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Abstract

Background: Although disease diagnosis has greatly benefited from next generation sequencing technologies, it is
still difficult to make the right diagnosis purely based on sequencing technologies for many diseases with complex
phenotypes and high genetic heterogeneity. Recently, calculating Human Phenotype Ontology (HPO)-based
phenotype semantic similarity has contributed a lot for completing disease diagnosis. However, factors which affect
the accuracy of HPO-based semantic similarity have not been evaluated systematically.

Results: In this study, we proposed a new framework called HPOFactor to evaluate these factors. Our model includes
four components: (1) the size of annotation set, (2) the evidence code of annotations, (3) the quality of annotations
and (4) the coverage of annotations respectively.

Conclusions: HPOFactor analyzes the four factors systematically based on two kinds of experiments: causative gene
prediction and disease prediction. Furthermore, semantic similarity measurement could be designed based on the
characteristic of these factors.
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Introduction
In the last few years, disease diagnosis has greatly ben-
efited from the rapid development of next generation
sequencing (NGS) technologies [1–3]. However, it is
difficult to make the right diagnosis purely based on
sequencing technologies for many diseases with complex
phenotypes and high genetic heterogeneity. Because the
genetic variants always relate to the complex clinical phe-
notypic characteristics. This kind of relation is difficult to
understand [4–6].
Recently, tools to measure phenotypic characteristics

have received increasing attention. Patient phenotypes are
defined as the entire physical, biochemical and physiolog-
ical makeup of a patient which determined by both genet-
ically and environmentally [7]. Phenotype data can help
people to understand the relation between the genetic
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variances and biological process activities. Advanced phe-
notype data analysis have played an important role in
explaining gene function and understanding biological
mechanism in biomedical research [8–11]. One of the
key steps in phenotype data analysis is to precisely mea-
sure the similarity between phenotypes, and combine this
knowledge with the disease diagnosis process to improve
disease diagnosis efficiency. Therefore, a formal and con-
trolled vocabulary is required to unify the representation
of phenotypes and phenotype attributes.
It has been proved in many applications that ontology

is effective to represent biomedical information as terms
and their directed relationships with a directed acyclic
graph (DAG) [12–18]. In order to meet the demand, an
ontology called Human Phenotype Ontology (HPO) was
constructed to describe the abnormal human phenotypes
encountered in human Mendelian disease by Robinson
et al. in 2008 [7]. Currently, HPO has been widely used
to provide the unified and structured vocabulary to rep-
resent the phenotypic features encountered in human

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13326-017-0144-y&domain=pdf
mailto: shang@nupu.edu.cn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


The Author(s) Journal of Biomedical Semantics 2017, 8(Suppl 1):34 Page 62 of 79

diseases [19]. HPO is always combined with next gen-
eration sequencing data analysis to support the human
disease diagnosis [20, 21].
In order to improve diagnostic efficiency, many compu-

tational methods have been proposed to measure the phe-
notypic similarity between patient and historical disease
data (or genes) [22, 23]. Among these computational mea-
surements, calculating HPO-based phenotype semantic
similarity has played an important role in completing
disease diagnosis process.
Recently, several measurements have been developed

to compute HPO-based phenotype semantic similarity
[23–25]. Although ontology-based semantic similarity
measurement has been extensively studied in the last ten
years [26–33], it is still a difficult task to measure the
phenotype similarity based on HPO structure and anno-
tations. The reason is that many factors could affect the
accuracy of HPO-based phenotype semantic similarity,
such as the number of annotations per gene/disease, the
evidence code of annotations, the coverage of annotations
and the quality of annotations [22].
To figure out how different factors affect the perfor-

mance of ontology-based semantic similarity measure-
ment, some methods have been proposed to evaluate
different involved factors. To test whether different edi-
tions of Gene Ontology (GO) would result in different
semantic similarities, Gillis et al. proposed an evaluation
framework based on protein interaction networks [34].
The result shows that 3 and 20% of genes are not semanti-
cally similar to themselves between monthly GO editions
and between biennially GO editions. The semantic sim-
ilarities are only stable over short-period GO editions.
Skunca et al. proposed a novel method to systematically
evaluate the quality of the computationally inferred GO
annotations [35]. The reliability of electronic GO anno-
tations is defined as the proportion of electronic annota-
tions confirmed by the experimental annotations in the
future release of GO. The coverage is defined as the pro-
portion of experimental annotations predicted by the elec-
tronic annotations in an older release of GO. The result
shows that the electronic GO annotations have high qual-
ity, which could lead to accurate semantic similarity. Both
of the aforementioned methods are based on the histori-
cal versions of ontology. These methods cannot be used to
evaluate the factors that affect the performance of HPO-
based semantic similarity measurement, since the histor-
ical versions of HPO are not available currently (personal
communication with the founder of HPO). Furthermore,
other factors may also affect the accuracy of HPO-based
semantic similarity. First, HPO contains large numbers of
annotations with different evidence code indicating the
different levels of evidences supporting the annotation.
Second, HPO is a growing data source. The coverage and
quality of annotations may vary with the updating of HPO

data source. Third, the number of HPO terms annotating
different diseases/genes may be different. These factors
are all related to the HPO-based semantic similarity calcu-
lation. It is difficult to evaluate each factor individually. It
is challenging and demanding to test whether these factors
would affect the accuracy of HPO-based semantic simi-
larity. The evaluation of different factors may guide the
design of HPO-based semantic similarity measurement
and support the human disease diagnosis. However, to the
best of our knowledge, no method has been proposed to
evaluate the factors that affect the accuracy of HPO-based
semantic similarity.
In this article, we proposed a new framework named

HPOFactor to evaluate the effect of four factors involved
in the HPO-based semantic similarity calculation sep-
arately. The contribution of our present study are as
follows.

• To the best of our knowledge, HPOFactor is the first
framework that is specially designed for evaluating
the factors involved in HPO-based semantic
similarity calculation;

• We develop a method to generate different versions
of the HPO annotations with different coverage and
quality levels;

• We test the minimal size of annotation set that does
not affect the accuracy of HPO-based semantic
similarity.

Methods
We proposed HPOFactor, a new framework to evalu-
ate the factors that affect the performance of phenotype
semantic similarity measurement based on human phe-
notype ontology (HPO). The proposed framework has
four parts. First, it tested whether changing the size
of phenotype annotations would affect the performance
of phenotype semantic similarity measurement. Second,
it tested whether using annotations with different evi-
dence codes would affect the performance of phenotype
semantic similarity measurement. Third, it tested whether
changing the annotation coverage would affect the per-
formance of phenotype semantic similarity measurement
by randomly deleting the HPO annotations. Last, it tested
whether varying the quality of HPO annotations would
affect the performance of phenotype semantic similarity
measurement by randomly swapping the existing annota-
tions of different HPO terms. The diagram of the whole
framework is shown in Fig. 1.

Calculating HPO-based semantic similarity
HPO provides a structured and controlled vocabulary to
describe the human phenotypes and the genes/diseases
associated with the phenotypes [7]. Using the unified
description from HPO, the semantic similarity between
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Fig. 1 -The workflow of HPOFactor

gene and patient or between disease and patient can be
calculated. Based on the HPO-based semantic similar-
ity, we can predict whether a patient associates with a
gene or has certain disease. For example, we can rank
the candidate genes based on its similarity with the
patient to predict the patient-associated genes. The phe-
notypes of a patient can be observed in clinical treat-
ment and the gene/disease phenotype set can be obtained
from database like HPO. Since the phenotype sets of
patient, gene and disease are all able to be unified by
HPO terms, calculating the similarity between patient and
gene/disease is equal to calculating the similarity between
two sets of HPO terms.
Let P1 and P2 be two phenotype term sets correspond-

ing to a patient and a disease (or gene) respectively. P1
represents a set of phenotype terms of a patient observed
in clinical treatment. P2 represents a set of phenotype
terms of a disease (or gene) obtained from HPO database.
Adopting the approach in [22], the semantic similar-
ity between a patient and a gene (or disease) can be
calculated by aggregating the pair-wise phenotype simi-
larity between terms across P1 and P2. Given two phe-
notype sets, their HPO-based similarity is calculated as
follows.

sim (P1,P2) =1
2

× simset (P1 → P2) + 1
2

× simset (P2 → P1)
(1)

where simset(P1 → P2) represents the similarity from
P1 to P2. For each phenotype p1 in P1, we calculate the
similarity between p1 and each phenotype in P2. Then
the highest similarity score is selected as the similar-
ity between p1 and phenotype set P2. The average of
all similarities between each phenotype in P1 and P2 is
defined as the similarity from P1 to P2. Mathematically,
simset(P1 → P2) is defined as follows.

simset(P1 → P2)=avg

⎡
⎣ ∑
p1∈P1

maxp2∈P2simterm(p1, p2)

⎤
⎦

(2)

where simterm(p1, p2) represents semantic similarity
between two phenotypes p1 and p2. It is noted that the
similarity from phenotype set P1 to P2 is different from
the similarity from phenotype set P2 to P1. Therefore,
Eq. 1 averages the two dissymmetric similarities as the
similarity between two phenotype sets.
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To calculate simterm(p1, p2), let S(p1, p2) be the set of all
common ancestors of p1 and p2. pmin is the term that has
the minimal annotations in S(p1, p2). Given two pheno-
types p1 and p2, their similarity simterm(p1, p2) is defined
as follows.

simterm(p1, p2) = − log
Npmin

N
(3)

where Npmin is the number of annotations of pmin (includ-
ing annotations of itself and its descendants) and N is the
total number of annotations involved in HPO.
Based on this semantic similarity measurement, we will

evaluate the factors that affect HPO-based semantic simi-
larity in the following subsections.

Test the effect of the size of annotation set
In the process of calculating semantic similarity measure-
ment introduced in last subsection, one of the key factors
is the size of annotation set of compared genes or diseases.
The size is usually large in the HPO branches for those
well studied ones. Therefore, the size of annotation set is
not a stable factor in the semantic similarity calculation.
In this subsection, we proposed a method to test whether
the size of annotation set would affect the precision of
semantic similarity.
Given a set of query patients Q, each element q in Q

has an annotation set obtained from clinical treatment
saved as Pq. Given a set of genes/diseases H involved in
HPO database, each element h in H has an annotation set
obtained fromHPO database saved as Ph. We changed the
size threshold of annotations s and calculate the seman-
tic similarity at different thresholds. Given the threshold s,
the detail of the method is described as follows. For each
element h in H, we randomly selected s phenotypes from
Ph, saved as Psh. This step is represented mathematically in
Eq. 4.

Psh = RandomSelection(Ph, s) (4)

For each query patient q inQ, we calculate the similarity
between Pq and Psh for each h in H using Eq. 1. Then, we
ranked all elements in H based on the similarities with Pq
saved as Horder (see Eq. 5).

Horder = Rank
(
H , {y|y = sim(Pq,Psh), h ∈ H}) (5)

At last, we can test whether the known patient associ-
ated element (gene or disease) has a high rank in Horder .
The higher the rank is, the better the performance of the
semantic similarity measurement is.

Test the effect of annotationswith different evidence codes
In HPO, the annotations are supported by different evi-
dences. When the HPO project was initialed, most anno-
tations were extracted from the OMIM database [36]
by parsing the clinical features. These annotations are
labeled by the evidence code IEA representing “inferred

from electronic annotation”. There are also other evi-
dences, such as PCS representing “inferred from public
clinical study and biomedical literature”, ICE representing
“inferred from individual clinical experience”, ITM rep-
resenting “inferred by text-mining technique” and TAS
representing “inferred from traceable author statement”.
In this subsection, we test whether using different anno-

tations with different evidence codes would affect the
precision of HPO-based semantic similarity. First, the
annotations in HPO are grouped based on the evidence
codes. Given the annotation setA,Ae represents the anno-
tation set with evidence e. For each evidence code e, we
only use annotations contained in Ae to calculate the
semantic similarity between phenotypes. Given a set of
genes/diseases H, the annotation set of each element h in
H is obtained from Ae, saved as Phe. Similar with the pro-
cess described in last subsection, we rank all elements in
H based on the similarities with the phenotypes of query
patient.

Horder = Rank
(
H , {y|y = sim(Pq,Phe), h ∈ H}) (6)

Finally, we could see which evidence code can lead the best
performance.
Test the effect of annotation quality
To determine whether annotation quality was one of
the factors that control the performance of HPO-based
semantic similarity, we re-ran semantic similarity mea-
surement by varying the quality of HPO annotation. To
this end, we varied the HPO annotation quality by ran-
domly swapping the phenotype-annotation associations
in HPO. For example, assume that d1 → p1 and d2 →
p2 are two disease-phenotype pairs randomly selected
from HPO. After the swapping process, we get two new
pairs d1 → p2 and d2 → p1 to replace the original
two pairs. Given the original HPO annotation set A, we
can generate a low quality set Au by randomly swapping
the phenotype-annotation associations. To make sure
the quality be decreased, the new generated phenotype-
annotation associations should not be contained in the
set of original HPO phenotype-annotation associations.
u represents different quality levels, such as swapping
20% phenotype-annotation associations, 40% phenotype-
annotation associations.Au has the same size with A but
different quality level. For each low quality level u, we use
the low quality annotation setAu to calculate the semantic
similarity between phenotypes. The annotation set of each
element h in H is got from Au, saved as Phu. Comparison
of the performance of semantic similarity using annota-
tion sets with different quality level could test whether
the annotation quality was a key factor of the HPO-based
semantic similarity measurement.
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Test the effect of annotation coverage
Currently, HPO is not complete. Much unknown knowl-
edge and knowledge in the literature are not included
in the HPO database. Therefore, it is critical to test
whether annotation coverage was a key factor for HPO-
based semantic similarity measurement. To this end, we
randomly delete the annotations from annotation set A
to generate a low coverage annotation set Ac. c repre-
sents different coverage levels, such as randomly delet-
ing 20% of the annotations in A, deleting 40% of the
annotations in A. For each coverage level c, we use
the low coverage annotation set Ac to calculate the
semantic similarity between phenotypes. Given a set of
genes/diseases H, the annotation set of each element h
in H is obtained from Ac, saved as Phc. By comparing
the results on the annotation sets with different cover-
age levels, we can test whether the annotation cover-
age is a key factor for HPO-based semantic similarity
calculation.
Results
Data preparation
The Human Phenotype Ontology (HPO) data used in
our experiment was downloaded from the HPO official
website (http://human-phenotype-ontology.github.io/)
on April 1st, 2016. It includes 459,452 gene annota-
tions and 78,313 disease annotations. HPOFactor was
implemented with Python language.
We used the curated clinical phenotype features in

[22] to generate simulated patients for experiments. The
associated phenotypes, disease causative genes and pene-
trance of each phenotype of the diseases are available in
the dataset. For each disease, we simulated 100 patients.
The simulation process is described as follows. To con-
sider the gender-specificity of phenotypes, we first sim-
ulated the gender of each patient. A random number fg
was generated. Then, the patient’s gender is assigned as
follows:

{
fg > 0.5 ,male
fg ≤ 0.5 ,famale (7)

Second, given a phenotype p of a patient, a ran-
dom number rp was generated. Let fp be the pene-
trance of this phenotype associated with the assigned
disease. If rp < fp, the phenotype p was assigned
to the patient. It is noted that each simulated patient
must have at least one phenotype. Finally, 3300 patients
was generated. For each patient, we know its disease
causative gene and associated disease. Therefore, we
adopted the evaluation criterion from [22] to test whether
the causative gene or associated disease of a patient
can be identified based on the HPO-based semantic
similarity.

Evaluation for the size of annotation set
In this experiment, we compared the results of using dif-
ferent sizes of annotation set to identify the disease associ-
ated with the patient. The size threshold s used in Eq. 4 is
from 1 to 10. The result shows that the patient associated
diseases have low ranks when the number of annotations
is small, indicating low performance (see Fig. 2). Partic-
ularly, when s = 1 and s = 2, the ranks of most true
patient associated diseases are lower than the 450. Figure 2
shows that the performance improved with the increase
of the size of annotation set. Noted that the performance
become stable when s > 5.
We also compared the results of using different sizes

of annotation set to identify the causative gene. The
gene annotations in HPO are richer than the disease
annotations (see the Data preparation subsection). To
see the global distribution, we set the gene set thresh-
old s as {1, 5, 10, . . . , 45, 50}. Similar with the result of
identifying disease, the causative genes have low ranks
when the number of annotations is small (see Fig. 3).
When s = 1, the ranks of most causative genes are
lower than 500. It is shown that the performance of
HPO-based semantic similarity improved steadily with
the increase of the number of annotations. The perfor-
mance keeps stable when the size of annotations is larger
than 25.
The result shows an important guidance for the HPO-

based semantic similarity calculation that the result may
be more reliable when the number of annotations is large
enough.

Evaluation for the annotations with different evidence
codes
In this part, we test whether using annotations with dif-
ferent evidence codes would affect result of identifying
the disease associated with the patient. We do not test
the performance for causative gene identification since
the gene annotations in HPO do not have evidence codes
currently. We only compare three evidence codes: IEA,
TAS and PCS, since other evidence codes do not have
enough number of annotations. To avoid the bias result-
ing from the lack of annotation, we did the experiment
on the size of annotations sets which are larger than 5.
We choose the size threshold since the experiment in
last subsection shows that the performance become stable
when s > 5.
Figure 4 shows that using annotations with PCS evi-

dence code performs better than using the annotations
with IEA and TAS evidence code. Specifically, when
the ranking threshold is 5, the ratio of patients for
PCS is 0.993, which is higher than IEA and TAS (the
number is 0.901 and 0.580 respectively). The ratio of
patients for PCS is 0.997, when the ranking threshold
is 10. In comparison, the ratios of patients satisfying

http://human-phenotype-ontology.github.io/
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Fig. 2 -The rank of disease by changing the size of phenotype annotation set. The x-axis is the number of HPO annotations. The y-axis is the rank of
disease associated with the query patient

Fig. 3 -The rank of causative gene by changing the size of phenotype annotation set. The x-axis is the number of HPO annotations. The y-axis is the
rank of causative gene of the query patient
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Fig. 4 -The rank of disease by the phenotype with different evidence code. The x-axis is the ranking threshold for the disease. The y-axis is the ratio
of patients satisfying the ranking threshold

the threshold are 0.906 and 0.609 for IEA and TAS
respectively.

Evaluation for the annotation quality
To test the effect of annotation quality to the perfor-
mance of HPO-based semantic similarity, we compared
the results of using annotation sets with different quali-
ties to identify the patient associated diseases (Fig. 5(a)) or
causative genes (Fig. 5(b)). Overall, the result shows that
the performance goes downwith the decrease of the anno-
tation quality in both experiments. It is shows that the

performance decreases significantly when more than 40%
annotations become noise.
In the associated disease identification experiment,

when the ranking threshold is 10, the ratio of patients sat-
isfying the threshold is 0.967 for original annotation set.
In comparison, the ratios of patients satisfying the thresh-
old are 0.933, 0.862, 0.637 and 0.198 for annotation sets
with 20%, 40%, 60% and 80% noise respectively. Further-
more, the statistical test shows that the result for original
annotation set is significantly different with 40%, 60% and
80% set (Tukey test, p-value < 0.05).

Fig. 5 -The rank of disease (a) and causative gene (b) by varying the quality of phenotype annotations. The x-axis is the ranking threshold for the
disease/causative gene. The y-axis is the ratio of patients satisfying the ranking threshold
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Fig. 6 -The rank of disease (a) and causative gene (b) by changing the coverage of phenotype annotations. The x-axis is the ranking threshold for
the disease/causative gene. The y-axis is the ratio of patients satisfying the ranking threshold

In the causative gene identification experiment, when
the ranking threshold is 10, the ratio of patients satisfy-
ing the threshold is 0.951 for original annotation set. In
comparison, the ratios of patients satisfying the threshold
are 0.909, 0.863, 0.496 and 0.005 for annotation sets with
20%, 40%, 60% and 80% noise respectively. Furthermore,
the statistical test shows that the result for original anno-
tation set is significantly different with 40%, 60% and 80%
set (Tukey test, p-value < 0.05).

Evaluation for the annotation coverage
To test the effect of annotation coverage to the perfor-
mance of HPO-based semantic similarity, we randomly
delete the annotations and use annotation sets with differ-
ent coverage levels to identify the associated disease and
causative genes. The result shows that the performance of
HPO-based semantic similarity decreased with the reduc-
tion of the annotations (Fig. 6(a) and (b)). However, there
was no significant difference when the deleted annota-
tions are less than 60% (Tukey test, p-value > 0.05). It
indicates that HPO-based semantic similarity is more sen-
sitive to the quality of annotations than the coverage of
annotations.

Discussion
In this article, we proposed a novel framework called
HPOFactor to evaluate the factors that may affect the
accuracy of HPO-based semantic similarity. HPOFactor
evaluates four factors involved in the HPO-based seman-
tic similarity: size of annotation set, evidence code of
annotations, quality of annotations and coverage of anno-
tations. Particularly, we found the performance of HPO-
based semantic similarity decreased steadily with the
reduction of coverage and quality of annotations. There
was no significant difference among different coverage
levels (p-value > 0.05), but there was significant difference
among different quality levels (p-value < 0.05), indicating

that quality is more important than coverage. This is
important because not all human diseases and genes are
annotated in current HPO, but existing annotations in
HPO have high quality.

Conclusion
Recently, the rapid development of next generation
sequencing techniques have significantly accelerated dis-
ease diagnosis. However, it remains challenging to make
the right diagnosis formany diseases with complex pheno-
types and high genetic heterogeneity. Hence, HPO-based
phenotype similarity become an important part of com-
pleting disease diagnosis.
The evaluation result can make the HPO-based seman-

tic similarity better used in phenotype-based causative
gene prediction and disease prediction. In the future, we
will evaluate the combination effects of different factors
on HPO-based semantic similarity. Furthermore, we will
design semantic similarity measurement based on the
characteristic of these factors.
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