
Neves et al. Journal of Biomedical Semantics           (2023) 14:13  
https://doi.org/10.1186/s13326-023-00292-w

RESEARCH Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of
Biomedical Semantics

Automatic classification of experimental 
models in biomedical literature to support 
searching for alternative methods to animal 
experiments
Mariana Neves1*, Antonina Klippert1,2, Fanny Knöspel1, Juliane Rudeck1, Ailine Stolz1, Zsofia Ban1, 
Markus Becker1, Kai Diederich1, Barbara Grune1, Pia Kahnau1, Nils Ohnesorge1, Johannes Pucher1, 
Gilbert Schönfelder1,3, Bettina Bert1 and Daniel Butzke1 

Abstract 

Current animal protection laws require replacement of animal experiments with alternative methods, whenever such 
methods are suitable to reach the intended scientific objective. However, searching for alternative methods in the sci-
entific literature is a time-consuming task that requires careful screening of an enormously large number of experi-
mental biomedical publications. The identification of potentially relevant methods, e.g. organ or cell culture models, 
or computer simulations, can be supported with text mining tools specifically built for this purpose. Such tools are 
trained (or fine tuned) on relevant data sets labeled by human experts. We developed the GoldHamster corpus, 
composed of 1,600 PubMed (Medline) articles (titles and abstracts), in which we manually identified the used experi-
mental model according to a set of eight labels, namely: “in vivo”, “organs”, “primary cells”, “immortal cell lines”, “inverte-
brates”, “humans”, “in silico” and “other” (models). We recruited 13 annotators with expertise in the biomedical domain 
and assigned each article to two individuals. Four additional rounds of annotation aimed at improving the quality 
of the annotations with disagreements in the first round. Furthermore, we conducted various machine learning exper-
iments based on supervised learning to evaluate the corpus for our classification task. We obtained more than 7,000 
document-level annotations for the above labels. After the first round of annotation, the inter-annotator agreement 
(kappa coefficient) varied among labels, and ranged from 0.42 (for “others”) to 0.82 (for “invertebrates”), with an overall 
score of 0.62. All disagreements were resolved in the subsequent rounds of annotation. The best-performing machine 
learning experiment used the PubMedBERT pre-trained model with fine-tuning to our corpus, which gained an over-
all f-score of 0.83. We obtained a corpus with high agreement for all labels, and our evaluation demonstrated that our 
corpus is suitable for training reliable predictive models for automatic classification of biomedical literature according 
to the used experimental models. Our SMAFIRA - “Smart feature-based interactive” - search tool (https://​smafi​ra.​bf3r.​
de) will employ this classifier for supporting the retrieval of alternative methods to animal experiments. The corpus 
is available for download (https://​doi.​org/​10.​5281/​zenodo.​71522​95), as well as the source code (https://​github.​com/​
maria​nanev​es/​goldh​amster) and the model (https://​huggi​ngface.​co/​SMAFI​RA/​goldh​amster).
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Introduction
Current animal welfare legislation, like the Directive 
2010/63/EU1 from the European Union (EU) and the US 
Animal Welfare Act2, allow to perform an animal experi-
ment addressing a particular research question, only if 
no alternative method is already available. Therefore, in 
the process of obtaining approval for an animal experi-
ment, researchers are required to carry out a comprehen-
sive search to ensure that an alternative method is not yet 
available. This is a time consuming and complex task that 
involves many queries to databases with references to sci-
entific publications, and careful screening of candidate 
publications.

There are two important aspects that should be evalu-
ated by researchers when screening for suitable literature: 
(i) whether the candidate publication’s scientific objective 
is the same as the one that is planned; and (ii) whether 
the candidate describes an experimental model other 
than a living (vertebrate) animal. The later complies with 
the principle of “replacement”, as part of the 3R principles 
[1]. These principles provide a framework for the devel-
opment of alternatives methods that are able to replace 
an animal experiment, reduce the number of animals, or 
refine the experiments to increase the welfare of animals. 
In this work, we focus on the second aspect above, i.e., 
to support finding experimental models other than living 
animals. To date, there is no tool that supports the search 
for alternative methods in the literature.

In order to identify whether an experimental approach 
described in a publication complies with that aspect, the 
first step is to identify the type of experimental model 
that is used. While the EU Directive protects all verte-
brate animals (mammals, birds, fish, etc.), it does not pro-
tect invertebrates, except cephalopods (e.g. octopuses). 
Therefore, invertebrate animals represent alternative 
models, and methods based on such animal models are 
considered alternative methods. Moreover, most in vitro 
methods (i.e. cell cultures) comply with the replacement 
principle, and so do experimental computer simulations 
(in silico methods). So-called ex  vivo methods still rely 
on animals to provide organs or tissues for subsequent 
experiments, but no live animal experiment is performed, 
so such methods are not considered animal experiments 
for the purposes of Directive 2010/63/EU.

The aim of this work is to develop a computational 
method for automatic classification of publications with 
respect to the experimental model. Such a classifica-
tion is an important part of a tool specialized in finding 

alternative methods, and it will be included in our cor-
responding SMAFIRA (SMArt Feature based Interactive 
RAnking) Web Tool, which is currently being developed 
in our research group.

Since more than one experimental model can be 
described in experimental biomedical publications, we 
tackled the task as a multi-label document classifica-
tion, i.e., the automatic assigning of one or more labels 
to a textual document. Our classification scheme consists 
of eight labels, and a group of 13 individuals with bio-
medical expertise annotated a set of 1,600 PubMed3 arti-
cles (titles and abstracts). We chose to rely on PubMed 
because it is the largest freely available database with ref-
erences to biomedical publications and it provides Web 
services for querying and retrieving articles4. We experi-
mented with different classifiers to evaluate their abil-
ity to classify the experimental models described in the 
abstracts. Throughout the paper, we mention “articles” or 
“abstracts” when referring to the titles and abstracts.

In summary, these are the contributions of this 
publication:

•	 The annotation of a novel corpus of scientific 
abstracts in which we manually assigned the used 
experimental model. This is also a new benchmark 
corpus for multi-class, multi-label text classification, 
a task for which few corpora from the biomedical 
domain are currently available.

•	 Python scripts for the machine-learning methods 
that we experimented with using our corpus.

This article has the following structure: Section “Related 
work” describes related work for the identification of 
the used experimental model in publications. In Sec-
tion “GoldHamster corpus”, we describe the development 
of our corpus, including the selection of the labels, the 
retrieval of the documents, and the rounds and qual-
ity assessment of annotations. We explain the machine 
learning methods that we employed in our experiments 
in Section  “Methods”. Section  “Results” presents the 
results that we obtained, i.e., statistics of the annotated 
corpus and the performance of the methods on the cor-
pus. Finally, we discuss some interesting aspects of our 
corpus and experiments in Section “Discussion”.

Related work
Some previous attempts aimed to identify alternative 
methods (or 3R-relevant methods) in PubMed. Among 
others, they have relied on curated lists of relevant MeSH 

1  https://​eur-​lex.​europa.​eu/​legal-​conte​nt/​EN/​TXT/?​uri=​CELEX:​32010​
L0063
2  https://​www.​nal.​usda.​gov/​animal-​health-​and-​welfa​re/​animal-​welfa​re-​act

3  https://​pubmed.​ncbi.​nlm.​nih.​gov/
4  https://​eutils.​ncbi.​nlm.​nih.​gov

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32010L0063
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32010L0063
https://www.nal.usda.gov/animal-health-and-welfare/animal-welfare-act
https://pubmed.ncbi.nlm.nih.gov/
https://eutils.ncbi.nlm.nih.gov
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(Medical Subject Headings) terms, for instance, to iden-
tify publications containing a method based on a cell 
culture model. ALTBIB5, i.e. the “bibliography on alterna-
tives to the use of live vertebrates in biomedical research 
and teaching”, uses this approach. ALTBIB automatically 
adds MeSH terms to the user query, e.g., the terms “in 
silico” and “QSAR” when searching for in silico meth-
ods. However, such predefined search strategies quickly 
become obsolete as new and potentially relevant MeSH-
terms are continuously added to PubMed.

In addition to the various MeSH terms that can be 
used to identify certain classes of experimental methods, 
there are two terms specially designed to retrieve alterna-
tives to animal experiments as a whole, namely, “Animal 
Testing Alternatives” and “Animal Use Alternatives”. We 
have elaborated some case studies of alternatives to ani-
mal experiments in the domains of Parkinson’s disease, 
Huntington’s disease, breast cancer and stroke before [2] 
and did not identify the above mentioned specific MeSH-
terms in any of the relevant publications. Thus, relevant 
experimental models and methods may simply be missed 
when only relying on these two MeSH terms.

A recent work describes the development of a corpus 
and method for predicting alternatives to animal experi-
ments, or 3R-based literature, based on these two MeSH 
terms [3]. The authors initially collected around 4,000 
citations from PubMed associated with these terms, 
which was compared to a random set of citations of 
the same size. They relied on the word2vec algorithm 
to reveal meaningful patterns, which are then used in a 
random forest model. However, more details about this 
research is not yet available, and neither are the data nor 
the methods.

To the best of our knowledge, there is no manu-
ally annotated corpus that can be used for supervised 
machine learning and the automatic classification of 
biomedical publications according to used experimental 
model. However, there are databases that can help with 
the identification of alternatives to animal experiments. 
For instance, the Non Animal Technologies (NAT) data-
base6 provides a collection of non-animal technologies 
that is available for download from their Web site. The 
current state of the database comprises 1,780 entries (as 
of June/2023) and it includes the identification of the type 
of method or model, e.g. “human studies”, “epidemiology”, 
“in silico”, “artificial intelligence”. Such databases, how-
ever, are very limited in their coverage, since collection 
of data essentially requires human efforts. Moreover, not 
all entries have a link to a publication, and the database 

is not transparent about the selection of the proposed 
methods and who is responsible for this procedure. Fur-
ther, we are also aware of the 3Ranker7, which provides a 
list of curated alternatives to animal experiments. As of 
June/2023, the tool contains 121 curated publications.

Another important collection of non-animal models is 
the reports that the EU Commission regularly releases 
for some specific topics. As of June/2023, we are aware 
of seven reports for the areas of breast cancer [4], res-
piratory tract diseases [5], neurodegenerative diseases 
[6], immuno-oncology [7], immunogenicity testing for 
advanced therapy medicinal products [8], cardiovascular 
diseases [9], and autoimmune diseases [10].

The corresponding data for each report can be down-
loaded as a spreadsheet, and similar to the NAT database, 
it includes information about the methods or mod-
els. The collected models, however, are predominantly 
human-based and thus miss a great portion of candidate 
alternative models that based upon animal tissues and 
cells. In addition, these reports describe advanced non-
animal methodologies that do not necessarily replace 
existing animal-based methods.

The annotations in our corpus overlap with some pre-
vious corpora that addressed named-entity recognition 
(NER), for instance, of species [11, 12], anatomical parts 
[13], or cell lines [14]. State-of-the-art methods for NER 
are mostly based on the transformers architecture and a 
pre-trained model, e.g., BioBERT [15] or PubMedBERT 
[16], and a fine-tuning on NER-specific corpora. Fur-
ther, some NER tools are readily available for use, such as 
PubTator [17] and BERN2 [18]. However, as opposed to 
usual NER tasks, we do not aim to identify all mentions 
of these entities, but focus only on cases that occur in the 
context of the used model.

Furthermore, not all mentions of vertebrate animals 
necessarily correspond to an in  vivo experiment, i.e. 
using living animals. If the animal was killed in advance 
for the removal of organs, tissues, or some cells, such an 
approach is not considered an animal experiment accord-
ing to the Directive 2010/63/EU. Within the classification 
schema that we propose, the depicted situation alludes to 
different labels: “organs” and/or “primary cells”. Finally, 
we are not aware of previously developed NER tools for 
the extraction of in silico methods, which is one of the 
labels that we consider.

Comprehensive ontologies and thesauri for the bio-
medical domain, such as the MeSH terms, address a wide 
range of concepts related to some of the labels that we 
consider. For example, there are MeSH terms for “pri-
mary cell culture” or “cell line”. Anyway, these terms do 

5  https://​ntp.​niehs.​nih.​gov/​go/​altbib
6  https://​www.​nat-​datab​ase.​org/ 7  https://​www.​open3r.​org/

https://ntp.niehs.nih.gov/go/altbib
https://www.nat-database.org/
https://www.open3r.org/
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not differentiate between the source of biological materi-
als. The respective labels used in the first version of our 
corpus designate materials from vertebrate animals only. 
Other biological materials, used in experimental biomed-
ical research, are labeled as “human” or “invertebrate”, 
depending on the source. The basic intention behind our 
labeling is to allow differentiation between sources and 
to make a clear distinction between experiments using 
living animals (“in vivo”) and experiments using materi-
als from animals (“ex vivo”). The MeSH-term “animals” 
does not allow for such a clear distinction. Therefore, 
we cannot make use of MeSH terms as a straightfor-
ward approach to identify the used experimental model. 
Indeed, a preliminary analysis of the correlation of our 
labels with the respective MeSH terms concluded that 
a simple mapping between them is not feasible (cf. Sec-
tion “Correlation with the initial database queries and the 
corresponding MeSH terms”).

We are only aware of one ontology which was built 
specifically for the 3R domain [19], namely the one devel-
oped to support the Go3R search engine [20]. Go3R was 
one of the first attempts to develop a tool for finding 
alternative methods to animal experiments. Its ontol-
ogy was divided in 28 branches and contained more than 
16,000 concepts. The tool utilized a maximum entropy 
algorithm, which was trained on a collection of 3,000 
manually annotated documents, to predict whether an 
article was 3R-relevant. However, the tool is no longer 
available, and the methods, the training data, and the 
ontology were never released.

GoldHamster corpus
We annotated 1,600 PubMed abstracts to support clas-
sification according to the experimental models they 
use. In this section, we describe: (a) how we defined the 
annotation scheme, (b) the queries we used to search for 
abstracts, and (c) details of the annotation process.

Definition of the annotation schema
In order to display the 3R strategies (replace, reduce, 
refine), we initially thought of three groups representing 
the degree of invasiveness of an experiment: (i) animal 
experiments that take place in a living organism (so called 
in vivo experiments in scientific articles); (ii) experiments 
taking place in isolated organs/tissues explants or pri-
mary cells from organisms sacrificed in advance; and (iii) 
research conducted with no need of using any laboratory 
animal or material from animals. However, the usefulness 
of these three categories for researchers is limited. There-
fore, we created eight specific labels indicating not only 
the level of invasiveness but also the species or the origin 
of material used (see overview in Table 1).

In particular, the label “human” covers all experiments 
conducted in human/patients and or in any kind of 
human material (including organs/tissues, primary cells 
and immortal cells). The label “invertebrate” refers to all 
experiments using invertebrates or invertebrate material 
(mainly flies and “worms”) - excluding cephalopods. As 
a tribute to the Directive 2010/63/EU that protects ceph-
alopods in the same way like vertebrates, our schema 
places experiments with cephalopods together with 
vertebrates. In addition, research related to vertebrates 
and cephalopods was subdivided further in the follow-
ing labels: (a) “in vivo” for live animals, (b) “organs” for 
isolated organs/tissues, (c) “primary cells” for freshly iso-
lated primary or stem cells, and (d) “immortal cell lines” 
for established cancer or immortal cell lines that can be 
ordered from cell and tissue collections, e.g., the Ameri-
can type culture collection (ATCC). The label “in silico” 
was included to indicate research using computer simula-
tions. We labeled any observational (but not experimen-
tal) study as “other”, e.g. clinical retrospective studies.

Retrieval of abstracts
Complex search strategies using MeSH (Medical Sub-
ject Headings) were devised to retrieve the abstracts 

Table 1  List of labels in the GoldHamster corpus. The annotators could assign one or more label to an abstract, or even no label at all. 
*excluding cephalopods **including cephalopodes

Label Description Examples

human humans/material “patients received a bolus injection of”

invertebrate invertebrates/material* “drosophila (se) were exposed to”

in vivo living vertebrates** “blood pressure telemetry in rat”

organs vertebrate organs/tissues “mouse isolated perfused kidney”

primary cells vertebrate primary/stem cells “Murine neural stem cells were isolated”

immortal cell lines vertebrate immortal cell lines “Hela, CHO, MDCK”

in silico computer simulations “digital simulation of food digestion”

others any other kind of experiments “retrospective studies, meta-analysis”
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and searches were performed in PubMed/MEDLINE 
(on August 20, 2019). The queries consisted of combi-
nations of MeSH-terms referring to certain experimen-
tal models and techniques (e.g. “Animals, Genetically 
Modified[MeSH] OR Animal Experimentation[MeSH] 
OR ...”) and relevant categories (e.g. “Diseases 
Category[MeSH]”) with filters (e.g. “English[lang]”). 
Such combinations then were extended to target certain 
clusters of MEDLINE-abstracts. The terms which were 
searched for cluster headings were “in vivo”, “organs and 
tissues”, “primary and stem cells”, “immortalized and 
tumor cells”, “in silico”, “invertebrates”, “humans”, “other” 
(cf. Section 1 in the supplementary material). From every 
retrieved list, the first 200 abstracts were downloaded 
and were included in the corpus. We created eight que-
ries, i.e., one for each cluster, and they yielded a com-
bined corpus of 1,600 abstracts. We provide our queries 
in the supplementary material (Section 1).

Annotation process
A group of 13 annotators carried out the annotation 
using the TeamTat tool8 [21]. All annotators have a doc-
toral degree in the field of biomedical science or are 
currently research assistants in our department. The 
annotation guideline is provided in the supplementary 
material (Section 2). The annotation process was carried 
out in two rounds: (i) round 1, namely “r1”, in which each 
of the 1,600 abstracts was annotated by two annotators, 
who were randomly selected; (ii) round 2, which was split 
into four short rounds, namely “r2.1”, “r2.2”, “r2.3”, and 
“r2.4”, in which a selected team of the annotators resolved 
the disagreements in annotations from the first round. 
We describe both rounds in details below.

First round - r1. We arranged the 1,600 abstracts in 40 
units of 40 abstracts each and assigned them to anno-
tators. Each annotator received a set of four (i.e., 160 
abstracts) to eight (i.e., 320 abstracts) units. The annota-
tors were required to highlight the applied experimental 
models, which are described in either the title or text 
of the abstract. Even though we addressed the problem 
as a text classification task, highlighting a text span was 
necessary because TeamTat does not support document-
level annotation. However, for the sake of simplicity, 
we asked the annotators to highlight only one mention 
(text span) for each label, instead of all mentions of the 
experimental model in the text. In addition, we did not 

specify which text should be highlighted, since only the 
labels were relevant. The annotators were encouraged to 
consult external resources in the Web, such as Cellosau-
rus9  [22] or ATCC​10, for the identification of the origin 
of a cell line. Finally, if the abstract did not allude to any 
experimental model, the annotators were asked not to 
assign a label to it.

Second rounds - r2.1, r2.2, r2.3, r2.4. In the second 
rounds, five selected annotators11 resolved the disagree-
ments in annotations from the first round. In this round, 
we aimed to achieve an agreement for the annotations, 
by requiring two annotations from distinct annotators for 
the labels. The selected annotators had to consider which 
of the two (anonymous) annotators in the first round was 
correct. If the annotator conceived a third opinion about 
the labels, the abstract was flagged to be removed, since 
no agreement between any two annotators was obtained. 
This phase consisted of four short rounds. For the three 
first rounds, we selected some particular disagreement 
combinations of labels from the first round. All rounds 
are listed below:

•	 r2.1: 71 abstracts in which one annotator assigned 
only the label “invertebrate”, while the other one 
assigned something else, i.e. one label other than 
“invertebrate” or multiple labels (which could also 
include “invertebrate”);

•	 r2.2: 114 abstracts in which one annotator assigned 
only the label “human”, while the other one assigned 
something else, i.e. one label other than “human” or 
multiple labels (which could also include “human”);

•	 r2.3: 148 abstracts in which one annotator assigned 
only the label “in vivo”, while the other one assigned 
something else, i.e. one label other than “in vivo” or 
multiple labels (which could also include “in vivo”).

•	 r2.4: 368 abstracts that remained.

Methods
In this section, we describe the classifiers (and additional 
semantic features) that we trained to automatically assign 
labels to abstracts.

Classifiers
We experimented with the current state-of-the-art 
approach for the biomedical natural language process-
ing (BioNLP) domain, i.e. fine-tuning a pre-trained Bidi-
rectional Encoder Representations from Transformers 

8  https://​www.​teamt​at.​org/
9  https://​web.​expasy.​org/​cello​saurus/

10  https://​www.​atcc.​org/

11  based on “reliability”, i.e. high average agreement with the other annota-
tors

https://www.teamtat.org/
https://web.expasy.org/cellosaurus/
https://www.atcc.org/
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(BERT) model [23] on our annotated corpus. We con-
sidered only models which were either specific for the 
biomedical domain or for the scientific literature. These 
pre-trained language models achieved state-of-the-art 
results for some BioNLP tasks (e.g. text classification, 
question answering, and named entity recognition) 
without requiring substantial modification in the model 
architecture [16].

We relied on the implementation of BERT in the Trans-
formers model12 for TensorFlow. In our experiments, 
we used the Adam optimizer, epsilon of 1× 10−8 and a 
decay of 0.01. We experimented with various values to 
adjust the model hyperparameters, such as learning rate, 
batch size, and the number of epochs, as later described 
in Section “Corpus evaluation”. The language models that 
we considered were the following: (a) BioBERT13 [15], (b) 
PubMedBERT14 [16], (c) SciBERT15 [24], and (d) BLUE-
BERT16 [25].

Additional semantic features
In additional to the title and text of the abstracts, we also 
considered variations of the text of the abstracts that 
was used as input to the classifiers. The text was either 
expanded with the addition of the corresponding MeSH 
terms, or reduced by considering only some particular 
parts of it. We describe these two approaches below.

MeSH terms
We assessed whether the addition of the MeSH terms to 
the text of the abstracts could boost the performance of 
the results. Our assumption is that these terms reflect 
the important content of articles. However, some of these 
terms might refer to information only present in the full 
text of articles, while our annotation was based only on 
the abstracts.

We considered all MeSH terms originally assigned 
to the articles, as well as subsets of these based on pre-
defined thresholds, i.e., we considered only the ones that 
occurred in at least a certain number of articles. There 
were 5,158 distinct MeSH terms in our corpus of 1,600 
articles. When experimenting the values of n = 10, 25, 50, 
and 100 for the threshold, i.e. occurrence of MeSH terms 
in at least “n” articles, the number of distinct terms was 
reduced to 298, 93, 38, and 15, respectively. In the sup-
plementary material (Section 3), we depict the variation 

in the number of terms per article for each of these 
thresholds. In our experiments, we concatenated the 
terms at the beginning of the text, in addition to the title 
and abstract text.

Discourse elements (sections)
We evaluated whether concentrating on only potentially 
relevant parts (sections) of the abstracts, e.g., background 
or methods, could improve the performance of the clas-
sifier. As opposed to extending the text of the articles (cf. 
MeSH terms above), we reduced the text by considering 
only some sections of the abstracts. For this purpose, we 
relied either on the original sections in PubMed or the 
ones predicted by the ArguminSci tool [26], which was 
the best performing tool for this task in our previous 
evaluation [27].

We first checked the sections as provided by PubMed 
in the structured abstracts. Out of our 1,600 articles, 
only 464 of them were structured. From these struc-
tured abstracts, we obtained 81 distinct section names. 
We considered only the ones that appeared in least in 
ten structured abstracts, and which referred to the usual 
sections in scientific publications. We provide the list of 
these sections in the supplementary material (Section 4). 
For the abstracts that were not structured, we considered 
the sections as automatically predicted by the Argumin-
Sci tool17. We restricted to a set of five labels, namely: 
“Background”, “Objective”, “Methods” “Results”, and 
“Conclusions”. We mapped these labels to the ones in the 
structured abstracts and from the ArguminSci tool (cf. 
Section 4 in supplementary material).

In our approach, we first considered the sections in 
the structured abstracts, and if not available, we used the 
ones predicted by ArguminSci. We first experimented 
with each of the sections, i.e., the experiments utilized 
only the text that was included in one particular section. 
Subsequently, we studied a combination of the sections 
which obtained a good performance in the first round 
of experiments. For all experiments, we build the text by 
concatenating the selected section(s) in the original order 
that they appear in the abstract. We did not consider the 
title in any of the experiments.

Results
In this section, we present an analysis of the manual 
annotations that we obtained for the GoldHamster cor-
pus, and the results of the experiments with automatic 
prediction of the labels.12  https://​github.​com/​huggi​ngface/​trans​forme​rs

13  https://​huggi​ngface.​co/​dmis-​lab/​biobe​rt-​v1.1
14  https://​huggi​ngface.​co/​micro​soft/​Biome​dNLP-​PubMe​dBERT-​base-​
uncas​ed-​abstr​act
15  https://​huggi​ngface.​co/​allen​ai/​scibe​rt_​scivo​cab_​uncas​ed
16  https://​huggi​ngface.​co/​bionlp/​blueb​ert_​pubmed_​mimic_​uncas​ed_L-​
12_H-​768_A-​12 17  https://​github.​com/​anlau​sch/​Argum​inSci

https://github.com/huggingface/transformers
https://huggingface.co/dmis-lab/biobert-v1.1
https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract
https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract
https://huggingface.co/allenai/scibert_scivocab_uncased
https://huggingface.co/bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12
https://huggingface.co/bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12
https://github.com/anlausch/ArguminSci
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Corpus analysis
After the first round of annotation, in which two anno-
tators screened each of the articles, we obtained 7,737 
annotations18: 1,970 for “in vivo”, 1,397 for “human”, 1,171 
for “invertebrates”, 892 for “others”, 740 for “organs”, 663 
for “in silico”, 455 for “primary cell lines”, and 449 for 
“immortal cell lines”. These values are the total of anno-
tation with duplicates, i.e. including situations in which 
two annotators agreed in assigning a certain label to an 
abstract. In addition, in 190 cases, an annotator did not 
assign any of the labels to an abstract. From the 1,600 
abstracts, 899 had a full agreement, i.e. exactly the same 
sets of labels were assigned by both annotators. The 
remaining 701 abstracts without full agreement were 
reviewed in the additional rounds (r2.1, r2.2, r2.3, and 
r2.4).

We summarize the number of abstracts for label that 
we obtained after each of the annotations rounds in 
Table  2. We show the impact of each additional round 
as compared to the previous column. Furthermore, we 
present results when considering all annotations (“All”) 
and when only considering the ones for which there 
was an agreement between two annotators (“Agree”). As 
expected, when full agreement is considered, the number 
of articles with any annotation reduces, i.e., from 1,600 to 
1,168 for the first round. While only 899 abstracts had a 
full agreement, 1,168 abstracts had an agreement for at 
least one of the labels. Further, the number of abstracts 
with agreement increases after the annotation of the 

additional rounds, namely to: 1,189 (after r2.1), 1,257 
(after r2.2), 1,289 (after r2.3), and 1,436 (after r2.4). For 
all rounds, the number of documents without any anno-
tation remained equal to 25.

In the four additional rounds, the selected annota-
tors received the anonymous annotations from the two 
annotators in the first round and were required to decide 
which annotation is the correct one. If no first round 
annotation was judged correct, the respective abstracts 
were removed from the corpus. We removed the follow-
ing number of abstracts from the additional rounds: 11 
(from 71) in r2.1, 20 (from 114) in r2.2, 23 (from 148) 
in r2.3, and 77 (from 368) in r2.4. We present the list of 
PMIDs in the supplementary material (Section 5).

In Table 3 we show the level of agreement between the 
annotators with respect to individual labels in terms of 
the kappa coefficient ( κ ) [28]. Regarding the first round, 

Table 2  Statistics of the corpus in terms of the number of abstracts per label. We present statistics for all labels (cf. 3.1), rounds of 
annotation (cf. 3.3) and when considering all annotations (All, left side) or only the one for which two annotators agree (Agree, right 
side). The comparison for the rounds in terms of equality (=), increase ( 

�
 ), or decrease ( 

�
 ) is with respect to the previous column 

(round), i.e. after the addition of the corresponding round. The values do not include duplicates, i.e. a label is only counted once if 
there is an agreement for it

Labels r1 + r2.1 + r2.2 + r2.3 + r2.4
All/Agree All/Agree All/Agree All/Agree All/Agree

invertebrates 263/191 14
�

/15
�

=/= 2
�

/= 6
�

/6
�

in_vivo 483/338 1
�

/1
�

=/1
�

19
�

/19
�

7
�

/50
�

in_silico 216/124 4
�

/3
�

2
�

/3
�

1
�

/7
�

28
�

/20
�

human 325/165 1
�

/= 37
�

/37
�

4
�

/2
�

23
�

/20
�

organs 261/128 3
�

/= =/= 47
�

/11
�

28
�

/22
�

immortal_cell_lines 160/55 2
�

/= 23
�

/5
�

2
�

/6
�

5
�

/38
�

primary_cells 189/59 6
�

/= 1
�

/= 22
�

/6
�

37
�

/29
�

others 402/130 23
�

/5
�

25
�

/35
�

18
�

/7
�

44
�

/57
�

none 165/25 11
�

/= =/= =/= 89
�

/=

total docs 1,600/1,168 =/21
�

=/68
�

=/32
�

=/147
�

Table 3  Agreement in terms of Cohen’s ( κ ) between annotators 
for the first round, for each label (cf. 3.1), and for the overall 
corpus. An agreement is moderate if the ( κ ) is higher than 0.6, 
and strong if higher than 0.8 (cf. [29])

Labels Kappa Level Of agreement

invertebrates 0.82 almost perfect

in vivo 0.78 substantial

in silico 0.72 substantial

human 0.63 substantial

organs 0.62 substantial

immortal cell lines 0.49 moderate

primary cell lines 0.45 moderate

others 0.42 moderate

overall 0.62 substantial
18  The upper limit for any label thus is 2 x 1,600 (abstracts) = 3200, if a label 
was assigned to all abstracts in the corpus by both allotted annotators.
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we obtained an almost perfect agreement for “inverte-
brates” (0.82), substantial agreement for “in vivo” (0.78), 
“in silico” (0.72), “human” (0.63), and “organs” (0.62), and 
moderate agreement for “immortal cell lines” (0.49), “pri-
mary cells” (0.45), and “others” (0.42). Two of the lowest 
agreements were for the “primary cell lines” and “immor-
tal cell lines” labels, which are indeed difficult to distin-
guish (if not using Cellosaurus).

Corpus evaluation
We ran various experiments to evaluate the corpus for 
predicting the labels. All results are in terms of the stand-
ard metrics of precision, recall, and f-score. In order to 
perform a 10-fold cross validation, we split the collection 
of abstracts into 10 parts in a stratified way, i.e., in a way 
to obtain datasets with a similar distribution of labels as 
in the complete corpus (cf. corpus statistics in Section 6 
of the supplementary material).

The hyperparameters that we considered were 
decided based on an evaluation with a prelimi-
nary version of our corpus (after round 2.3) and with 

BioBERT. The sets of values for the hyperparameters 
that we considered were the following: learning rate of 
1× 10−5, 5× 10−5, 1× 10−4 , and 5× 10−4 ; batch size of 
16 and 32; and epochs of 10, 20, 30, 40, and 50. We show 
the results for the 40 experiments that we ran with all 
combinations of hyperparameters in the supplementary 
material (Section  7). We made the final decision of the 
hyperparameters based on this analysis and on some of 
our constraints, i.e., time and memory performance. For 
our further experiments, we used the following hyper-
parameters: maximum length of 256, learning rate of 
1× 10−4 , batch size of 32, and 10 epochs.

We compared the various language models based on 
our best run in the 10-fold cross validation. Table 4 sum-
marizes the results. Further, we compared our best per-

forming model to the various SVM kernel functions (cf. 
Section 8 the in supplementary material).

In average, PubMedBERT performed slightly better 
than the other language models. It provided scores of at 
least 0.75 for all labels, while all other models provided a 
score under 0.70 for one or more labels. Indeed, PubMed-
BERT obtained a very good performance for other text 
classification tasks, as listed in the BLURB leaderboard19.

Evaluation with the addition of MeSH terms
For the best performing model that we obtained with 
PubMedBERT (cf. Table  4), we ran experiments for 
all the proposed threshold values (cf. Section  “MeSH 
terms”). Table 5 summarizes the results. Only one thresh-
old obtained a performance as high as the experiment 
without the use of MeSH terms, namely, the value of 10 
(overall f-score of 0.83). However, for all labels, there was 

Table 4  Performance (in f-score) for the various pre-trained 
language models

Labels BioBERT PubMedBERT SciBERT BLUE-BERT

invertebrates 0.89 0.95 0.95 0.95
in_vivo 0.88 0.88 0.89 0.83

human 0.82 0.86 0.82 0.73

organs 0.80 0.82 0.82 0.71

primary_cells 0.67 0.75 0.73 0.67

immortal_cell_lines 0.91 0.83 0.80 0.89

in_silico 0.67 0.75 0.75 0.86
others 0.70 0.78 0.67 0.76

All (average) 0.79 0.83 0.80 0.80

Table 5  Prediction of the labels with or without (w/o) adding the MeSH terms. We considered various thresholds for the minimum 
frequency of the terms, in relation to the number of articles in which they appear

w/o MeSH thresholds

0 10 25 50 100

invertebrates 0.95 1.00 1.00 0.89 0.89 0.90

in_vivo 0.88 0.88 0.88 0.89 0.89 0.88

human 0.86 0.83 0.76 0.87 0.91 0.70

organs 0.82 0.84 0.82 0.75 0.82 0.84
primary_cells 0.75 0.60 0.67 0.89 0.67 0.80

immortal_cell_lines 0.83 0.91 1.00 0.77 0.75 0.71

in_silico 0.75 0.87 0.80 0.80 0.80 0.75

others 0.78 0.64 0.69 0.72 0.80 0.59

All (average) 0.83 0.82 0.83 0.82 0.82 0.77

19  https://​micro​soft.​github.​io/​BLURB/​leade​rboard.​html

https://microsoft.github.io/BLURB/leaderboard.html
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always a threshold value that outperformed the experi-
ment without the MeSH terms.

Evaluation with the addition of discourse elements
For the best performing model that we obtained with 
PubMedBERT (cf. Table  4), we ran experiments with 
each of the sections as well as some of their combina-
tions. Table  6 summarizes the results. None of these 
experiments outperformed the one that considered the 
titles and abstracts. Some sections achieved a better per-
formance than others, namely, “Background”, “Methods” 
and “Conclusions”. Therefore, we ran experiments only 
for combinations of these three sections.

Comparison to available NER tools
We compared our results to two available tools for NER 
and entity normalization, namely, BERN2 [18] and Pub-
Tator [17]. Both tools extract a variety of entity types, but 
we considered only predictions for species and cell types, 
i.e., types “species” and “cell_line” in BERN2, and “Spe-
cies” and “CellLine” in PubTator. The remaining entity 
types, e.g., DNA, drugs, diseases, mutations, were not 
relevant for our schema. Both tools provide the identifi-
ers for the selected types, namely, to the NCBI taxonomy 
[30] for species and to Cellosaurus [22] for cell lines.

We used the same strategy for both tools. The “human” 
label was assigned if any prediction linked to H. sapiens 
(NCBITaxon:9606) was found. The abstracts with predic-
tions for either D. melanogaster (NCBITaxon:7227) or C. 
elegans (NCBITaxon:6239) were assigned to the “inver-
tebrate” label. For all remaining species, we assigned 
the abstracts to “in vivo”. Unfortunately, not all predic-
tions for cell lines are mapped to an identifier in Cello-
saurus. For the ones for which an identifier was available, 
we retrieved the corresponding species in Cellosaurus. 
Similarly, abstracts with cell lines from H. sapiens were 
assigned to the “human” label, and cell lines from D. 

melanogaster to the “invertebrate” label. For all remaining 
species, we assigned the abstracts to the “immortal cell 
lines” label, i.e., cell lines from vertebrates. We present 
results for the prediction of four of our labels in Table 7.

For all labels, the score were lower than the ones 
that we obtained with PubMedBERT. Both NER tools 
obtained similar results for the “in vivo” and “human” 
labels. However, BERN2 got some true positives for 
“immortal cell lines” (as opposed to none from PubTator), 
while PubTator scored much higher for “invertebrates”. 
When comparing the number of mentions predicted by 
each tool, in average, BERN2 predicted a total of 127 cell 
lines for the test set, as opposed to less than three from 
PubTator. This probably explain why BERN2 performed 
better for this label. Actually, BERN2 scored 1.0 for recall, 
while precision was low, around 0.15 (results not shown).

For the predictions of species, both tools returned 
approximately the same number of mentions. We 
checked a couple of abstracts to investigate the source of 
error, namely PMIDs 26845534 and 28916802. BERN2 
correctly detected the “Drosophila” mention, and 
assigned the type (species). However, no identifier was 
associated to it, but simply the text “CUI-less”, thus hin-
dering a mapping to the “invertebrate” label.

We also evaluated the two NER tools when consider-
ing only annotations that occurred in some particular 
discourse elements (cf. Section  9 in the supplementary 

Table 6  Performance (in f-score) when using individual and combined sections for the prediction of the abstract labels. We show 
results from considering each section separately, i.e. Background (B), Objective (O), Methods (M), Results (R), and Conclusions (C), as 
well as combinations of the three best performing ones

none B O M R C BM BC MC BMC

invertebrates 0.95 0.95 0.76 0.89 0.95 0.95 1.00 0.84 0.82 0.95
in_vivo 0.88 0.76 0.75 0.86 0.83 0.79 0.83 0.70 0.80 0.83

human 0.86 0.90 0.62 0.78 0.67 0.70 0.78 0.78 0.73 0.80

organs 0.82 0.71 0.53 0.75 0.63 0.67 0.74 0.59 0.53 0.75

primary_cells 0.75 0.40 0.44 0.50 0.29 0.67 0.57 0.25 0.00 0.86
immortal_cell_lines 0.83 1.00 0.50 0.40 0.36 0.91 0.83 0.75 0.44 0.91

in_silico 0.75 0.67 0.67 0.60 0.80 0.67 0.75 0.80 0.83 0.67

others 0.78 0.73 0.56 0.48 0.40 0.64 0.64 0.73 0.67 0.70

All (average) 0.83 0.76 0.60 0.66 0.62 0.75 0.77 0.68 0.60 0.81

Table 7  Prediction of the labels based on the named-entity 
recognition provided by BERN2 and PubTator. The scores are an 
average over the 10-fold cross-validation

Labels BERN2 PubTator

invertebrates 0.54 0.72

in vivo 0.56 0.61

human 0.52 0.45

immortal cell lines 0.24 0.00
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material). We observed only a very small improvement 
when considering only the background section: for the 
“invertebrates” and “immortal cell lines” labels with 
BERN2 and for the “human” with PubTator.

Sentence‑level prediction
We annotated the corpus on the level of the entity span, 
since this was necessary when working with the TeamTat 
tool. However, we did not give clear instructions to the 
annotators on how to annotate the text spans. Further, we 
did not ask them to annotate all mentions of the particu-
lar method, e..g, the species name. Finally, the annotators 
did not highlight mentions of other methods, if it was not 
the proposed experimental method. Therefore, our cor-
pus cannot be compared to corpora built for NER task. 
Nevertheless, we experimented with using the annota-
tions for training a sentence-level model.

The training data consisted of sentences and the cor-
responding labels of their annotations. We utilized the 
same code used for training BioBERT on document level, 
and the only change of parameter was considering the 
maximum length of 128 (instead of 256), a learning rate 
of 5× 10−5 (instead of 1× 10−4 ), and a batch size of 16 
(instead of 32). We did not consider a sequence model, as 
it is usual for NER tasks, i.e., the prediction made for the 
previous sentence does not influence the prediction for 
the current sentence. Table 8 summarizes the results. In 
general, the performance was much higher for the docu-
ment-level prediction. Curiously, the sentence-level pre-
diction scored better for the “in silico” label.

Discussion
Here we discuss some issues related to our annota-
tions and experiments, such as possible reasons for the 
inconsistencies in the annotation process, and the cor-
relation of our initial queries to the annotations that 
we obtained.

Annotation process
After the first round of annotations, in which 13 anno-
tators independently reviewed 1,600 abstracts with two-
fold overlap (to determine inter-annotator agreement), 
we performed four additional rounds with subsets of first 
round annotations to partly resolve disagreements from 
the first round.

As expected, agreement between annotators decreased 
with the assignment of more than one label per article. 
For articles where the annotator assigned only one label, 

Table 8  Performance (in f-score) for the prediction of the labels 
on document and sentence level

Labels documents sentences

invertebrates 0.91 0.48

in_vivo 0.82 0.41

human 0.74 0.60

organs 0.76 0.33

primary_cells 0.57 0.58

immortal_cell_lines 1.00 0.88

in_silico 0.80 0.89

others 0.73 0.55

All (average) 0.79 0.59

Table 9  Number of the 899 articles with full agreement according to the obtained labels. The table is divided into three groups: 
documents with one, two, or three labels. “Total” is the total number of documents in each group, while “No. Docs” is the number of 
documents with each of the labels (or set of labels)

Total No. Docs Labels

1 label 862 213 “in vivo”

156 “invertebrates”

136 “human”

97 “others”

92 “organs”

85 “in silico”

30 “immortal cell lines”

28 “primary cell lines”

25 none

2 labels 31 6 “in silico+in vivo”

5 “in vivo+primary cell lines”

4 “in silico+invertebrates”, or “immortal cell lines+in vivo”, or “in vivo+organs”

2 “organs+primary cell lines”, or “in silico+primary cell lines”, or “human+invertebrates”, or “in silico+others”

3 labels 6 1 “human+in vivo+primary cell lines”, or “in vivo+invertebrates”, or “immortal cell lines+primary cell lines”, 
or “in vivo+others”, or “in silico+organs”, or “immortal cell lines+organs”



Page 11 of 14Neves et al. Journal of Biomedical Semantics           (2023) 14:13 	

we found a full agreement of 71%. This value decreased to 
36% when considering two labels per article, and to 12.5% 
when considering three labels per article.

We identified the labels (and their combinations) 
for which an inter-annotator agreement was obtained. 
Table 9 presents the number of articles with such agree-
ment after the first round of annotation. As expected, 
full agreement occurred mostly in abstracts assigned to 
just one label. Furthermore, full agreement of annota-
tions was found in 31 abstracts labeled twice, and only six 
times when three labels were present.

For abstracts without full agreement, we obtained 167 
combinations of disagreements. The most frequent disa-
greement that we observed was the assignment of the 
label “human” by one annotator, and the label “others” 
by the other one (n = 55). Indeed, many of the abstracts 
assigned to “others” were retrospective studies in which 
patients were involved. Thus, according to our guideline, 
the label “others” was the correct one. We provide more 
details about the disagreements in Section 10 of the sup-
plementary material.

Correlation with the initial database queries 
and the corresponding MeSH terms
Our initial assumption was that a query based on MeSH 
terms could not precisely distinguish between certain 

types of experimental models20, since such terms are too 
indistinct for this specific task, i.e. to distinguish “animal 
experiments” from “experiments using animals” (cf. Sec-
tion “Related work”).

The list of 1,600 PMIDs in our corpus results from eight 
database queries, which were designed to roughly repre-
sent the labels in our schema. From each of the hit lists, 
we retrieved the top 200 PMIDs for which an abstract 
was available. After the annotation of the abstracts, we 
assessed whether the assigned labels in our corpus cor-
respond to our initial queries.

Figure 1 presents the percentage of abstracts that agree 
with the respective label that was assigned after round 2.4 
(i.e. full agreement). The “immortal cell lines”, “organs” 
and “in silico” labels obtained the highest agreement 
(over 80%). Furthermore, these values are roughly as high 
as the f-scores obtained for these labels in our PubMed-
BERT experiments: 0.83, 0.82 and 0.75, respectively. The 
correlation for “invertebrate” was high (74.6%), but lower 
than the f-score for this label, which was of 0.95. The low-
est agreement was the one for “in vivo”: only 44.74%.

Fig. 1  Correlation of the labels (in the graph) with the queries (in the legend) used for retrieving the abstracts. The values represent the percentage 
of articles assigned to the particular label that correlated with the query. The labels were derived from the annotations after round 2.4

20  in particular “in vivo” models and models using biopsies or tissues from 
animals killed in advance (“ex vivo”)
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Further, we assessed the potential of relying on 
MeSH terms to support the prediction of the labels. 
We retrieved all MeSH terms associated with our 1,600 
abstracts and obtained 2,828 distinct terms when consid-
ering only the ones associated to at least ten documents. 
Only 22 of the abstracts contained no MeSH terms at 
all. Then we analyzed the correlation between the terms 
and the labels by checking the MeSH terms that occur in 
abstracts with a particular label. We summarize in Fig-
ure  2 the correlation for the MeSH terms21 to a certain 
label.

On the one hand, some terms had a clear correlation 
with only one of our labels and are good discriminators, 
e.g.:

•	 “Computer Simulation” (large blue element in the 
middle) for “in silico”;

•	 “Cell Line, Tumor” (larger light blue element in the 
middle) for “human”;

•	 “Drosophila melanogaster” (larger yellow element in 
the middle) for “invertebrates”;

•	 and “Rats” (larger dark yellow element in the middle) 
and “Mice” for “in vivo”.

On the other hand, some terms frequently occur for 
more than one label, and are not good discriminators, 
namely the four first elements from the left: “Humans” 
(light blue), “Animals” (orange), “Female” (dark blue), and 

“Male” (light green). Therefore, building reliable queries 
based on MeSH terms is a challenge for most of the labels 
that we address.

Limitations and future work
For this first version of our corpus, we designed a set of 
eight labels. While these labels cover most important ver-
tebrate models in experimental biomedical research, the 
resolution of human models is underdeveloped. There-
fore, we plan to expand the set of labels with classes 
referring to human models, i.e. “human in vivo”, “human 
organs/tissues”, “human cell lines”. Furthermore, we plan 
to improve our guidelines and examples regarding the 
distinction of (vertebrate or human) “primary cells” and 
“immortal cell lines”. Annotators will receive adequate 
training and will be obliged to use the Cellosaurus [22] 
for the identification of the cell lines. There also will be 
more emphasis on the hierarchical position of label “oth-
ers” which actually is at the top of a hierarchical system, 
and captures abstracts that describe biomedical research 
that uses other than experimental approaches, e.g. obser-
vational studies.

We carried out annotation only on abstract-level, and 
even though the annotators highlighted some text pas-
sages in the TeamTat annotation tool, we did not require 
them to highlight all mentions of a particular model. As 
future work, we plan to consider these annotations for 
further experiments, as an extension of the preliminary 
sentence-based classification that we carried out.

We integrated the best performing BioBERT model 
in our SMAFIRA Web tool, which is currently under 

Fig. 2  Association of the labels and the top ranked MeSH terms. A variety of colors, i.e., MeSH terms, is associated to all the labels

21  with a frequency of at least 50
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development. SMAFIRA is a search engine that aims at 
supporting researchers when searching for alternative 
methods to animal experiments. Our classifier based on 
PubMedBERT provides a real-time classification of the 
abstracts which are automatically retrieved from PubMed 
based on the user input query. This allows the user to filter 
the list of results based on the one or more of our labels.

Conclusion
In this publication, we presented a new corpus of 1,600 
Medline abstracts and manually annotated it using a set 
of eight labels (in vivo, organs, primary cells, immortal 
cell lines, human, invertebrates, in silico, and others). We 
obtained more than 7,000 annotations (multi-labeling 
was possible) and involved 13 annotators in the process 
(two annotations per document). After the first round 
of annotation, we achieved different degrees of agree-
ment, and even a strong agreement for one of the labels. 
All disagreements were resolved in the additional anno-
tation rounds. We expect that this corpus can support 
the development of applications in the field of alterna-
tive methods to animal experiments, as well as serve as a 
benchmark for biomedical text classification tasks.

We ran machine learning experiments to assess the 
feasibility of using our corpus to predict the labels. 
These experiments aimed at the identification of the 
best algorithm, hyperparameters, language model, and 
semantic features, such as MeSH terms and discourse 
elements. Further, we compared our proposed model to 
state-of-the-art tools for the prediction of named-entity 
recognition.

We provided an adequate analysis of our annotations 
and of the disagreements between the annotators. These 
insights will certainly be valuable when designing the 
next version of our corpus. Further, we investigated the 
correlation of our annotations with respect to the origi-
nal queries, which were used to retrieve the abstracts, 
and the MeSH terms associated to the articles (cf. Sec-
tion  “Correlation with the initial database queries and 
the corresponding MeSH terms”). These results support 
our claim that queries based on MeSH terms are not ade-
quate for precisely identifying the experimental method 
(or model) described in a publication.
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