Method can be interpreted as a semismooth
Newton method. This yields local superlinear convergence.

5 Numerical examples
The goal of this section is to show the effect of the AMC on the optimal topologies. Stan-
dard topology optimization examples of an MBB beam and a cantilever were chosen. The
code is implemented using P1 finite elements in FEniCS, see [33] and [5]. The main com-
putational challenge arises from a high number of layers leading to many intermediate
elasticity problems that need to be solved in each iteration. If done in serial, this is quite
time consuming. Here, multiprocessing is used to solve the different elasticity problems
concurrently on different processors. This leads to a considerable speedup.

Here, only linearly elastic, homogeneous, isotropic materials are considered. For a for-
mal definition see [17]. Without explicitly mentioning them, SI-units are used throughout.
Young’s modulus E is set to 3.5×106 and the Poisson ratio ν is assumed to be 0.3. According
to [35], this corresponds to the widely used 3D printing filament PLA. Computations are
done for a surface force f = (0, –1)T and the maximum number of iteration steps is set to
100. The results of the topology optimization depend on the following three parameters:
the Ginzburg–Landau parameter ε, the Ginzburg–Landau term prefactor γ and AMC
prefactor β .

5.1 Parameter study for ε and γ

The findings of this section do not take the AMC into account. This is achieved by set-
ting β = 0. The parameters ε, γ can be varied to influence the topologies resulting from
the optimization. The parameter γ is the prefactor of the Ginzburg–Landau term and
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Algorithm 1 Primal-Dual Active-Set-Method
1: Initialize

ϕ0 and set μ0
+, μ0

– ≡ 0, k = 0.

2: Solve the mechanical system (5), yielding um.
Solve the AMC systems (11), h = 1, . . . , N yielding uc.

3: Set

Ak+1
+ :=

{
x ∈ � : μk

+(x) + c
(
ϕk(x) – 1

)
> 0

}
,

Ak+1
– :=

{
x ∈ � : μk

–(x) + c
(
–ϕk(x)

)
> 0

}

and

ϕk+1 = 1 on Ak+1
+ ,

ϕk+1 = 0 on Ak+1
– ,

μk+1
+ = 0 on � \Ak+1

+ ,

μk+1
– = 0 on � \Ak+1

– .

4: On � \ (Ak+1
+ ∪Ak+1

– ) solve

1
τ

∫

�

ϕk+1ω dx + γ kε

∫

�

∇ϕk+1 · ∇ω dx

=
1
τ

∫

�

ϕkω dx –
γ k

ε

∫

�

ψ ′(ϕk)ω dx

+
∫

�

C′(ϕk)ωE
(
um)

: E
(
um)

dx – 2
∫

�

ωg · um dx

+ β

N∑

h=1

1
h

[∫

�h

C′(ϕk)ωE
(
uc

h
)

: E
(
uc

h
)

dx – 2
∫

�h

ωg1Lh · uc
h dx

]

+ λk+1
∫

�

ω dx.

(22)

s.t.
∫
�

ϕk+1 dx = m for (ϕk+1,λk+1).
5: On Ak+1

+ calculate μk+1
+ via (20).

6: On Ak+1
– calculate μk+1

– via (21).
7: Update γ k+1 according to Equation (23) below.
8: Stop or set k = k + 1 and return to 2.

thus controls the influence of the perimeter regularization, which can be interpreted as
a surface tension. Larger values of γ cause the material to lump together to simple, non-
filigree structures. A sensibly small γ allows for the creation of more filigree structures
while still avoiding checkerboarding. The parameter ε regulates the influence of the two
summands within the Ginzburg–Landau term. When ε is increased, the gradient term
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Figure 2 Influence of parameters

Figure 3 Cantilever beam setting

receives a higher weight. Penalizing the derivative causes less jumps to occur. However,
impure phases with 0 < ϕ < 1 are more likely to appear. Often, ε is referred to as the inter-
face thickness parameter. If it is set too large, filigree structures cannot emerge. When ε is
decreased, a transition from material to void is penalized less. A smaller interface thick-
ness brings about more filigree structures. If ε is very small, the potential term dominates.
Fine, pure-phased, porous structures arise. It helps to decrease the mesh size, which allows
for thinner beams to be displayed. These effects of the parameters ε and γ are summarized
in Fig. 2.

Finding a suitable pairing can be very time consuming. In order to alleviate this problem,
the parameters ε and γ are chosen adaptively as suggested in [23]. The following turned
out to be a good choice:

ε = 3hmin,

γ k+1 = cGL
F(um,ϕk)

Eε(ϕk)
(23)

with cGL set to 0.1.

5.2 Cantilever beam
The setting of a cantilever beam is shown in Fig. 3. The structure is fixed at the left hand
side and a downward force is applied in the middle of the right hand side. The domain is
discretized using 26,667 degrees of freedom. The material usage is fixed at 40%. Ten layers
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Figure 4 Effect of the AMC for the cantilever beam example

corresponding to ten intermediate building steps are considered for the AMC. Computa-
tions take around 14 minutes.

In order to test the influence of AMC, calculations are done for different factors β . The
results can be seen in Fig. 4. Blue areas represent void and red areas correspond to material.
The white parts are the interface, where 0 < ϕ < 1.

Figure 4(a) depicts the structure without influence of the AMC, i.e. β = 0. The material is
concentrated in major beams. Not a lot of support structures are present to hold the major
beams in place. Generally, the severity of an overhang can be measured by its angle to the
normal axis. As a rule of thumb, an angle of over 45◦ is critical. Here diagonal structures
can be seen that have an angle to the vertical axis of well above 45◦, making it difficult to
print the structure.

The penalty term is introduced by successively increasing the factor β . A change in
topology can be seen when β reaches 0.01, see Fig. 4(b). Supporting structures arise, which
hold up the major beams while they are being printed. This leads to less deformations dur-
ing additive manufacturing. The small beams are mostly vertically oriented and thus can
be manufactured easily.

As the AMC parameter β is increased, more and more support structures arise, which
can be observed in Figs. 4(e) and 4(f ). More material is placed near the bottom of the
domain. Beams are oriented more vertically than before and intersect each other. Smaller
beams deform less, which makes the structure more stable.

Notice that opposed to the geometric approach in [25], overhangs are tackled indirectly
and thus are not fully avoided.

The resulting values for the compliance, Ginzburg–Landau term and AMC penalty term
can be found in Table 1. As one would expect the compliance increases as the influence
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Table 1 Effect of the AMC for the Cantilever beam example

Fig. 4 β F Eε Pd

(a) 0.0 3.84× 10–6 2.11× 101 3.98× 10–5

(b) 0.01 3.88× 10–6 2.56× 101 1.94× 10–5

(c) 0.03 3.97× 10–6 2.82× 101 1.29× 10–5

(d) 0.05 4.05× 10–6 3.15× 101 1.04× 10–5

(e) 0.07 4.14× 10–6 3.36× 101 8.54× 10–6

(f ) 0.09 4.26× 10–6 3.99× 101 8.07× 10–6

Figure 5 Setting of an MBB beam

of the AMC gets larger. However, for the largest β value it only increases by around 10%,
whereas the AMC penalty term is decreased by 80%, making the printing process more
stable.

5.3 MBB beam
The setting of an MBB beam can be seen in Fig. 5. The structure is fixed in both directions
at the bottom left hand side, but allowed to move in the horizontal direction at the bottom
right hand side. A vertical force is applied in the middle of the top of the domain. Mak-
ing use of the symmetry axis in the middle of the MBB beam, only half of the domain is
discretized. The 400 × 133 crossed P1 finite elements lead to a total of 106,934 degrees of
freedom. Different from the cantilever example, the number of layers is increased from 10
to 100, making multiprocessing even more valueable. In [2] the computation for the same
number of layers using 300 × 100 Q1 elements, corresponding to 30,401 degrees of free-
dom, is reported to take 237 hours. With more than three times the degrees of freedom,
computations here take less than 3 hours. When 30,401 degrees of freedom are used, this
time reduces to 24 minutes.

The amount of material is set to 20%. As before, β is increased to see the influence of the
AMC. The results can be seen in Fig. 6. Without the AMC large overhangs arise. Especially
the long horizontal beam at the top of the structure is difficult to print. It is not supported
from below, likely causing molten material to sag during the manufacturing processing. As
β is increased, a lot of smaller supporting structures are created. In Fig. 6(f ) the area below
the long horizontal beam is evenly filled with supports. One also notices that the thick 45◦

beam near the force boundary is becoming thinner and more vertical as β is increased.
More support structures and vertically aligned beams make it easier to manufacture the
design. In Table 2 the results are gathered. As β is increased, the compliance is increased by
less than 10%, but the AMC penalty term decreases by almost 90%. While the structure
with β = 64 deforms slightly more during its original use case, it is considerablly more
stable during the printing process.
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Figure 6 Effect of the AMC for the MBB beam example

Table 2 Effect of the AMC for the MBB beam example

Fig. 6 β F Eε Pd

(a) 0.0 6.07× 10–4 2.23× 101 8.17× 10–6

(b) 5.0 6.11× 10–4 2.31× 101 5.74× 10–6

(c) 9.0 6.20× 10–4 2.57× 101 3.68× 10–6

(d) 16.0 6.34× 10–4 2.98× 101 1.96× 10–6

(e) 32.0 6.28× 10–4 3.74× 101 1.49× 10–6

(f ) 64.0 6.65× 10–4 4.61× 101 1.06× 10–6

6 Conclusion
Instabilities during additive manufacturing motivated research on this topic. The AMC
was incorporated into the optimal control problem. Optimality conditions arose from
a formal Lagrangian approach. The numerical approach was discussed. Experiments
showed that the AMC decreases overhangs and brings about support structures.

To the author’s best knowledge this is the first time the AMC is applied to the phase
field method for topology optimization. First order optimality conditions were derived.
An Allen-Cahn interface propagation iteratively solved the stationary optimality problem.
After a pseudo time discretization the Primal Dual Active Set Algorithm was executed. It
was discussed how the topology can be influenced by setting the parameters ε and γ . After
applying the AMC noticeable changes occured. More support structures emerged, leading
to smaller intermediate compliances and in turn to a higher stiffness during the manufac-
turing process. The influence of the penalty term is adjustable, which allows the structures
to be fine-tuned according to demands. Less labor intensive post processing is necessary,
giving this approach an advantage over manually added support structures. However, op-
posed to the geometric approach, large overhang angles are tackled indirectly and thus are
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not fully avoided. It would be beneficial to print different structures to find out how this
influences the manufacturing process. Further research on this topic could include the
incorporation of a micro field to represent lattice structures. This helps create printable
light-weight constructions. Here, a phase flow approach was used. An implementation of
the projected gradient method, see [15], could speed up the convergence. Additionally, one
could implement an adaptive mesh, which is fine in the interface region and coarser oth-
erwise. This would reduce computational costs and make three dimensional calculations
less demanding. An integration of stress constraints is desirable for industrial applications.
On a larger scope there are many more problems in additive manufacturing which can be
tackled with optimization methods.
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