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Abstract
Parallel computations have become standard practice for simulating the complicated
multi-phase flow in a petroleum reservoir. Increasingly sophisticated numerical
techniques have been developed in this context. During the chase of algorithmic
superiority, however, there is a risk of forgetting the ultimate goal, namely, to
efficiently simulate real-world reservoirs on realistic parallel hardware platforms. In this
paper, we quantitatively analyse the negative performance impact caused by
non-contributing computations that are associated with the “ghost computational
cells” per subdomain, which is an insufficiently studied subject in parallel reservoir
simulation. We also show how these non-contributing computations can be avoided
by reordering the computational cells of each subdomain, such that the ghost cells
are grouped together. Moreover, we propose a new graph-edge weighting scheme
that can improve the mesh partitioning quality, aiming at a balance between
handling the heterogeneity of geological properties and restricting the
communication overhead. To put the study in a realistic setting, we enhance the
open-source Flow simulator from the OPM framework, and provide comparisons with
industrial-standard simulators for real-world reservoir models.

Keywords: Reservoir simulation; High performance computing; Mesh partitioning;
Norne reservoir model

1 Introduction and motivation
Computer simulation is extensively used in the oil industry to predict and analyse the
flow of fluids in petroleum reservoirs. The multi-phased flow in such porous media is
mathematically described by a complicated system of partial differential equations (PDEs),
only numerically solvable for realistic cases. At the same time, the quest for realism in
reservoir simulation leads to using a large number of grid cells, thereby many degrees
of freedom. Parallel computing is thus indispensable for achieving large scales and fast
simulation time.

The fundamental step of parallelization is to divide the total number of degrees of free-
dom among multiple hardware processing units. Each processing unit is responsible for
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computing its assigned degrees of freedom, in collaboration with the other units. To use
distributed-memory mainstream parallel computers for mesh-based computations, such
as in a reservoir simulation, the division of the degrees of freedom is most naturally
achieved by partitioning the global computational mesh. Each processing unit is there-
fore assigned with a sub-mesh consisting of two types of grid cells: interior and ghost. The
distributed ownership of the interior cells gives a disjoint division of all the degrees of free-
dom among the processing units. The ghost cells per sub-mesh, which constitute one or
several layers around the interior cells, are needed to maintain the PDE-induced coupling
between the neighboring sub-meshes.

One major benefit of such a work division, based on mesh partitioning, is that each
processing unit can independently discretize the PDEs restricted to its assigned sub-mesh.
Any global linear or nonlinear system will thus only exist logically, collectively represented
by a set of sub-systems of linear or nonlinear equations. The overall computing speed of a
parallel simulator, however, hinges upon the quality of mesh partitioning. Apart from the
usual objective of minimizing the inter-process communication volume, it is also desirable
to avoid that strongly coupled grid cells are assigned to different processes. The latter is
important for the effectiveness of parallel preconditioners that are essential for iteratively
solving the linear systems arising from the discretized PDEs. The two objectives are not
easy to achieve simultaneously.

It is therefore necessary to revisit the topic of mesh partitioning as the foundation of
parallel reservoir simulations. In particular, the interplay between minimizing commu-
nication overhead and maximizing numerical effectiveness, especially in the presence of
reservoir-characteristic features, deserves a thorough investigation. The novelty of this
paper includes a study of how different edge-weighting schemes, which can be used in
a graph-based method of mesh partitioning, will influence numerical effectiveness and
communication overhead. We also quantify the negative performance impact caused by
non-contributing computations that are associated with the ghost degrees of freedom.
This subject is typically neglected by the practitioners of parallel reservoir simulations.
Moreover, we present a simple strategy to avoid the non-contributing computations based
on a reordering of the interior and ghost grid cells per subdomain.

The remainder of the paper is organized as follows. Section 2 gives a very brief intro-
duction to the mathematical model and the numerical solution strategy for reservoir flow
simulations. Then, Sect. 3 explains the parallelization with a focus on how to avoid non-
contributing computations related to the unavoidable ghost grid cells. Thereafter, Sect. 4
devotes its attention to the details of mesh partitioning and the corresponding graph par-
titioning problem, with the presentation of a new edge-weighting scheme. The impacts of
removing non-contributing computations and applying the new edge-weighting scheme
are demonstrated by numerical experiments in Sect. 5, whereas Sects. 6 and 7, respec-
tively, addresses the related work and provides concluding remarks.

2 Mathematical model and numerical strategy
In this section, we will give a very brief introduction to the most widely used mathematical
model of petroleum reservoirs and a standard numerical solution strategy that is based on
corner-point grids and cell-centered finite volume discretization.
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2.1 The black-oil model
The standard mathematical model used in reservoir simulation is the black-oil model [1,
2]. It is a system of nonlinear PDEs governing three-phase fluid flow in porous media. The
equations are derived from Darcy’s law and conservation of mass. The model assumes that
the different chemical species found in the reservoir can be separated into three categories
of fluid phases α = {w, o, g}: water (w), oil (o) and gas (g). There are consequently three main
equations in the black-oil model, one for each phase:
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Here, φ, K and Rs are porosity, permeability and gas solubility. They describe the geological
properties of a reservoir. For each phase α, the terms Sα , μα , Bα and krα denote saturation,
viscosity, formation volume factor and relative permeability. The phase potential �α is
defined by the phase pressure pα and phase density ρα :

�α = pα + ραγ z, (4)

where γ and z are the gravitational constant and reservoir depth. The unknowns of the
black-oil model are the saturation and pressure of each phase, so the following three rela-
tions are needed to complete Eqs. (1)-(3):

So + Sw + Sg = 1, (5)

pw = po – pcow(Sw), (6)

pg = po + pcog(Sg). (7)

The dependencies of the capillary pressures pcow and pcog upon the saturations Sw and Sg ,
used in Eq. (6) and Eq. (7), are typically based on empirical models.

2.2 Well modelling
The right-hand sides of the black-oil model (Eqs. (1)-(3)) contain source/sink terms qα ,
which represent either production or injection wells in a reservoir. The wells affect the
fluid flow on a much finer scale than what is captured by the resolution of the computa-
tional mesh for the reservoir. Special well models, such as the Peaceman model [3], are
incorporated to model important phenomena, such as stark pressure drops, in proxim-
ity to well in- and outflow. In the Peaceman well model, the pressure drop is modelled
by introducing new variables and equations in cells that contain a well bottom-hole. The
related well equations numerically couple all the grid cells perforated by each well.

2.3 Corner-point grid and discretization
It is common to use the 3D corner-point grid format [4] to represent a reservoir mesh.
A corner-point grid is a set of hexahedral cells logically aligned in a Cartesian fashion.
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The actual geometry of the grid is defined by a set of inclined vertical pillars, such that
each grid cell in the mesh is initially formed by eight corner points on four of these pillars.
Deformation and shifting of the sides of a cell are allowed independently of the horizontal
neighboring cells. Moreover, a realistic reservoir may turn some of the cells to be inactive.
The combined consequence is that the resulting computational mesh is unstructured. For
example, a cell can have fewer than six sides, and there can be more than one neighboring
cell on each side.

A standard cell-centred finite volume scheme, using two-point flux approximation with
upwind mobility weighing [5], can be applied on a corner-point grid to discretize the PDEs
of the black-oil model. The time integration is fully implicit to ensure numerical stability.
Take for instance the water equation (Eq. (2)). Let S�,i

w denote Sw at time step � inside cell Ci,
which has Vi as its volume. Suppose the neighboring cells of Ci are denoted as Cj0 , . . . , Cji ,
the discretization result of Eq. (2) restricted to cell Ci is thus
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denotes the water mobility on the face intersection �ij between a

pair of neighboring cells Ci and Cj, whereas Tij is the static transmissibility on �ij:
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The mij term denotes a transmissibility multiplier, for incorporating the effect of faults. For
example, when a fault acts as a barrier between cells Ci and Cj, we have mij = 0. Figure 1
illustrates the geometric terms �ci, �ni and �ij involved in the transmissibility calculation.
A typical scenario of reservoir simulation is that sw, sg and po are chosen as the primary
unknowns, and the cell-centered finite volume method is applied to the three main equa-
tions Eqs. (1)-(3) on all the grid cells. As result we get a system of nonlinear algebraic
equations per time step. The total number of degrees of freedom is three times the num-
ber of active grid cells. Newton iterations are needed at each time level, such that a series

Figure 1 A sketch of the geometric properties needed to calculate the static transmissibility (Eq. (9)) between
two neighboring grid cells Ci and Cj
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of linear systems Ax = b will be solved by an iterative method, such as BiCGStab or GM-
RES [6], which is accelerated by some preconditioner. The linear systems are sparse, often
ill-conditioned, and non-symmetric due to the influence of well models. Although the
nonzero values in the matrix A change with the time level and Newton iteration, the spar-
sity pattern remains unchanged (as long as the corner-point grid is fixed). This allows for
a static partitioning of the computational mesh needed for parallelization. In this context,
the static transmissibility Tij defined in Eq. (9) is an important measure of the coupling
strength between a pair of neighboring cells Ci and Cj.

3 Efficient parallelization of reservoir simulation
To parallelize the numerical strategy outlined in the preceding section, several steps are
needed. The main focus of this section will be on two topics. First, we explain why ghost
grid cells need to be added per sub-mesh after the global computational mesh is non-
overlappingly partitioned. Second, we pinpoint the various types of non-contributing
computations that arise due to the ghost cells, and show how these can be avoided for a bet-
ter computational efficiency. We remark that the exact amount and spread of ghost cells
among the sub-meshes are determined by the details of the mesh-partitioning scheme,
which will be the subject of Sect. 4.

3.1 Parallelization based on division of cells
Numerical solution of the black-oil model consists of a time integration procedure, where
during each time step several Newton iterations are invoked to linearize the nonlinear PDE
system in Eqs. (1)-(3). The linearized equations are then discretized and solved numeri-
cally. The main computational work inside every Newton iteration is the construction and
subsequent solution of a linear system of the form Ax = b. Typically, the 3D corner-point
grid remains unchanged throughout the entire simulation. It is thus customary to start
the parallelization by a static, non-overlapping division of the grid cells evenly among a
prescribed number of processes. Suppose N denotes the total number of active cells in
the global corner-point grid, and Np is the number of cells assigned to process p, then we
have

P∑
p=1

Np = N ,

where P denotes the total number of processes. Process p is responsible for computing
the 3Np degrees of freedom that live on its Np designated cells. The global linear system
Ax = b that needs to be calculated and solved inside each Newton iteration will only exist
logically, i.e., collectively composed by the 3Np rows of A and the 3Np entries of x and b
that are owned by every process p = 1, 2, . . . , P.

3.2 The need for ghost cells
The non-overlapping cell division gives a“clean-cut” distribution of the computational re-
sponsibility among the P processes, specifically, through a divided ownership of the x en-
tries. There are however two practical problems for parallel computing associated with
such a non-overlapping division.

First, we recall that the numerical coupling between two neighboring cells Ci and Cj is
expressed by the static transmissibility Tij as defined in Eq. (9). In case Ci and Cj belong to
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Figure 2 An illustrative example of 4-way mesh partitioning. The interior cells of each of the four subdomains
are colored green, while ghost cells are colored red

two different processes, inter-process exchange of data is required in the parallel solution
procedure. If each process has a local data structure storing only its designed 3Np entries
of x, the inter-process communication will be in the form of many individual 3-value ex-
changes, resulting in a drastic communication overhead. It is thus common practice to let
each process extend its portion of the x vector by 3NG

p , where NG
p denotes the number of

ghost cells that are not owned by process p but border its internal boundary. For the finite
volume method considered in this paper, only one layer of ghost cells is needed. Figure 2
demonstrates how ghost cells are added to the local grids of each process. The extended
local data structure will allow aggregated inter-process communication, i.e., all the values
needed by process p from process q are sent in one batch, at a much lower communica-
tion overhead compared with the individual-exchange counterpart. Specifically, whenever
x has been distributedly updated, process p needs to receive in total 3NG

p values of x from
its neighbors. To distinguish between the two types of cells, we will from now on denote
the originally designated Np cells from the non-overlapping division as interior cells on
process p.

Second, and perhaps more importantly, if a local discretization is carried out on pro-
cess p by restricting to its designated Np interior cells, the resulting local part of A, which
is of dimension 3Np × 3Np, will be incomplete on the rows that correspond to the cells
that have one or more of their neighboring cells owned by a process other than p. A sim-
ilar problem also applies to the corresponding local entries in the vector b. Elaborate
inter-process communication can be used to expand the sub-matrix on process p to be
of dimension 3Np × 3(Np + NG

P ), for fully accommodating the numerical coupling be-
tween process p and all its neighboring processes. However, a communication-free and
thereby more efficient local discretization approach is to let each process also include its
ghost cells. More specifically, the local discretization per process is independently done
on a sub-mesh that comprises both the interior and ghost cells. This computation can
reuse a sequential discretization code, without the need of writing a specialized subdo-
main discretization procedure. The resulting sub-matrix Ap will therefore be of dimen-
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sion 3(Np + NG
p ) × 3(Np + NG

P ) and the sub-vector bp of length 3(Np + NG
p ). We note that

the 3NG
p “extra” rows (or entries) in Ap (or bp) that correspond to the NG

p ghost cells will
be incomplete/incorrect, but they do not actively participate in the parallel computation
later. One particular benefit of having a square Ap is when a parallelized iterative solver
for Ax = b relies on a parallel preconditioner that adopts some form of incomplete factor-
ization per process. The latter typically requires each local matrix Ap to be of a (logically)
square shape.

In the following, we will discuss what types of computation and memory overhead can
arise due to the ghost cells and how to alleviate them.

3.3 Non-contributing computation and memory overhead due to ghost cells
While promoting communication-free discretizations per sub-mesh and aggregated inter-
process exchanges of data, the ghost cells (and the associated ghost degrees of freedom)
on every sub-mesh do bring disadvantages. If not treated appropriately, these can lead to
wasteful computations that are discarded later, as well as memory usage overhead. Such
issues normally receive little attention in parallel reservoir simulators. To fully identify
these performance obstacles, we will now dive into some of the numerical and program-
ming details related to solving Ax = b in parallel.

For any Krylov-subspace iterative solver for Ax = b, such as BiCGStab and GMRES [6],
the following four computational kernels must be parallelized:

• Vector addition: w = u + v. If all the involved vectors are distributed among the
processes in the same way as for x and b, then no inter-process communication is
needed for a parallel vector addition operation. Each process simply executes
wp = up + vp independently, involving the sub-vectors. However, unless the result
vector w is used as the input vector to a subsequent matrix-vector multiplication (see
below), the floating-point operations and memory traffic associated with the
ghost-cell entries are wasted. It is indeed possible to test for each entry of wp whether
it is an interior-cell value or not, thus avoiding the non-contributing floating-point
operations, but such an entry-wise if-test may dramatically slow down the overall
execution of the parallel vector addition. Moreover, the memory traffic overhead due
to the ghost-cell entries cannot be avoided on a cacheline based memory system, if the
ghost-cell and interior-cell entries are “intermingled” in memory.

• Inner product: u · v. Again, we assume that both sub-vectors up and vp have
3(Np + NG

p ) entries on process p. It is in fact numerically incorrect to let each process
simply compute its local inner product up · vp, before summing up the local
contributions from all the processes by a collective communication (such as the
MPI_Allreduce function). The remedy is to let each process “skip” over the
ghost-cell entries in up and vp. In a typical scenario that the ghost-cell entries are
mixed with interior-cell entries in up and vp, some extra implementation effort is
needed. For example, an assistant integer array named mask can be used, which is of
length Np + NG

p , where mask[i]==1 means cell i is interior and mask[i]==0
means otherwise. Assume the three degrees of freedom per cell are stored
contiguously in memory, the following code segment is a possible implementation of
the parallel inner product:

double sub_dot_p = 0, global_dot_p;

for (int i=0; i<sub_num_cells; i++) {
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sub_dot_p += mask[i]*(sub_u[3*i]*sub_v[3*i]

+sub_u[3*i+1]*sub_v[3*i+1];

+sub_u[3*i+2]*sub_v[3*i+2]);

}

MPI_Allreduce (&sub_dot_p, &global_dot_p, 1, MPI_DOUBLE,

MPI_SUM, MPI_COMM_WORLD);

For example, the well-known DUNE software framework [7] adopts a similar
implementation. It is clear that the floating-point operations associated with the
ghost-cell entries in up and vp, as well as all the multiplications associated with the
array mask, are non-contributing work. Allocating the array mask also incurs
memory usage and traffic overhead.

• Sparse matrix-vector multiplication: u = Av. Here, we recall that the global matrix A is
logically represented by a sub-matrix Ap per process, arising from a
communication-free discretization that is restricted to a sub-mesh comprising both
interior and ghost cells. The dimension of Ap is 3(Np + NG

p ) × 3(Np + NG
p ). Moreover,

we assume that all the ghost-cell entries in the sub-vector vp are consistent with their
“master copies” that are owned by other processes as interior-cell entries. This can be
ensured by an aggregated inter-process data exchange. Then, a parallel matrix-vector
multiplication can be easily realized by letting each process independently execute
up = Apvp. We note that the ghost-cell entries in up will not be correctly computed (an
aggregated inter-process data exchange is need if, e.g., up is later used as the input to
another matrix-vector multiplication). Therefore, the floating-point operations and
memory traffic associated with the ghost-cell entries in up and the ghost-cell rows in
Ap are non-contributing.

• Preconditioning operation: w = M–1u. For faster and more robust convergence of a
Krylov-subspace iterative solver, it is customary to apply a preconditioning operation
to the result vector of a preceding matrix-vector multiplication. That is, a
mathematically equivalent but numerically more effective linear system
M–1Ax = M–1b is solved in reality. The action of a parallelized preconditioner M–1 is
typically applying wp = Ã–1

p up per sub-mesh, where Ã–1
p denotes an inexpensive

numerical approximation of the inverse of Ap. One commonly used strategy for
constructing Ã–1

p is to carry out an incomplete LU (ILU) factorization [6] of Ap.
Similar to the case of parallel matrix-vector multiplication, the floating-point
operations and memory traffic associated with the ghost-cell entries in wp and the
ghost-cell rows in Ap are non-contributing.

3.4 Handling non-contributing computation and memory overhead
The negative impact on the overall parallel performance, caused by the various types of
non-contributing computation and memory usage/traffic overhead, can be large. This is
especially true when the non-overlapping mesh partitioning is of insufficient quality (de-
tails will be discussed in Sect. 4). It is thus desirable to eliminate, as much as possible, the
non-contributing computation and memory overhead.

A closer look at the four kernels that are needed in the parallel solution of Ax = b reveals
the actual “evil”. Namely, the interior-cell entries and ghost-cell entries are intermingled.
This is a general situation if the interior and ghost cells of a sub-mesh are ordered to obey
the original numbering sequence of the corresponding cells in the global 3D corner-point
grid. (This is standard practice in parallel PDE solver software.) Hence, the key to avoiding



Thune et al. Journal of Mathematics in Industry           (2021) 11:12 Page 9 of 23

non-contributing computation and memory overhead is a separation of the interior-cell
entries from the ghost-cell counterparts in memory. This can be achieved per sub-mesh
by deliberately numbering all the ghost cells after all the interior cells, which only needs
to be done once and for all. If such a local numbering constraint is enforced, the non-
contributing computation and memory overhead can be almost completely eliminated.

Specifically, the parallel vector addition and inner-product can now simply stop at the
last interior degree of freedom. The array mask is thus no longer needed in the parallel
inner-product operation. For the parallel matrix-vector multiplication, the per-process
computation can stop at the last interior-cell row of Ap. In effect, the local computation
only touches the upper 3Np × 3(Np + NG

p ) segment of Ap. The last 3NG
p rows of Ap are not

used. This also offers an opportunity to save the memory storage related to these “non-
contributing” rows. More specifically, each of the last 3NG

p rows can be zeroed out and
replaced with a single value of 1 on the main diagonal. As a result, the sub-matrix Ap on
process p is of the following new form:

Ap =

[
AII

p AIG
p

0 I

]
, (10)

where the AII
p block is of dimension 3Np × 3Np and stores the numerical coupling among

the 3Np interior degrees of freedom, whereas the AIG
p block is of dimension 3Np × 3NG

p

and stores the numerical coupling between the 3Np interior degrees of freedom and the
3NG

p ghost degrees of freedom.
The “condensed” sub-mesh matrix Ap in Eq. (10) is still of a square shape. This is mainly

motivated by the situations where an incomplete factorization (such as ILU) of Ap is used
as M–1 restricted to sub-mesh p in a parallel preconditioner setting. Clearly, having only a
nonzero diagonal for the last 3NG

p rows of Ap means that there is effectively no computa-
tional work associated with these rows in an ILU, which is a part of the preparation work
of a Krylov-subspace solver before starting the linear iterations. Moreover, the forward-
backward substitutions, which are executed within each preconditioning operation, also
have negligible work associated with the “ghost” rows in the condensed Ap. Compared
with the non-condensed version of Ap, which arises directly from a local discretization on
the sub-mesh comprising both interior and ghost cells, the condensed Ap is superior in
the amount of computational work, the amount of memory usage and traffic, as well as
the preconditioning effect. The latter is due to the fact that a “natural” non-flux bound-
ary condition is implicitly enforced on the ghost rows of the non-condensed version of
Ap. This is, e.g., incompatible with a parallel Block-Jacobi preconditioner that effectively
requires M–1 to be on the form:

M–1 =

⎛
⎜⎜⎜⎜⎝

(ÃII
p=1)–1 0 · · · 0
0 (ÃII

p=2)–1 · · · 0
... · · · . . .

...
0 · · · · · · (ÃII

p=P)–1

⎞
⎟⎟⎟⎟⎠ . (11)

4 Mesh partitioning
As mentioned in the previous section, the first step of parallelizing a reservoir simulator
is a disjoint division of all the cells in the global corner-point grid, i.e., a non-overlapping
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mesh partitioning. We have shown how to eliminate the non-contributing computation
and memory overhead, which are associated with the necessary inclusion of one layer of
ghost cells per sub-mesh. The actual amount of ghost cells per sub-mesh depends on the
non-overlapping division, which will be the subject of this section. One aim is to keep the
number of resulting ghost cells low, for limiting the overhead of aggregated inter-process
communication. At the same time, we want to ensure good convergence effectiveness of a
parallel preconditioner such as the Block-Jacobi method that uses ILU as the approximate
inverse of the sub-matrix Ap (Eq. (10)) per process.

For the general case of an unstructured global corner-point grid, the standard strategy
for a disjoint division of the grid cells is through partitioning a corresponding graph. The
graph is translated from the global grid by turning each grid cell into a graph vertex. If
grid cells i and j share an interface, it is translated into a (weighted) edge between vertex i
and vertex j in the graph. This standard graph-based partitioning approach is traditionally
focused on load balance and low communication volume. The convergence effectiveness
of a resulting parallel preconditioner is normally not considered. We will therefore propose
a new edge-weighting scheme to be used in the graph partitioner, which targets specifically
the reservoir simulation scenario. The objective is to provide a balance between the pure
mesh-partitioning quality metrics and the convergence effectiveness.

4.1 Graph partitioning
A graph G = (V , E) is composed of a set of vertices V and a set of edges E ⊂ V × V
connecting pairs of vertices in V . If weights are assigned to each member of V and E
through weighting functions σ : V → R and ω : E → R, then we get a weighted graph
G = (V , E,σ ,ω). The P-way graph partitioning problem is defined as follows: Partition the
vertex set V into P subsets V1, V2, . . . , VP of approximately equal size, while minimizing
the summed weight of all the “cut edges” e = (vi, vj) ∈ E connecting vertices belonging to
different vertex subsets. Suppose C denotes the cut set of a partitioned G, containing all
the cut edges. The graph partitioning problem can be formulated more precisely as a con-
strained optimization problem, where the objective function J is the sum of the weights
of all members of C , also called edge-cut:

min J(C) =
∑
e∈C

ω(e), (12)

Subject to
maxp

∑
v∈Vp σ (v)

1
P

∑
v∈V σ (v)

< ε, (13)

where ε ≥ 1 is the imbalance tolerance of the load balancing constraint.
When the edge-weight function ω is uniform, i.e., each edge has a unit weight, the

edge-cut is an approximation of the total volume of communication needed, e.g., before
each parallel matrix-vector multiplication (see Sect. 3.3). When the edge-weight func-
tion ω is non-uniform, however, the objective function is no longer an approximation
of communication overhead. As demonstrated in e.g. [8, 9], adopting non-uniform edge
weights in the partitioning graph can be beneficial when partitioning linear systems with
highly heterogeneous coefficients. Assigning edge weights based on the “between-cell
coupling strength” can improve the quality of parallel preconditioners, such as Block-
Jacobi (Eq. (11)).
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Because the graph partitioning problem in Eqs. (12)-(13) is NP-complete, solving it ex-
actly is practically impossible. Many existing algorithms find good approximate solutions,
and implementations of these are available in several open software libraries such as Metis
[10], Scotch [11] and Zoltan [12].

4.2 Edge-weighting strategies in graph partitioning for reservoir simulation
Although the black-oil equations are nonlinear and time dependent, and the values in the
global linear system Ax = b vary with each Newton iteration and time step, the global
corner-point grid remains unchanged. The required mesh partitioning can thus be done
once and for all, at the beginning of the simulation. When translating the corner-point
grid to a corresponding graph, there are two reservoir-specific tasks. The first is that in
case two neighboring cells i and j have a zero value for the static transmissibility Tij (e.g.,
due to a barrier fault), the corresponding edge in the graph is removed, because such a pair
of cells is not numerically coupled. The second is to include additional edges connecting
vertex pairs corresponding to all the cells penetrated by a common well, because these
grid cells are numerically coupled. We denote the set of well-related edges as Ew. The
set containing the other regular edges is denoted by Ef . It is practical to avoid dividing a
well (the penetrated cells) among multiple subdomains, and one way to achieve this is to
ascribe a large edge weight to the edges in Ew. A corresponding uniform edge-weighting
strategy for the edges in Ef , while ensuring that no well is partitioned between subdomains,
is defined as follows:

ωu(e) =

⎧⎨
⎩

∞ e ∈ Ew,

1 e ∈ Ef .
(14)

In the above formula we ascribe weights of ∞ to the well edges. When implementing the
edge-weighting scheme, the ∞-weights must be replaced by a large numerical value. We
choose to use the largest possible value on a computer for the edge-weight data type.

To ensure good convergence effectiveness of a parallel preconditioner, we can modify
the above uniform edge-weighting strategy by using the static transmissibility Tij that lives
on each cell interface (Eq. (9)). This is because Tij can be used to estimate the between-
cell flux, hence directly related to the magnitude of off-diagonal elements in A. Therefore,
Tij can be considered to describe the strength of the between-cell coupling. A commonly
used edge-weighting strategy based on transmissibility is thus

ωt(e) =

⎧⎨
⎩

∞ e ∈ Ew,

Tij e = (vi, vj) ∈ Ef .
(15)

The transmissibility values can vary greatly in many realistic reservoir cases. One ex-
ample of transmissibility heterogeneity can be seen with the Norne case, displayed in the
histogram plot in Fig. 3b. Here, we observe a factor of more than 1012 between the small-
est and largest transmissibility values. Using these transmissibilities directly as the edge
weights, we can get partitioning results with a potentially large communication volume.
Down-scaling the weights in Eq. (15) may help to decrease the communication overhead,
while still producing partitions that yield better numerical performance than the uniform-
weighted graph partitioning. We therefore propose an alternative edge-weighting strategy
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by using the logarithm of Tij as the weight of edge e = (vi, vj):

ωl(e) =

⎧⎨
⎩

∞ e ∈ Ew,

log( Tij
Tmin

) e = (vi, vj) ∈ Ef .
(16)

5 Numerical experiments
In this section, we will investigate the effect of removing the non-contributing computa-
tions in solving Ax = b (see Sect. 3), as well as using different edge-weighting strategies
for graph partitioning (see Sect. 4), on parallel simulations of a realistic reservoir model.
The main objective of the experiments is to quantify the impact on the overall simulation
execution time. Moreover, for the different edge-weighting strategies, we will also exam-
ine the resulting numerical effectiveness and parallel efficiency. We have conducted our
experiments on the publicly available Norne model, that we will describe in Sect. 5.1. In
Sect. 5.4 we will compare the parallel performance of a thus improved open-source simu-
lator with industry-standard commercial reservoir simulators.

We employ the open-source reservoir simulator Flow [13] to conduct our experiments
and test our alternative implementations and methods. Flow is provided by the Open
Porous Media (OPM) initiative [14], which is a software collaboration in the domain of
porous media fluid flow. Flow offers fully-implicit discretizations of the black-oil model,
and accepts the industry standard ECLIPSE input format. The linear algebra and grid im-
plementations are based on DUNE [7]. In our experiments we restrict ourselves to the
BiCGStab iterative solver, combined with a parallel Block-Jacobi preconditioner that uses
ILU(0) as the approximate subdomain solver. Although Flow supports more sophisticated
preconditioners, we stick to Flow’s recommended default option. As of yet, experiences
with Flow show that ILU(0) achieves better overall performance than the alternatives on
most relevant models.

Parallelization of Flow is mostly enabled by using the Message Passing Interface (MPI) li-
brary. For matrix assembly and I/O, shared memory parallelism with the OpenMP thread-
ing library is also available. Graph partitioning in Flow is performed by Zoltan. The well
implementation in Flow does not allow for the division of a well over multiple subdo-
mains. In addition to the well related edge-weights that discourage cutting wells, a post-
processing procedure in Flow ensures that the cells perforated by a well always are con-
tained on a single subdomain.

5.1 The Norne field model
To study reservoir simulation in a realistic setting we require real-world reservoir mod-
els. One openly available model that fits this criterion is the Norne benchmark case [15],
which is a black-oil model case based on a real oil field in the Norwegian Sea. The model
grid consists of 44,420 active cells, and has a heterogeneous and anisotropic permeabil-
ity distribution. The model also includes 36 wells, which have changing controls during
the simulation. Figure 3 depicts the Norne mesh colored by the x-directed permeability
values, plus a histogram of the static transmissibility values.

In the histogram in Fig. 3b, we can see a huge span of the transmissibilities (Eq. (9)) of
the Norne benchmark case. The majority of transmissibilities have a value between 10–16

and 10–9. This large variation is a result of the heterogeneous distribution of permeability
and cell size shown in Fig. 3a.
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Figure 3 Permeability distribution (a) in the x direction of the Norne grid. A histogram plot (b) of the
transmissibility associated with cell interfaces from the Norne reservoir simulation case. The spike in the left
end of the plot represents transmissibilities with value 0

Figure 4 Ratio of the ghost cells related to partitioning the Norne reservoir mesh

Because of the modest grid size of the Norne model, we will also consider a refined
version [16], where the cells are halved in each direction, resulting in a model with 8 times
as many grid cells as the original model. The number of active cells in the refined Norne
model is 355360.

We conducted our experiments of the Norne models on two computing clusters: Abel
[17] and Saga [18]. The Abel cluster consists of nodes with dual Intel Xeon E5-2670
2.6 GHz 8-core CPUs interconnected with an FDR InfiniBand (56 Gbits/s) network,
whereas Saga is a cluster of more modern dual socket Intel Xeon-Gold 6138 2.0 GHz 20-
core CPUs interconnected with an EDR InfiniBand network (100 Gbits). The nodes on
Abel and Saga have a total of 16 and 40 cores respectively. All experiments that use more
MPI-processes than there are cores available on a single node are conducted on multiple
nodes.

In all experiments using Flow on the original and refined Norne models, we have turned
off the OpenMP multithreading for system assembly inside Flow.

5.2 Impact of removing non-contributing computations
We study the impact of non-contributing computations on the performance of linear al-
gebra kernels and the overall performance of Flow, by carrying out experiments of the
original Norne model described above. For these experiments we have used the trans-
missibility edge weights in Eq. (15), the default choice of Flow, in the graph partitioning
scheme.
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Figure 5 Time measurements (in seconds) of parallel linear algebra kernels for the Norne case, obtained on
the Abel cluster, with and without the non-contributing computations. The GL prefix means the ghost-related
non-contributing computations are removed

Figure 4 shows the ratio of ghost cells, i.e., (
∑P

p=1 NG
p )/N , as a function of the number of

subdomains used. We can see that the ghost cells can make up a significant proportion. For
example, with P = 128, the ghost cell ratio is as high as 55%. As discussed in Sect. 3, non-
contributing computations can arise due to the ghost cells. Because ghost cells increase
as a proportion of total cells with an increasing number of MPI-processes, avoiding ghost
cell related non-contributing computations is crucial for achieving good strong scaling.

To show the negative impact of non-contributing computations on the performance
of solving Ax = b, we present the execution time of the linear algebra kernels used in
the original Norne case in Fig. 5. It displays time measurements of sparse matrix-vector
multiplication (SpMV), ILU’s forward-backward substitution and inner product (IP), with
and without the non-contributing computations. These time measurements are attained
on the Abel cluster using selected matrices and vectors from the Flow Norne simulation.
Using these matrices and vectors, SpMV, ILU forward-backward substitution and inner
product operations are executed and timed.

Figure 5 shows a significant time improvement for the linear algebra kernels, due to
removing the non-contributing computations as proposed in Sect. 3. Because the IP op-
eration includes a collective reduction communication, it does not scale as well as the
SpMV and ILU operations. We therefore observe that the relative improvement attained
by removing the non-contributing IP computations start to decrease when the number of
processes is higher than 16. A closer look at the performance of the linear algebra kernels
is presented in Fig. 6 for the case of 16 MPI-processes. Here, the per-process execution
times of SpMV, ILU and IP are displayed, with and without the non-contributing compu-
tations.

The top right plot of Fig. 6 displays the per-process numbers of interior and ghost cells.
We notice a very uneven distribution of ghost cells among the processes. We also observe
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Figure 6 Per-process time usage of linear algebra kernels on an Abel node, and distribution of ghost/interior
cells when the number of MPI-processes is 16

Figure 7 Overall execution time in seconds (a) and total number of BiCGStab iterations (b) of the 2018.10
release of Flow and our improved implementation, when applied to the Norne model. The simulations were
conducted on the Abel cluster, and when the number of MPI-processes exceeded 16 we used multiple
computational nodes

that the load imbalance induced by the ghost cells impacts the performance of the linear
algebra operations, especially for SpMV.

The results displayed in Fig. 5 and Fig. 6 show the impact of ghost cells on the perfor-
mance of key linear algebra operations, and the benefit of avoiding the non-contributing
computations. To see the impact on the overall simulation time, we compare our improved
implementation of Flow with the 2018.10 release of OPM’s Flow, which is the latest release
that does not contain any of the optimizations mentioned in this paper. The compari-
son results are displayed in Fig. 7, where the overall execution time and total number of
BiCGStab iterations are presented.

In Fig. 7 we observe that our improved implementation of Flow achieves a significant
improvement in both execution time and total iteration count. The latter is due to us-
ing the condensed local sub-matrix Ap of form Eq. (10), instead of the non-condensed
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Figure 8 Resulting subdomains when partitioning the Norne mesh into 8 parts using uniform, logarithmic
and transmissibility edge weights. Each color represent one subdomain

version of Ap, in the ILU subdomain solver. This leads to better convergence of the Block-
Jacobi preconditioner. Note that removing ghost related non-contributing computations
and improving convergence only impact the performance of the simulators linear solver.
The main computational work of the reservoir simulator also consists of a system assem-
bly part. Therefore, for example, we only achieve a speedup of around 3.5 in the P = 128
case, despite 2.9 times smaller iteration count, and about 2 to 3 times faster SpMV and
ILU operations.

5.3 Impact of different edge-weighting strategies
In this subsection we will study and compare the different edge-weighting strategies pre-
sented in Sect. 4. We are ultimately interested in how the uniform weights (Eq. (14)), trans-
missibility weights (Eq. (15)) or logarithmic transmissibility weights (Eq. (16)) impact the
overall performance of the reservoir simulation, but we will also consider their impact on
partitioning quality and numerical effectiveness. The strategies are enforced before pass-
ing the graph to the Zoltan graph partitioner inside Flow, and in our experiments we have
used a 5% imbalance tolerance (ε = 1.05). All simulation results in this subsection are at-
tained with the improved Flow where we use the ghost-last procedures described in Sect. 3.
Figure 8 displays a visualization of a P = 8 partitioning of the Norne mesh for the differ-
ent edge-weighting strategies. We observe that subdomains generated by the logarithmic
and transmissibility edge-weighted partitioning schemes are less clean cut and more dis-
connected, than the subdomains resulting from the uniform edge-weighted partitioning
scheme.

5.3.1 Mesh partitioning quality
We start our tests by focusing on how the different edge-weighting strategies affect par-
titioning quality, when used to partition the original and refined Norne meshes. In Fig. 9
we report the total communication volume for the three partitioning schemes. The total
communication volume is equal to the sum of the DoFs associated with ghost cells over
all processes, 3

∑
p NG

p , multiplied with the data size of double precision floats, which
is 8 bytes. The partitioning results for the original Norne mesh are displayed in Fig. 9a,
whereas Fig. 9b is for the refined Norne mesh.
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Figure 9 Total communication volume in bytes for the partitioned Norne mesh (a) and the refined Norne
mesh (b) when using different edge-weighting strategies

Figure 10 Communication overhead, i.e., time usage of DUNE’s copyOwnerToAll function on the Abel
(a) and Saga (b) clusters. Multiple computational nodes are used when the number of MPI-processes
exceeded 16 on Abel (a) and 40 on Saga (b)

In the plots of Fig. 9 we observe that the partitions obtained using the transmissibility
edge-weights yield significantly higher communication volume than the two other alter-
natives. This holds for both the original and the refined Norne models, and for all counts of
MPI-processes P. We also notice that although the uniform edge-weighting strategy out-
performs the logarithmic scheme, the differences in the resulting communication volume
are relatively small.

To precisely measure how the difference in communication volume affects the actual
communication overhead, we consider the execution time of the MPI data transfer opera-
tions required to perform before a parallel SpMV. The data transfer operations are imple-
mented in the DUNE function copyOwnerToAll. In Fig. 10 we present the execution
time of copyOwnerToAll related to the original and refined Norne meshes on the Abel
and Saga clusters, corresponding to the communication volumes shown in Fig. 9.

The plots in Fig. 10 demonstrate that using transmissibility edge-weights yields larger
communication overhead than the uniform and logarithmic alternatives on both the Abel
and Saga clusters. The relatively high execution time of copyOwnerToAll, resulting
from the transmissibility edge-weighted partitioning scheme, can partially be explained
by the communication volume displayed in Fig. 9. However, the copyOwnerToAll ex-
ecution time is also affected by the hardware. For example, the jump in execution time
between P = 16 and P = 32, observed in Fig. 10a, occurs when we start using two instead
of one computational node, and there is thus inter-node communication over the network.
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Figure 11 Total number of BiCGStab iterations to run the Norne black-oil benchmark case for three different
partitioning strategies and varying numbers of MPI-processes

A similar jump in execution time is not observed in Fig. 10b on the Saga cluster between
P = 40 and P = 80, because the Saga interconnect is better than the Abel interconnect
(100 Gbits vs. 56 Gbits).

5.3.2 Numerical and overall performance
We can find the impact of the edge-weighting schemes on Flow’s numerical performance
by looking at the total number of Block-Jacobi/ILU0 preconditioned BiCGStab iterations
needed to complete each simulation of the original Norne benchmark case. This iteration
count is displayed in Fig. 11 for the three edge-weighting strategies.

One interesting finding from Fig. 11 is that the transmissibility weighted partitioning
strategy can keep the number of BiCGStab iterations almost completely independent of
number of subdomains. It means that the transmissibility edge weights are indeed good
for the convergence of the parallel Block-Jacobi preconditioner. On the opposite side, the
uniform edge-weighting scheme leads to a large increase in the BiCGStab iterations, when
the number of subdomains is large. This is contrary to its ability of keeping the commu-
nication overhead low. The logarithmic transmissibility edge-weighting scheme seems a
good compromise, which is confirmed by Fig. 12 showing the total simulation time.

In Fig. 12 we observe that simulations using the logarithmic edge-weight strategy out-
performs simulations using the transmissibility and uniform edge-weights for all numbers
of processes. Although significant, the improvements achieved by logarithmic weights in
comparison to transmissibility weights are modest in absolute terms. However, the rela-
tive improvement in execution time increase with the number of processes involved. For 2
processes we observe a 4.7% reduction in simulation execution time. For 48 processes the
reduction is 24.5%. The BiCGStab iterations count required to complete the simulation of
the Norne case is significantly higher when using logarithmic and uniform edge-weights
instead of transmissibility edge-weights, especially when using more than 16 processes.
Despite higher iteration counts, logarithmic and uniform edge-weights yield equally good
or better performance than transmissibility edge-weights. There are two reasons for this.
First, as demonstrated in Fig. 10, using logarithmic and uniform edge-weights results in
lower communication overhead, which results in lower execution time per BiCGStab it-
eration. Second, the uniform and logarithmic edge-weights result in a lower number of
per-process ghost cells. This has a positive impact on system assembly performance.
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Figure 12 Overall time usage of the parallel Flow reservoir simulator when applied to the Norne benchmark
case, measured on the Abel cluster. Beyond 16 MPI-processes, the simulations were conducted on multiple
computational nodes

Figure 13 Execution time (a) and iteration count (b) of the Flow reservoir simulator when applied to the
refined Norne benchmark case on the Saga cluster. Beyond 40 MPI-processes the simulations were
conducted on multiple computational nodes

We also notice little or no reduction in execution time beyond 48 processes for all edge-
weighting strategies. From P = 64 to P = 128 we even see an increase in simulation exe-
cution time. This is not unexpected, because at this point the mesh partitioning produces
an average of only 44,420/128 ≈ 347 cells per process, which correspond to around 1041
DoFs. When DoFs per process reaches this point we are beyond the strong scaling limit,
so adding more hardware resources yields no benefit.

Performance results for the refined Norne model, measured on the Saga cluster, are
displayed in Fig. 13. Here, we have used P = 2, 4, 8, 10, 20, 40 MPI-processes on a single
compute node, as well as P = 80, 120, 160, 200, 240 MPI-processes on two to six nodes.
Execution times are presented in Fig. 13a and BiCGStab iterations in Fig. 13b.

The results for the refined Norne model attained on the Saga cluster, displayed in Fig. 13,
are similar to the Norne results on the Abel cluster. Transmissibility edge-weights yield
better linear solver convergence than the logarithmic and uniform alternatives, but the
overall performance improves when using logarithmic and uniform edge-weights. We ob-
serve that simulations ran with logarithmic edge-weights had the lowest execution time
for all number of MPI-processes except P = 2 and P = 8. The improvement over pure trans-
missibility edge-weights again appears quite modest. However, the benefit increases with
the number of processes. For P = 2, 4 and 8 logarithmic transmissibility edge-weights yield
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a 1.3%, 9.1% and 3.6%, reduction in execution time, while for P = 80, 120 and 160 the im-
provement is respectively 40.1%, 29.5% and 47.6%.

In Fig. 13a we observe an expected diminishing parallel efficiency for an increasing num-
ber of MPI-processes. Simulation execution time increases for all edge-weight schemes
between 200 and 240 processes. At P = 240 there is around 1500 cells and 4500 DoFs per
process, and we have reached the strong scaling limit.

5.4 Comparing Flow with industry-standard simulators
The Norne model exhibits several features rarely found in academically available data sets.
It is therefore interesting to compare the performance of the improved Flow simulator,
when applied to Norne, with commercial alternatives. We consider two industry-standard
simulators, Eclipse 100 version 2018.2 and Intersect version 2019.1. For our experiments
Eclipse and Intersect were used in their default configurations. All simulations presented
in this subsection were done on a dual socket workstation with two Intel E5-2687W pro-
cessors with a total of 16 cores available. The system has 128 GB of memory, which was
sufficient for all simulations. The CPUs have a base frequency of 3.1 GHz and a turbo
frequency rating of 3.8 GHz. The operating system was Red Hat 6.

We should note that the three simulators have different numerics internally. Unfortu-
nately, only Flow has open source code, so we cannot investigate the implementation de-
tails of the other two. We refer the reader to the publicly available information on the nu-
merics of the two proprietary simulators. While mpirun is handled internally by Eclipse
and Intersect, we use mpirun directly for parallel simulations with Flow. The only other
command-line option used by mpirun is -map-by numa. This option is particularly im-
portant for runs with two processes, since it ensures that the two are distributed on dif-
ferent sockets, taking advantage of cache and memory bandwidth on both. Without the
option, the runtime may put both MPI processes on the same NUMA-node. Results from
the previous subsection have shown that the parallel Flow simulator works best with log-
arithmic transmissibility edge-weights for the Norne case. The Flow simulation results
presented in this subsection therefore use the logarithmic transmissibility edge-weighting
scheme.

The MPI implementation in Eclipse is simplistic. According to the documentation it
simply does domain decomposition by dividing the mesh cells evenly along one axis di-
mension. Nevertheless, for some models (the Norne model is actually one of them) this
works well.

The comparison in parallel performance between Flow, Eclipse and Intersect on the
Norne benchmark case is presented in Fig. 14. In this plot we also include results from
simulations where multithreading is activated with two OpenMP threads per MPI pro-
cess for Flow and Intersect. Multithreading is not activated when 16 MPI-processes is used,
because of a lack of remaining hardware resources.

The results presented in Fig. 14 show that the parallel Flow simulator outperforms
Eclipse and Intersect, for P ≥ 4. Although Eclipse is faster than Flow for serial runs, Flow
scales better than Eclipse on the Norne model. Flow achieves a speedup of 7.6 for P = 16
compared to Eclipse’s speedup of 4.4. Intersect performs rather poorly on Norne, but it
scales better than Eclipse. Activating multithreading yields improved performance for
both Flow and Intersect.
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Figure 14 Execution time (in seconds) of Flow, Eclipse and Intersect on the Norne benchmark case. We
include results for Flow and Intersect simulations where multithreading with two OpenMP threads per
MPI-process is activated

6 Related work
Because of the demand for large-scale reservoir simulations in the petroleum industry,
there exist several commercial and in-house simulators that are able to take advantage of
parallel computing platforms. Examples include the Saudi Aramco POWERS [19–21] and
GigaPOWERS [22] simulators, which are able to run simulations on reservoir grids with
billions of cells.

Graph partitioning is often used to enable parallel reservoir simulation [23–26]. How-
ever, no reservoir simulation specific considerations were made in these cases. In [27] the
authors suggest two guiding principles for achieving good load balancing when perform-
ing mesh partitioning for thermal reservoir simulation. First, grid cells and simulation
wells should be evenly distributed between the processors. Second, if faults are present in
the reservoir, they should serve as subdomain boundaries between the processes.

In the PhD thesis [28] a mesh partitioning scheme based on edge-weighted graph par-
titioning is described. The edge weights are formed based on the transmissibility on the
interface of the cell blocks in the reservoir mesh. Additionally, the presence of wells in
the reservoir is accounted for by modifying the partitioning graph. In [29] the authors
derive similar strategies for partitioning non-uniform meshes in the context of compu-
tational fluid dynamics. A graph partitioning approach with edge-weights corresponding
to the cell face area is implemented. The aim of this approach is to improve solver con-
vergence, by accounting for the coefficient matrix heterogeneity introduced by the non-
uniform mesh. The authors of [29] do not only focus on how this edge-weighted approach
can affect the numerical performance, but also consider measures of partitioning quality,
such as edges cut and number of processor neighbors. Despite poorer partitioning quality,
the edge-weighted graph partitioning scheme gave the best overall performance.

Several attempts at incorporating coefficient matrix information into the partitioning
of the linear systems have been made [8, 9, 30–32]. In [8] the authors add coefficient-
based edge weights to the partitioning graph, and demonstrate improved numerical per-
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formance in comparison with standard non-weighted schemes. The previously mentioned
paper [9] presents a spectral graph partitioning scheme that outperforms standard graph
partitioners, even with weighted edges, for symmetric positive definite systems with het-
erogeneous coefficients.

7 Conclusion
In this paper, we have given a detailed description of the domain decomposition strategy
used to parallelize the simulation of fluid flow in petroleum reservoirs. We proposed an
improved parallel implementation of the linear solver based on a local “ghost last” reorder-
ing of the grid cells. We also investigated the use of edge-weighted graph partitioning for
dividing the reservoir mesh. A new edge-weighting scheme was devised with the purpose
to maintain a balance between the numerical effectiveness of the Block-Jacobi precondi-
tioner and the communication overhead.

Through experiments based on the Norne black-oil benchmark case, we showed that
the ghost cells make up an increasing proportion of the cells in the decomposed sub-
meshes when the number of processes increases. Further we found that removing non-
contributing calculations related to these ghost cells can give a significant improvement
in the parallel simulator performance.

For the Norne black-oil benchmark case, which has extremely heterogeneous petro-
physical properties, using edge-weights directly derived from these properties can have
negative consequences for the overall performance. Although this approach yields satis-
factory numerical effectiveness, it does not make up for the increase in the communication
overhead. The large communication overhead associated with the default transmissibility-
weighting scheme is due to poor partitioning quality, in particular with respect to the
communication volume and number of messages. The scaled logarithmic transmissibility
approach, which also uses non-uniform edge-weights, yields a much better partitioning
quality. Even though the numerical effectiveness due to the logarithmic scheme may be
lower than the transmissibility weighted scheme, it can still result in a better overall per-
formance.
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