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1 Introduction

Soft sensors (or software sensors) use mathematical or statistical models to enrich the in-
formation measured by actual online sensors and offline sources such as laboratory data
[1-3]. Soft sensors synthesise the information from physical sensors and recorded data to
perform a number of tasks including the reconstruction of a field (e.g., temperature) from
sample measurements and the estimation of quantities that cannot be measured directly.
Another important task of soft sensors is that of process monitoring whereby the sensor
detects when the process deviates from standard operating conditions. Techniques used
to create the models driving soft sensors include partial least squares [4], artificial neural
networks [5], support vector machines [6], principal component analysis [7], and stepwise
regression [8], the technique used in this study. In the past, soft sensors have been applied
to several industrial crystallisation processes including paracetamol [9], ammonium sul-
phate [10], sugar [11] and terephthalic acid [12].

The Bayer process is used to produce a white sandy type material called aluminium
oxide (or alumina) which is a critical component in the production of aluminium. In this
paper, we report the construction of a soft sensor for a critical alumina quality parameter:
the strength of alumina crystal conglomerates refined from bauxite by the Bayer process.
Process conditions at a particular time impact the quality of the alumina crystals five days
into the future. Thus, based on a range of daily process measurements, the sensor is used
to predict product quality five days in advance. Critically, the sensor is also used to forecast
the amplitude and duration of a departure and return to a tolerable quality level.

The outline of this paper is as follows. In Section 2 an overview of the Bayer process
and the related industrial case study is given. Section 3 describes the main dataset used to

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

L]
@ Sprlnger vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and

indicate if changes were made.


http://dx.doi.org/10.1186/s13362-017-0037-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13362-017-0037-9&domain=pdf
http://orcid.org/0000-0003-0702-2678
mailto:vcregan@crm.cat

Cregan et al. Journal of Mathematics in Industry (2017) 7:7 Page 2 of 6

construct, and validate the soft sensor. In addition, we highlight the process variables that
were included in the initial model. A description of the stepwise regression algorithm used
by the soft sensor is provided in Section 4. A comparison of the model with actual process
data is presented in Section 5. Finally, some concluding remarks are given in Section 6.

2 The Bayer process and an industrial case study

RUSAL Aughinish Alumina Ltd (RAAL), located in southern Ireland, is Europe’s largest
alumina refinery. RAAL use the Bayer process to extract alumina from a reddish brown ore
called bauxite. Initially, the bauxite is crushed and dissolved in a sodium hydroxide-water
solution at 250°C under pressure leading to the hydrated form of alumina, alumina trihy-
drate, in solution. Undesirable insoluble bauxite impurities are filtered out of the solution.
After filtration, the liquor is seeded with alumina crystals to provide nucleation sites. The
first stage of precipitation is known as agglomeration, and its purpose is to provide the
necessary conditions to enable the cementing together of fine seed particles to produce
strong agglomerates. The liquor is then cooled which leads and crystal growth in the now
supersaturated solution. The time spent in this crystallisation stage accounts for up to 40
hours of the approximate total 50 hour process. The high residence time in the industrial
crystallisers is due to the extremely slow crystallisation rate of (i.e., linear growth rate of
1-2 um/hour). After precipitation, the alumina trihydrate is calcined at 1,050°C to remove
both the free moisture and chemically bound water. In contrast to precipitation, calcina-
tion is a much shorter process and is typically of the order of minutes. Finally, following
calcination, the alumina crystals are stored in a silo for 4-5 days before being shipped.
Crystals which do not meet the required final size are reintroduced into the precipitation
stage of the process where they are used as seeds to assist future crystal growth.

A key concern of RAAL is the quality of the final product, and in particular the alumina
strength which is a combination of two quality parameters, namely the alumina attrition
index and the percentage of particles less than a particular threshold. The manufactur-
ing process is monitored continuously by RAAL via online sensors, which leads to a large
quantity of daily data measurements. RAAL also have extensive historical process and lab-
oratory data. RAAL required a robust model that could forecast accurately the alumina
strength exiting calcination, and predict the amplitude or duration of a departure and re-
turn to a tolerable quality level. The soft sensor used to achieve the above tasks is discussed
in Section 4.

3 Dataset

Due to the scale of RAAL's plant and the complexity of the Bayer process, one of the ma-
jor initial challenges was to decide on which process measurements should be included in
the study. Ultimately, we decided on a system consisting of 62 preliminary process vari-
ables that were selected using a priori knowledge of the process from RAAL technicians.
Whilst the exact details of the preliminary variables cannot be disclosed due to confiden-
tiality reasons, we can provide a brief overview of the variables and the reasoning for their
inclusion in the initial model. The preliminary predictors included 55 precipitation vari-
ables ranging from conditions upon entering the initial agglomeration tank to exiting the
final growth tank. RAAL process engineers suggested that variables pertaining to particle
size in precipitation have the most significant impact on the final product quality. Thus,
particle size predictor make up to 70% of the precipitation variables, and describe vari-
ous aspects of the particle size distribution, notably the median size and the percentage of
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particles above and below specific size thresholds. In addition, we included several vari-
ables relating to the conditions in agglomeration and the supersaturation during crystal
growth. We also included one indicator (or dummy) variable to indicate significant system
events (e.g., plant shutdown, equipment problem, etc.). Finally, we included six calcination
variables (e.g., air flow rate, calcination rate).

The representative dataset used to construct the soft sensor consisted of daily measure-
ments from 18 months worth of plant data, which leads to approximately 650 daily mea-
surements. The data was collected using various techniques. Several process parameters
(e.g., temperature and supersaturation) were measured continuously using online sensors
at different points in the manufacturing process, and the daily mean was used. Variables
pertaining to the particle size distribution were obtained via laboratory samples extracted
from the system. Typically, samples were analysed on the day they were collected, and
then used as that day’s daily value for the related variable. In some instances, two samples
were taken and the average was used. Missing data was not a significant issue as only a
small percentage of the data values were not recorded. Where values were not observed
we simply computed the mean of the surrounding values, and treated it as the observed
value for the missing data. Outliers were also not a serious problem. Where unusual values
were observed they usually occurred together and across multiple variables reflecting sig-
nificant upcoming system events. As RAAL were primarily interested in predicting these
events, we hence did not use any statistical techniques to deal with outliers.

The algorithm uses 570 of the 650 daily measurements as a training set to construct and
refine the model. The remaining data points are used as a test set to assess the predictive

power of the resulting model.

4 Model description

The soft sensor uses an automated stepwise regression algorithm to predict quality. The
algorithm systematically chooses the process predictors by using a particular selection
criterion, namely the coeflicient of determination (or R-squared). The algorithm is imple-
mented in the numerical package Octave [13], and consists of the following steps.

Firstly, the algorithm reads in the predictor data (see Section 3). In the first iteration the
training data is split into two parts: data from odd numbered days (1,3,5,...) is used to
fit the model - fitting data, and data from even numbered days (2,4, 6,...) is used to test
the quality of the fit - testing data. The model successively adds variables to the linear re-
gression model. When a new variable is added, a multiple linear regression (MLR) model
including that variable is calculated from the fitting data, and an R-squared value is calcu-
lated from applying that model to the testing data. Once the effect of adding all potential
variables has been considered the new model with the highest R-squared is compared with
the previous best model. If the R-squared of the best new model is better than the previ-
ous model by a factor of 1 + tol or higher (where tol ~ 1073) then the variable added to
the new model is retained in the model. Thus, variables are only added to the model if the
model calculated from the fitting data improves the fit to the testing data. This increases
the possibility that the model will predict the future rather than merely describe the past.
Hence, the algorithm systematically arrives at the best possible model, given the available

set of data, based on increasing R-squared values.
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Figure 1 Model prediction. (a) Comparison of measured alumina strength exiting calcination (red line) with
stepwise regression strength model (black line). The data to the left of the vertical blue line is used to
construct the model. The curves to right of the blue line show the predictive power of the model. (b) Plot of
measured strength against stepwise regression model, where the black, magenta and red points correspond
to the training set, testing set and predicted values, respectively. Strength values are not included in graphs
due to confidentiality concerns.

5 Results

The forecasting ability of the algorithm was ascertained by comparing the predicted values
to the test dataset of 80 measured plant values. Figure 1 compares the measured alumina
strength exiting calcination against the forecast of the stepwise regression model. In Fig-
ure 1(a) the curves to the left of the vertical blue line represent the training data used to
build the model, while the curves to the right of line indicate the test dataset used to as-
sess the predictive power of the model. Figure 1(b) is the measured strength against the
model for the entire dataset. The closer the red points are to the diagonal blue line, the
better the model. Both figures indicate the good performance of the soft sensor model
when compared to actual plant data.

After 40 iterations of the algorithm, the final regression model contains 22 variables.
As anticipated by RAAL technicians, final product quality is strongly dependent on the
crystal size distribution. Thus, the majority of variables in the model are for the percentage
of particles above and below certain size limits at various stages of the manufacturing
process. In particular, final quality is inversely proportional to the percentage of particles
above and below certain in-house quality threshold values. Thus, if the model predicts
that quality will be off specification five days into the future, RAAL can adjust conditions
in precipitation accordingly. In addition to particle size, the variable to indicate significant
system events was also included in the model. As expected, there was a strong positive
correlation between final quality and the system event parameter. RAAL have less control
over this variable. In the case of a plant shutdown, RAAL can modify their process to
respond to the changes resulting from the shutdown. However, they have less control of
the system for unforeseen events such as an equipment malfunction.

Critically, the soft sensor has been shown to detect when the Bayer process at RAAL
deviates from standard operating conditions. As an example, for the current dataset the
model captures the sharp spike associated with a significant plant event after 600 days in
Figure 1(a). We note that for the dataset in question, the initial R-squared value is close to
0.38, and upon completion of the algorithm R-squared is approximately 0.75.
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6 Conclusions

In this study, a soft sensor for measuring the quality of alumina at the end of the Bayer
process has been developed. The soft sensor uses actual plant measurements from online
sensors and laboratory data to calculate the final alumina strength. The soft sensor’s un-
derlying model consists of an automated stepwise linear regression methodology to find
the relevant predictor variables.

Given current process conditions, the sensor is very successful at predicting product
strength five days into the future with R-squared typically of the order 0.75. The sensor is
now employed by RAAL to predict final product strength and to forecast deviations from
standard operating conditions. The algorithm has superseded, and replaced, RAAL'’ pre-
vious statistical forecasting tool. The implementation of the model in the plant demon-
strates its practicality as a soft sensor for product strength. Moreover, the algorithm can
be easily modified to read in different predictors, and dependent variables, and thus has
the potential to be applied to any industrial process involving a large set of predictors.
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